d580860e12
Features: Jumbo frames (up to 9600), LRO (Large Receive Offload), TSO (TCP segmentation offload), RTH (Receive Traffic Hash). Submitted by: Sriram Rapuru at Exar MFC after: 2 weeks
554 lines
17 KiB
C
554 lines
17 KiB
C
/*-
|
|
* Copyright(c) 2002-2011 Exar Corp.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification are permitted provided the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the Exar Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*$FreeBSD$*/
|
|
|
|
#include <dev/vxge/vxgehal/vxgehal.h>
|
|
|
|
/*
|
|
* __hal_mempool_grow
|
|
*
|
|
* Will resize mempool up to %num_allocate value.
|
|
*/
|
|
static vxge_hal_status_e
|
|
__hal_mempool_grow(
|
|
vxge_hal_mempool_t *mempool,
|
|
u32 num_allocate,
|
|
u32 *num_allocated)
|
|
{
|
|
u32 i, j, k, item_index, is_last;
|
|
u32 first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
|
|
u32 n_items = mempool->items_per_memblock;
|
|
u32 start_block_idx = mempool->memblocks_allocated;
|
|
u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
|
|
__hal_device_t *hldev;
|
|
|
|
vxge_assert(mempool != NULL);
|
|
|
|
hldev = (__hal_device_t *) mempool->devh;
|
|
|
|
vxge_hal_trace_log_mm("==> %s:%s:%d",
|
|
__FILE__, __func__, __LINE__);
|
|
|
|
vxge_hal_trace_log_mm(
|
|
"mempool = 0x"VXGE_OS_STXFMT", num_allocate = %d, "
|
|
"num_allocated = 0x"VXGE_OS_STXFMT, (ptr_t) mempool,
|
|
num_allocate, (ptr_t) num_allocated);
|
|
|
|
*num_allocated = 0;
|
|
|
|
if (end_block_idx > mempool->memblocks_max) {
|
|
vxge_hal_err_log_mm("%s",
|
|
"__hal_mempool_grow: can grow anymore");
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
}
|
|
|
|
for (i = start_block_idx; i < end_block_idx; i++) {
|
|
|
|
void *the_memblock;
|
|
vxge_hal_mempool_dma_t *dma_object;
|
|
|
|
is_last = ((end_block_idx - 1) == i);
|
|
dma_object = mempool->memblocks_dma_arr + i;
|
|
|
|
/*
|
|
* allocate memblock's private part. Each DMA memblock
|
|
* has a space allocated for item's private usage upon
|
|
* mempool's user request. Each time mempool grows, it will
|
|
* allocate new memblock and its private part at once.
|
|
* This helps to minimize memory usage a lot.
|
|
*/
|
|
mempool->memblocks_priv_arr[i] = vxge_os_malloc(
|
|
((__hal_device_t *) mempool->devh)->header.pdev,
|
|
mempool->items_priv_size * n_items);
|
|
if (mempool->memblocks_priv_arr[i] == NULL) {
|
|
|
|
vxge_hal_err_log_mm("memblock_priv[%d]: \
|
|
out of virtual memory, "
|
|
"requested %d(%d:%d) bytes", i,
|
|
mempool->items_priv_size * n_items,
|
|
mempool->items_priv_size, n_items);
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__,
|
|
VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
|
|
}
|
|
|
|
vxge_os_memzero(mempool->memblocks_priv_arr[i],
|
|
mempool->items_priv_size * n_items);
|
|
|
|
/* allocate DMA-capable memblock */
|
|
mempool->memblocks_arr[i] =
|
|
__hal_blockpool_malloc(mempool->devh,
|
|
mempool->memblock_size,
|
|
&dma_object->addr,
|
|
&dma_object->handle,
