freebsd-skq/sys/dev/vxge/vxgehal/vxgehal-mm.c
gnn d580860e12 Exar driver for X3100 10GbE Server/Storage adapters
Features: Jumbo frames (up to 9600), LRO (Large Receive Offload),
          TSO (TCP segmentation offload), RTH (Receive Traffic Hash).

Submitted by: Sriram Rapuru at Exar
MFC after:	2 weeks
2011-04-28 14:33:15 +00:00

554 lines
17 KiB
C

/*-
* Copyright(c) 2002-2011 Exar Corp.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification are permitted provided the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the Exar Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*$FreeBSD$*/
#include <dev/vxge/vxgehal/vxgehal.h>
/*
* __hal_mempool_grow
*
* Will resize mempool up to %num_allocate value.
*/
static vxge_hal_status_e
__hal_mempool_grow(
vxge_hal_mempool_t *mempool,
u32 num_allocate,
u32 *num_allocated)
{
u32 i, j, k, item_index, is_last;
u32 first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
u32 n_items = mempool->items_per_memblock;
u32 start_block_idx = mempool->memblocks_allocated;
u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
__hal_device_t *hldev;
vxge_assert(mempool != NULL);
hldev = (__hal_device_t *) mempool->devh;
vxge_hal_trace_log_mm("==> %s:%s:%d",
__FILE__, __func__, __LINE__);
vxge_hal_trace_log_mm(
"mempool = 0x"VXGE_OS_STXFMT", num_allocate = %d, "
"num_allocated = 0x"VXGE_OS_STXFMT, (ptr_t) mempool,
num_allocate, (ptr_t) num_allocated);
*num_allocated = 0;
if (end_block_idx > mempool->memblocks_max) {
vxge_hal_err_log_mm("%s",
"__hal_mempool_grow: can grow anymore");
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
return (VXGE_HAL_ERR_OUT_OF_MEMORY);
}
for (i = start_block_idx; i < end_block_idx; i++) {
void *the_memblock;
vxge_hal_mempool_dma_t *dma_object;
is_last = ((end_block_idx - 1) == i);
dma_object = mempool->memblocks_dma_arr + i;
/*
* allocate memblock's private part. Each DMA memblock
* has a space allocated for item's private usage upon
* mempool's user request. Each time mempool grows, it will
* allocate new memblock and its private part at once.
* This helps to minimize memory usage a lot.
*/
mempool->memblocks_priv_arr[i] = vxge_os_malloc(
((__hal_device_t *) mempool->devh)->header.pdev,
mempool->items_priv_size * n_items);
if (mempool->memblocks_priv_arr[i] == NULL) {
vxge_hal_err_log_mm("memblock_priv[%d]: \
out of virtual memory, "
"requested %d(%d:%d) bytes", i,
mempool->items_priv_size * n_items,
mempool->items_priv_size, n_items);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__,
VXGE_HAL_ERR_OUT_OF_MEMORY);
return (VXGE_HAL_ERR_OUT_OF_MEMORY);
}
vxge_os_memzero(mempool->memblocks_priv_arr[i],
mempool->items_priv_size * n_items);
/* allocate DMA-capable memblock */
mempool->memblocks_arr[i] =
__hal_blockpool_malloc(mempool->devh,
mempool->memblock_size,
&dma_object->addr,
&dma_object->handle,
&dma_object->acc_handle);
if (mempool->memblocks_arr[i] == NULL) {
vxge_os_free(
((__hal_device_t *) mempool->devh)->header.pdev,
mempool->memblocks_priv_arr[i],
mempool->items_priv_size * n_items);
vxge_hal_err_log_mm("memblock[%d]: \
out of DMA memory", i);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__,
VXGE_HAL_ERR_OUT_OF_MEMORY);
return (VXGE_HAL_ERR_OUT_OF_MEMORY);
}
(*num_allocated)++;
mempool->memblocks_allocated++;
vxge_os_memzero(mempool->memblocks_arr[i],
mempool->memblock_size);
the_memblock = mempool->memblocks_arr[i];
/* fill the items hash array */
for (j = 0; j < n_items; j++) {
item_index = i * n_items + j;
if (first_time && (item_index >= mempool->items_initial))
break;
mempool->items_arr[item_index] =