|
|
&dma_object->acc_handle);
|
|
if (mempool->memblocks_arr[i] == NULL) {
|
|
vxge_os_free(
|
|
((__hal_device_t *) mempool->devh)->header.pdev,
|
|
mempool->memblocks_priv_arr[i],
|
|
mempool->items_priv_size * n_items);
|
|
vxge_hal_err_log_mm("memblock[%d]: \
|
|
out of DMA memory", i);
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__,
|
|
VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
}
|
|
|
|
(*num_allocated)++;
|
|
mempool->memblocks_allocated++;
|
|
|
|
vxge_os_memzero(mempool->memblocks_arr[i],
|
|
mempool->memblock_size);
|
|
|
|
the_memblock = mempool->memblocks_arr[i];
|
|
|
|
/* fill the items hash array */
|
|
for (j = 0; j < n_items; j++) {
|
|
item_index = i * n_items + j;
|
|
|
|
if (first_time && (item_index >= mempool->items_initial))
|
|
break;
|
|
|
|
mempool->items_arr[item_index] =
|
|
((char *) the_memblock + j *mempool->item_size);
|
|
|
|
/* let caller to do more job on each item */
|
|
if (mempool->item_func_alloc != NULL) {
|
|
vxge_hal_status_e status;
|
|
|
|
if ((status = mempool->item_func_alloc(
|
|
mempool,
|
|
the_memblock,
|
|
i,
|
|
dma_object,
|
|
mempool->items_arr[item_index],
|
|
item_index,
|
|
is_last,
|
|
mempool->userdata)) != VXGE_HAL_OK) {
|
|
|
|
if (mempool->item_func_free != NULL) {
|
|
|
|
for (k = 0; k < j; k++) {
|
|
|
|
item_index = i * n_items + k;
|
|
|
|
(void) mempool->item_func_free(
|
|
mempool,
|
|
the_memblock,
|
|
i, dma_object,
|
|
mempool->items_arr[item_index],
|
|
item_index, is_last,
|
|
mempool->userdata);
|
|
}
|
|
}
|
|
|
|
vxge_os_free(((__hal_device_t *)
|
|
mempool->devh)->header.pdev,
|
|
mempool->memblocks_priv_arr[i],
|
|
mempool->items_priv_size *
|
|
n_items);
|
|
|
|
__hal_blockpool_free(mempool->devh,
|
|
the_memblock,
|
|
mempool->memblock_size,
|
|
&dma_object->addr,
|
|
&dma_object->handle,
|
|
&dma_object->acc_handle);
|
|
|
|
(*num_allocated)--;
|
|
mempool->memblocks_allocated--;
|
|
return (status);
|
|
}
|
|
}
|
|
|
|
mempool->items_current = item_index + 1;
|
|
}
|
|
|
|
vxge_hal_info_log_mm(
|
|
"memblock%d: allocated %dk, vaddr 0x"VXGE_OS_STXFMT", "
|
|
"dma_addr 0x"VXGE_OS_STXFMT,
|
|
i, mempool->memblock_size / 1024,
|
|
(ptr_t) mempool->memblocks_arr[i], dma_object->addr);
|
|
|
|
if (first_time && mempool->items_current ==
|
|
mempool->items_initial) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: 0",
|
|
__FILE__, __func__, __LINE__);
|
|
|
|
return (VXGE_HAL_OK);
|
|
}
|
|
|
|
/*
|
|
* vxge_hal_mempool_create
|
|
* @memblock_size:
|
|
* @items_initial:
|
|
* @items_max:
|
|
* @item_size:
|
|
* @item_func:
|
|
*
|
|
* This function will create memory pool object. Pool may grow but will
|
|
* never shrink. Pool consists of number of dynamically allocated blocks
|
|
* with size enough to hold %items_initial number of items. Memory is
|
|
* DMA-able but client must map/unmap before interoperating with the device.
|
|
* See also: vxge_os_dma_map(), vxge_hal_dma_unmap(), vxge_hal_status_e {}.
|
|
*/
|
|
vxge_hal_mempool_t *
|
|
vxge_hal_mempool_create(
|
|
vxge_hal_device_h devh,
|
|
u32 memblock_size,
|
|
u32 item_size,
|
|
u32 items_priv_size,
|
|
u32 items_initial,
|
|
u32 items_max,
|
|
vxge_hal_mempool_item_f item_func_alloc,
|
|
vxge_hal_mempool_item_f item_func_free,
|
|
void *userdata)
|
|
{
|
|
vxge_hal_status_e status;
|
|
u32 memblocks_to_allocate;
|
|
vxge_hal_mempool_t *mempool;
|
|
__hal_device_t *hldev;
|
|
u32 allocated;
|
|
|
|
vxge_assert(devh != NULL);
|
|
|
|
hldev = (__hal_device_t *) devh;
|
|
|
|
vxge_hal_trace_log_mm("==> %s:%s:%d",
|
|
__FILE__, __func__, __LINE__);
|
|
|
|
vxge_hal_trace_log_mm(
|
|
"devh = 0x"VXGE_OS_STXFMT", memblock_size = %d, item_size = %d, "
|
|
"items_priv_size = %d, items_initial = %d, items_max = %d, "
|
|
"item_func_alloc = 0x"VXGE_OS_STXFMT", "
|
|
"item_func_free = 0x"VXGE_OS_STXFMT", "
|
|
"userdata = 0x"VXGE_OS_STXFMT, (ptr_t) devh,
|
|
memblock_size, item_size, items_priv_size,
|
|
items_initial, items_max, (ptr_t) item_func_alloc,
|
|
(ptr_t) item_func_free, (ptr_t) userdata);
|
|
|
|
if (memblock_size < item_size) {
|
|
vxge_hal_err_log_mm(
|
|
"memblock_size %d < item_size %d: misconfiguration",
|
|
memblock_size, item_size);
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__, VXGE_HAL_FAIL);
|
|
return (NULL);
|
|
}
|
|
|
|
mempool = (vxge_hal_mempool_t *) vxge_os_malloc(
|
|
((__hal_device_t *) devh)->header.pdev, sizeof(vxge_hal_mempool_t));
|
|
if (mempool == NULL) {
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (NULL);
|
|
}
|
|
vxge_os_memzero(mempool, sizeof(vxge_hal_mempool_t));
|
|
|
|
mempool->devh = devh;
|
|
mempool->memblock_size = memblock_size;
|
|
mempool->items_max = items_max;
|
|
mempool->items_initial = items_initial;
|
|
mempool->item_size = item_size;
|
|
mempool->items_priv_size = items_priv_size;
|
|
mempool->item_func_alloc = item_func_alloc;
|
|
mempool->item_func_free = item_func_free;
|
|
mempool->userdata = userdata;
|
|
|
|
mempool->memblocks_allocated = 0;
|
|
|
|
if (memblock_size != VXGE_OS_HOST_PAGE_SIZE)
|
|
mempool->dma_flags = VXGE_OS_DMA_CACHELINE_ALIGNED;
|
|
|
|
#if defined(VXGE_HAL_DMA_CONSISTENT)
|
|
mempool->dma_flags |= VXGE_OS_DMA_CONSISTENT;
|
|
#else
|
|
mempool->dma_flags |= VXGE_OS_DMA_STREAMING;
|
|
#endif
|
|
|
|
mempool->items_per_memblock = memblock_size / item_size;
|
|
|
|
mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
|
|
mempool->items_per_memblock;
|
|
|
|
/* allocate array of memblocks */
|
|
mempool->memblocks_arr = (void **)vxge_os_malloc(
|
|
((__hal_device_t *) mempool->devh)->header.pdev,
|
|
sizeof(void *) * mempool->memblocks_max);
|
|
if (mempool->memblocks_arr == NULL) {
|
|
vxge_hal_mempool_destroy(mempool);
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (NULL);
|
|
}
|
|
vxge_os_memzero(mempool->memblocks_arr,
|
|
sizeof(void *) * mempool->memblocks_max);
|
|
|
|
/* allocate array of private parts of items per memblocks */
|
|
mempool->memblocks_priv_arr = (void **)vxge_os_malloc(
|
|
((__hal_device_t *) mempool->devh)->header.pdev,
|
|
sizeof(void *) * mempool->memblocks_max);
|
|
if (mempool->memblocks_priv_arr == NULL) {
|
|
vxge_hal_mempool_destroy(mempool);
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (NULL);
|
|
}
|
|
vxge_os_memzero(mempool->memblocks_priv_arr,
|
|
sizeof(void *) * mempool->memblocks_max);
|
|
|
|
/* allocate array of memblocks DMA objects */