((char *) the_memblock + j *mempool->item_size);
/* let caller to do more job on each item */
if (mempool->item_func_alloc != NULL) {
vxge_hal_status_e status;
if ((status = mempool->item_func_alloc(
mempool,
the_memblock,
i,
dma_object,
mempool->items_arr[item_index],
item_index,
is_last,
mempool->userdata)) != VXGE_HAL_OK) {
if (mempool->item_func_free != NULL) {
for (k = 0; k < j; k++) {
item_index = i * n_items + k;
(void) mempool->item_func_free(
mempool,
the_memblock,
i, dma_object,
mempool->items_arr[item_index],
item_index, is_last,
mempool->userdata);
}
}
vxge_os_free(((__hal_device_t *)
mempool->devh)->header.pdev,
mempool->memblocks_priv_arr[i],
mempool->items_priv_size *
n_items);
__hal_blockpool_free(mempool->devh,
the_memblock,
mempool->memblock_size,
&dma_object->addr,
&dma_object->handle,
&dma_object->acc_handle);
(*num_allocated)--;
mempool->memblocks_allocated--;
return (status);
}
}
mempool->items_current = item_index + 1;
}
vxge_hal_info_log_mm(
"memblock%d: allocated %dk, vaddr 0x"VXGE_OS_STXFMT", "
"dma_addr 0x"VXGE_OS_STXFMT,
i, mempool->memblock_size / 1024,
(ptr_t) mempool->memblocks_arr[i], dma_object->addr);
if (first_time && mempool->items_current ==
mempool->items_initial) {
break;
}
}
vxge_hal_trace_log_mm("<== %s:%s:%d Result: 0",
__FILE__, __func__, __LINE__);
return (VXGE_HAL_OK);
}
/*
* vxge_hal_mempool_create
* @memblock_size:
* @items_initial:
* @items_max:
* @item_size:
* @item_func:
*
* This function will create memory pool object. Pool may grow but will
* never shrink. Pool consists of number of dynamically allocated blocks
* with size enough to hold %items_initial number of items. Memory is
* DMA-able but client must map/unmap before interoperating with the device.
* See also: vxge_os_dma_map(), vxge_hal_dma_unmap(), vxge_hal_status_e {}.
*/
vxge_hal_mempool_t *
vxge_hal_mempool_create(
vxge_hal_device_h devh,
u32 memblock_size,
u32 item_size,
u32 items_priv_size,
u32 items_initial,
u32 items_max,
vxge_hal_mempool_item_f item_func_alloc,
vxge_hal_mempool_item_f item_func_free,
void *userdata)
{
vxge_hal_status_e status;
u32 memblocks_to_allocate;
vxge_hal_mempool_t *mempool;
__hal_device_t *hldev;
u32 allocated;
vxge_assert(devh != NULL);
hldev = (__hal_device_t *) devh;
vxge_hal_trace_log_mm("==> %s:%s:%d",
__FILE__, __func__, __LINE__);
vxge_hal_trace_log_mm(
"devh = 0x"VXGE_OS_STXFMT", memblock_size = %d, item_size = %d, "
"items_priv_size = %d, items_initial = %d, items_max = %d, "
"item_func_alloc = 0x"VXGE_OS_STXFMT", "
"item_func_free = 0x"VXGE_OS_STXFMT", "
"userdata = 0x"VXGE_OS_STXFMT, (ptr_t) devh,
memblock_size, item_size, items_priv_size,
items_initial, items_max, (ptr_t) item_func_alloc,
(ptr_t) item_func_free, (ptr_t) userdata);
if (memblock_size < item_size) {
vxge_hal_err_log_mm(
"memblock_size %d < item_size %d: misconfiguration",
memblock_size, item_size);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__, VXGE_HAL_FAIL);
return (NULL);
}
mempool = (vxge_hal_mempool_t *) vxge_os_malloc(
((__hal_device_t *) devh)->header.pdev, sizeof(vxge_hal_mempool_t));
if (mempool == NULL) {
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
return (NULL);
}
vxge_os_memzero(mempool, sizeof(vxge_hal_mempool_t));
mempool->devh = devh;
mempool->memblock_size = memblock_size;
mempool->items_max = items_max;
mempool->items_initial = items_initial;
mempool->item_size = item_size;
mempool->items_priv_size = items_priv_size;
mempool->item_func_alloc = item_func_alloc;
mempool->item_func_free = item_func_free;
mempool->userdata = userdata;
mempool->memblocks_allocated = 0;
if (memblock_size != VXGE_OS_HOST_PAGE_SIZE)