|
|
mempool->memblocks_dma_arr =
|
|
(vxge_hal_mempool_dma_t *) vxge_os_malloc(
|
|
((__hal_device_t *) mempool->devh)->header.pdev,
|
|
sizeof(vxge_hal_mempool_dma_t) * mempool->memblocks_max);
|
|
|
|
if (mempool->memblocks_dma_arr == NULL) {
|
|
vxge_hal_mempool_destroy(mempool);
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (NULL);
|
|
}
|
|
vxge_os_memzero(mempool->memblocks_dma_arr,
|
|
sizeof(vxge_hal_mempool_dma_t) * mempool->memblocks_max);
|
|
|
|
/* allocate hash array of items */
|
|
mempool->items_arr = (void **)vxge_os_malloc(
|
|
((__hal_device_t *) mempool->devh)->header.pdev,
|
|
sizeof(void *) * mempool->items_max);
|
|
if (mempool->items_arr == NULL) {
|
|
vxge_hal_mempool_destroy(mempool);
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (NULL);
|
|
}
|
|
vxge_os_memzero(mempool->items_arr,
|
|
sizeof(void *) * mempool->items_max);
|
|
|
|
mempool->shadow_items_arr = (void **)vxge_os_malloc(
|
|
((__hal_device_t *) mempool->devh)->header.pdev,
|
|
sizeof(void *) * mempool->items_max);
|
|
if (mempool->shadow_items_arr == NULL) {
|
|
vxge_hal_mempool_destroy(mempool);
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (NULL);
|
|
}
|
|
vxge_os_memzero(mempool->shadow_items_arr,
|
|
sizeof(void *) * mempool->items_max);
|
|
|
|
/* calculate initial number of memblocks */
|
|
memblocks_to_allocate = (mempool->items_initial +
|
|
mempool->items_per_memblock - 1) /
|
|
mempool->items_per_memblock;
|
|
|
|
vxge_hal_info_log_mm("allocating %d memblocks, "
|
|
"%d items per memblock", memblocks_to_allocate,
|
|
mempool->items_per_memblock);
|
|
|
|
/* pre-allocate the mempool */
|
|
status = __hal_mempool_grow(mempool, memblocks_to_allocate, &allocated);
|
|
vxge_os_memcpy(mempool->shadow_items_arr, mempool->items_arr,
|
|
sizeof(void *) * mempool->items_max);
|
|
if (status != VXGE_HAL_OK) {
|
|
vxge_hal_mempool_destroy(mempool);
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
|
|
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
|
|
return (NULL);
|
|
}
|
|
|
|
vxge_hal_info_log_mm(
|
|
"total: allocated %dk of DMA-capable memory",
|
|
mempool->memblock_size * allocated / 1024);
|
|
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: 0",
|
|
__FILE__, __func__, __LINE__);
|
|
|
|
return (mempool);
|
|
}
|
|
|
|
/*
|
|
* vxge_hal_mempool_destroy
|
|
*/
|
|
void
|
|
vxge_hal_mempool_destroy(
|
|
vxge_hal_mempool_t *mempool)
|
|
{
|
|
u32 i, j, item_index;
|
|
__hal_device_t *hldev;
|
|
|
|
vxge_assert(mempool != NULL);
|
|
|
|
hldev = (__hal_device_t *) mempool->devh;
|
|
|
|
vxge_hal_trace_log_mm("==> %s:%s:%d",
|
|
__FILE__, __func__, __LINE__);
|
|
|
|
vxge_hal_trace_log_mm("mempool = 0x"VXGE_OS_STXFMT,
|
|
(ptr_t) mempool);
|
|
|
|
for (i = 0; i < mempool->memblocks_allocated; i++) {
|
|
vxge_hal_mempool_dma_t *dma_object;
|
|
|
|
vxge_assert(mempool->memblocks_arr[i]);
|
|
vxge_assert(mempool->memblocks_dma_arr + i);
|
|
|
|
dma_object = mempool->memblocks_dma_arr + i;
|
|
|
|
for (j = 0; j < mempool->items_per_memblock; j++) {
|
|
item_index = i * mempool->items_per_memblock + j;
|
|
|
|
/* to skip last partially filled(if any) memblock */
|
|
if (item_index >= mempool->items_current)
|
|
break;
|
|
|
|
/* let caller to do more job on each item */
|
|
if (mempool->item_func_free != NULL) {
|
|
|
|
mempool->item_func_free(mempool,
|
|
mempool->memblocks_arr[i],
|
|