mempool->dma_flags = VXGE_OS_DMA_CACHELINE_ALIGNED;
#if defined(VXGE_HAL_DMA_CONSISTENT)
mempool->dma_flags |= VXGE_OS_DMA_CONSISTENT;
#else
mempool->dma_flags |= VXGE_OS_DMA_STREAMING;
#endif
mempool->items_per_memblock = memblock_size / item_size;
mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
mempool->items_per_memblock;
/* allocate array of memblocks */
mempool->memblocks_arr = (void **)vxge_os_malloc(
((__hal_device_t *) mempool->devh)->header.pdev,
sizeof(void *) * mempool->memblocks_max);
if (mempool->memblocks_arr == NULL) {
vxge_hal_mempool_destroy(mempool);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
return (NULL);
}
vxge_os_memzero(mempool->memblocks_arr,
sizeof(void *) * mempool->memblocks_max);
/* allocate array of private parts of items per memblocks */
mempool->memblocks_priv_arr = (void **)vxge_os_malloc(
((__hal_device_t *) mempool->devh)->header.pdev,
sizeof(void *) * mempool->memblocks_max);
if (mempool->memblocks_priv_arr == NULL) {
vxge_hal_mempool_destroy(mempool);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
return (NULL);
}
vxge_os_memzero(mempool->memblocks_priv_arr,
sizeof(void *) * mempool->memblocks_max);
/* allocate array of memblocks DMA objects */
mempool->memblocks_dma_arr =
(vxge_hal_mempool_dma_t *) vxge_os_malloc(
((__hal_device_t *) mempool->devh)->header.pdev,
sizeof(vxge_hal_mempool_dma_t) * mempool->memblocks_max);
if (mempool->memblocks_dma_arr == NULL) {
vxge_hal_mempool_destroy(mempool);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
return (NULL);
}
vxge_os_memzero(mempool->memblocks_dma_arr,
sizeof(vxge_hal_mempool_dma_t) * mempool->memblocks_max);
/* allocate hash array of items */
mempool->items_arr = (void **)vxge_os_malloc(
((__hal_device_t *) mempool->devh)->header.pdev,
sizeof(void *) * mempool->items_max);
if (mempool->items_arr == NULL) {
vxge_hal_mempool_destroy(mempool);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
return (NULL);
}
vxge_os_memzero(mempool->items_arr,
sizeof(void *) * mempool->items_max);
mempool->shadow_items_arr = (void **)vxge_os_malloc(
((__hal_device_t *) mempool->devh)->header.pdev,
sizeof(void *) * mempool->items_max);
if (mempool->shadow_items_arr == NULL) {
vxge_hal_mempool_destroy(mempool);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
return (NULL);
}
vxge_os_memzero(mempool->shadow_items_arr,
sizeof(void *) * mempool->items_max);
/* calculate initial number of memblocks */
memblocks_to_allocate = (mempool->items_initial +
mempool->items_per_memblock - 1) /
mempool->items_per_memblock;
vxge_hal_info_log_mm("allocating %d memblocks, "
"%d items per memblock", memblocks_to_allocate,
mempool->items_per_memblock);
/* pre-allocate the mempool */
status = __hal_mempool_grow(mempool, memblocks_to_allocate, &allocated);
vxge_os_memcpy(mempool->shadow_items_arr, mempool->items_arr,
sizeof(void *) * mempool->items_max);
if (status != VXGE_HAL_OK) {
vxge_hal_mempool_destroy(mempool);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: %d",
__FILE__, __func__, __LINE__, VXGE_HAL_ERR_OUT_OF_MEMORY);
return (NULL);
}
vxge_hal_info_log_mm(
"total: allocated %dk of DMA-capable memory",
mempool->memblock_size * allocated / 1024);
vxge_hal_trace_log_mm("<== %s:%s:%d Result: 0",
__FILE__, __func__, __LINE__);
return (mempool);
}
/*
* vxge_hal_mempool_destroy
*/
void
vxge_hal_mempool_destroy(
vxge_hal_mempool_t *mempool)
{
u32 i, j, item_index;
__hal_device_t *hldev;
vxge_assert(mempool != NULL);
hldev = (__hal_device_t *) mempool->devh;
vxge_hal_trace_log_mm("==> %s:%s:%d",