i, dma_object,
|
|
mempool->shadow_items_arr[item_index],
|
|
item_index, /* unused */ -1,
|
|
mempool->userdata);
|
|
}
|
|
}
|
|
|
|
vxge_os_free(hldev->header.pdev,
|
|
mempool->memblocks_priv_arr[i],
|
|
mempool->items_priv_size * mempool->items_per_memblock);
|
|
|
|
__hal_blockpool_free(hldev,
|
|
mempool->memblocks_arr[i],
|
|
mempool->memblock_size,
|
|
&dma_object->addr,
|
|
&dma_object->handle,
|
|
&dma_object->acc_handle);
|
|
}
|
|
|
|
if (mempool->items_arr) {
|
|
vxge_os_free(hldev->header.pdev,
|
|
mempool->items_arr, sizeof(void *) * mempool->items_max);
|
|
}
|
|
|
|
if (mempool->shadow_items_arr) {
|
|
vxge_os_free(hldev->header.pdev,
|
|
mempool->shadow_items_arr,
|
|
sizeof(void *) * mempool->items_max);
|
|
}
|
|
|
|
if (mempool->memblocks_dma_arr) {
|
|
vxge_os_free(hldev->header.pdev,
|
|
mempool->memblocks_dma_arr,
|
|
sizeof(vxge_hal_mempool_dma_t) *
|
|
mempool->memblocks_max);
|
|
}
|
|
|
|
if (mempool->memblocks_priv_arr) {
|
|
vxge_os_free(hldev->header.pdev,
|
|
mempool->memblocks_priv_arr,
|
|
sizeof(void *) * mempool->memblocks_max);
|
|
}
|
|
|
|
if (mempool->memblocks_arr) {
|
|
vxge_os_free(hldev->header.pdev,
|
|
mempool->memblocks_arr,
|
|
sizeof(void *) * mempool->memblocks_max);
|
|
}
|
|
|
|
vxge_os_free(hldev->header.pdev,
|
|
mempool, sizeof(vxge_hal_mempool_t));
|
|
|
|
vxge_hal_trace_log_mm("<== %s:%s:%d Result: 0",
|
|
__FILE__, __func__, __LINE__);
|
|
}
|
|
|
|
/*
|
|
* vxge_hal_check_alignment - Check buffer alignment and calculate the
|
|
* "misaligned" portion.
|
|
* @dma_pointer: DMA address of the buffer.
|
|
* @size: Buffer size, in bytes.
|
|
* @alignment: Alignment "granularity" (see below), in bytes.
|
|
* @copy_size: Maximum number of bytes to "extract" from the buffer
|
|
* (in order to spost it as a separate scatter-gather entry). See below.
|
|
*
|
|
* Check buffer alignment and calculate "misaligned" portion, if exists.
|
|
* The buffer is considered aligned if its address is multiple of
|
|
* the specified @alignment. If this is the case,
|
|
* vxge_hal_check_alignment() returns zero.
|
|
* Otherwise, vxge_hal_check_alignment() uses the last argument,
|
|
* @copy_size,
|
|
* to calculate the size to "extract" from the buffer. The @copy_size
|
|
* may or may not be equal @alignment. The difference between these two
|
|
* arguments is that the @alignment is used to make the decision: aligned
|
|
* or not aligned. While the @copy_size is used to calculate the portion
|
|
* of the buffer to "extract", i.e. to post as a separate entry in the
|
|
* transmit descriptor. For example, the combination
|
|
* @alignment = 8 and @copy_size = 64 will work okay on AMD Opteron boxes.
|
|
*
|
|
* Note: @copy_size should be a multiple of @alignment. In many practical
|
|
* cases @copy_size and @alignment will probably be equal.
|
|
*
|
|
* See also: vxge_hal_fifo_txdl_buffer_set_aligned().
|
|
*/
|
|
u32
|
|
vxge_hal_check_alignment(
|
|
dma_addr_t dma_pointer,
|
|
u32 size,
|
|
u32 alignment,
|
|
u32 copy_size)
|
|
{
|
|
u32 misaligned_size;
|
|
|
|
misaligned_size = (int)(dma_pointer & (alignment - 1));
|
|
if (!misaligned_size) {
|
|
return (0);
|
|
}
|
|
|
|
if (size > copy_size) {
|
|
misaligned_size = (int)(dma_pointer & (copy_size - 1));
|
|
misaligned_size = copy_size - misaligned_size;
|
|
} else {
|
|
misaligned_size = size;
|
|
}
|
|
|
|
return (misaligned_size);
|
|
}
|