__FILE__, __func__, __LINE__);
vxge_hal_trace_log_mm("mempool = 0x"VXGE_OS_STXFMT,
(ptr_t) mempool);
for (i = 0; i < mempool->memblocks_allocated; i++) {
vxge_hal_mempool_dma_t *dma_object;
vxge_assert(mempool->memblocks_arr[i]);
vxge_assert(mempool->memblocks_dma_arr + i);
dma_object = mempool->memblocks_dma_arr + i;
for (j = 0; j < mempool->items_per_memblock; j++) {
item_index = i * mempool->items_per_memblock + j;
/* to skip last partially filled(if any) memblock */
if (item_index >= mempool->items_current)
break;
/* let caller to do more job on each item */
if (mempool->item_func_free != NULL) {
mempool->item_func_free(mempool,
mempool->memblocks_arr[i],
i, dma_object,
mempool->shadow_items_arr[item_index],
item_index, /* unused */ -1,
mempool->userdata);
}
}
vxge_os_free(hldev->header.pdev,
mempool->memblocks_priv_arr[i],
mempool->items_priv_size * mempool->items_per_memblock);
__hal_blockpool_free(hldev,
mempool->memblocks_arr[i],
mempool->memblock_size,
&dma_object->addr,
&dma_object->handle,
&dma_object->acc_handle);
}
if (mempool->items_arr) {
vxge_os_free(hldev->header.pdev,
mempool->items_arr, sizeof(void *) * mempool->items_max);
}
if (mempool->shadow_items_arr) {
vxge_os_free(hldev->header.pdev,
mempool->shadow_items_arr,
sizeof(void *) * mempool->items_max);
}
if (mempool->memblocks_dma_arr) {
vxge_os_free(hldev->header.pdev,
mempool->memblocks_dma_arr,
sizeof(vxge_hal_mempool_dma_t) *
mempool->memblocks_max);
}
if (mempool->memblocks_priv_arr) {
vxge_os_free(hldev->header.pdev,
mempool->memblocks_priv_arr,
sizeof(void *) * mempool->memblocks_max);
}
if (mempool->memblocks_arr) {
vxge_os_free(hldev->header.pdev,
mempool->memblocks_arr,
sizeof(void *) * mempool->memblocks_max);
}
vxge_os_free(hldev->header.pdev,
mempool, sizeof(vxge_hal_mempool_t));
vxge_hal_trace_log_mm("<== %s:%s:%d Result: 0",
__FILE__, __func__, __LINE__);
}
/*
* vxge_hal_check_alignment - Check buffer alignment and calculate the
* "misaligned" portion.
* @dma_pointer: DMA address of the buffer.
* @size: Buffer size, in bytes.
* @alignment: Alignment "granularity" (see below), in bytes.
* @copy_size: Maximum number of bytes to "extract" from the buffer
* (in order to spost it as a separate scatter-gather entry). See below.
*
* Check buffer alignment and calculate "misaligned" portion, if exists.
* The buffer is considered aligned if its address is multiple of
* the specified @alignment. If this is the case,
* vxge_hal_check_alignment() returns zero.
* Otherwise, vxge_hal_check_alignment() uses the last argument,
* @copy_size,
* to calculate the size to "extract" from the buffer. The @copy_size
* may or may not be equal @alignment. The difference between these two
* arguments is that the @alignment is used to make the decision: aligned
* or not aligned. While the @copy_size is used to calculate the portion
* of the buffer to "extract", i.e. to post as a separate entry in the
* transmit descriptor. For example, the combination
* @alignment = 8 and @copy_size = 64 will work okay on AMD Opteron boxes.
*
* Note: @copy_size should be a multiple of @alignment. In many practical
* cases @copy_size and @alignment will probably be equal.
*
* See also: vxge_hal_fifo_txdl_buffer_set_aligned().
*/
u32
vxge_hal_check_alignment(
dma_addr_t dma_pointer,
u32 size,
u32 alignment,
u32 copy_size)
{
u32 misaligned_size;
misaligned_size = (int)(dma_pointer & (alignment - 1));
if (!misaligned_size) {
return (0);
}
if (size > copy_size) {
misaligned_size = (int)(dma_pointer & (copy_size - 1));
misaligned_size = copy_size - misaligned_size;
} else {
misaligned_size = size;
}
return (misaligned_size);
}