freebsd-skq/sys/dev/ath/ath_hal/ar5416/ar5416_misc.c
Adrian Chadd d2a72d673f Begin adding support to explicitly set the current chainmask.
Right now the only way to set the chainmask is to set the hardware
configured chainmask through capabilities.  This is fine for forcing
the chainmask to be something other than what the hardware is capable
of (eg to reduce TX/RX to one connected antenna) but it does change what
the HAL hardware chainmask configuration is.

For operational mode changes, it (may?) make sense to separately control
the TX/RX chainmask.

Right now it's done as part of ar5416_reset.c - ar5416UpdateChainMasks()
calculates which TX/RX chainmasks to enable based on the operating mode.
(1 for legacy and whatever is supported for 11n operation.)  But doing
this in the HAL is suboptimal - the driver needs to know the currently
configured chainmask in order to correctly enable things for each
TX descriptor.  This is currently done by overriding the chainmask
config in the ar5416 TX routines but this has to disappear - the AR9300
HAL support requires the driver to dynamically set the TX chainmask based
on the TX power and TX rate in order to meet mini-PCIe slot power
requirements.

So:

* Introduce a new HAL method to set the operational chainmask variables;
* Introduce null methods for the previous generation chipsets;
* Add new driver state to record the current chainmask separate from
  the hardware configured chainmask.

Part #2 of this will involve disabling ar5416UpdateChainMasks() and moving
it into the driver; as well as properly programming the TX chainmask
based on the currently configured HAL chainmask.

Tested:

* AR5416, STA mode - both legacy (11a/11bg) and 11n rates - verified
  that AR_SELFGEN_MASK (the chainmask used for self-generated frames like
  ACKs and RTSes) is correct, as well as the TX descriptor contents is
  correct.
2013-02-25 22:42:43 +00:00

749 lines
21 KiB
C

/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_devid.h"
#include "ah_desc.h" /* NB: for HAL_PHYERR* */
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
#include "ar5416/ar5416phy.h"
#include "ah_eeprom_v14.h" /* for owl_get_ntxchains() */
/*
* Return the wireless modes (a,b,g,n,t) supported by hardware.
*
* This value is what is actually supported by the hardware
* and is unaffected by regulatory/country code settings.
*
*/
u_int
ar5416GetWirelessModes(struct ath_hal *ah)
{
u_int mode;
struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
HAL_CAPABILITIES *pCap = &ahpriv->ah_caps;
mode = ar5212GetWirelessModes(ah);
/* Only enable HT modes if the NIC supports HT */
if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11A))
mode |= HAL_MODE_11NA_HT20
| HAL_MODE_11NA_HT40PLUS
| HAL_MODE_11NA_HT40MINUS
;
if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11G))
mode |= HAL_MODE_11NG_HT20
| HAL_MODE_11NG_HT40PLUS
| HAL_MODE_11NG_HT40MINUS
;
return mode;
}
/*
* Change the LED blinking pattern to correspond to the connectivity
*/
void
ar5416SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
{
static const uint32_t ledbits[8] = {
AR_MAC_LED_ASSOC_NONE, /* HAL_LED_INIT */
AR_MAC_LED_ASSOC_PEND, /* HAL_LED_SCAN */
AR_MAC_LED_ASSOC_PEND, /* HAL_LED_AUTH */
AR_MAC_LED_ASSOC_ACTIVE, /* HAL_LED_ASSOC*/
AR_MAC_LED_ASSOC_ACTIVE, /* HAL_LED_RUN */
AR_MAC_LED_ASSOC_NONE,
AR_MAC_LED_ASSOC_NONE,
AR_MAC_LED_ASSOC_NONE,
};
if (AR_SREV_HOWL(ah))
return;
/*
* Set the blink operating mode.
*/
OS_REG_RMW_FIELD(ah, AR_MAC_LED,
AR_MAC_LED_ASSOC, ledbits[state & 0x7]);
/* XXX Blink slow mode? */
/* XXX Blink threshold? */
/* XXX Blink sleep hystersis? */
/*
* Set the LED blink configuration to be proportional
* to the current TX and RX filter bytes. (Ie, RX'ed
* frames that don't match the filter are ignored.)
* This means that higher TX/RX throughput will result
* in the blink rate increasing.
*/
OS_REG_RMW_FIELD(ah, AR_MAC_LED, AR_MAC_LED_MODE,
AR_MAC_LED_MODE_PROP);
}
/*
* Get the current hardware tsf for stamlme
*/
uint64_t
ar5416GetTsf64(struct ath_hal *ah)
{
uint32_t low1, low2, u32;
/* sync multi-word read */
low1 = OS_REG_READ(ah, AR_TSF_L32);
u32 = OS_REG_READ(ah, AR_TSF_U32);
low2 = OS_REG_READ(ah, AR_TSF_L32);
if (low2 < low1) { /* roll over */
/*
* If we are not preempted this will work. If we are
* then we re-reading AR_TSF_U32 does no good as the
* low bits will be meaningless. Likewise reading
* L32, U32, U32, then comparing the last two reads
* to check for rollover doesn't help if preempted--so
* we take this approach as it costs one less PCI read
* which can be noticeable when doing things like
* timestamping packets in monitor mode.
*/
u32++;
}
return (((uint64_t) u32) << 32) | ((uint64_t) low2);
}
/*
* Update the TSF.
*
* The full TSF is only updated once the upper 32 bits have
* been written. Writing only the lower 32 bits of the TSF
* will not actually correctly update the TSF.
*
* The #if 0'ed code is to check whether the previous TSF
* reset or write has completed before writing to the
* TSF. Strictly speaking, it should be also checked before
* reading the TSF as the write/reset may not have completed.
*/
void
ar5416SetTsf64(struct ath_hal *ah, uint64_t tsf64)
{
/* XXX check if this is correct! */
#if 0
int i;
uint32_t v;
for (i = 0; i < 10; i++) {
v = OS_REG_READ(ah, AR_SLP32_MODE);
if ((v & AR_SLP32_TSF_WRITE_STATUS) == 0)
break;
OS_DELAY(10);
}
if (i == 10)
ath_hal_printf(ah, "%s: couldn't slew things right!\n", __func__);
#endif
OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
}
/*
* Reset the current hardware tsf for stamlme.
*/
void
ar5416ResetTsf(struct ath_hal *ah)
{
uint32_t v;
int i;
for (i = 0; i < 10; i++) {
v = OS_REG_READ(ah, AR_SLP32_MODE);
if ((v & AR_SLP32_TSF_WRITE_STATUS) == 0)
break;
OS_DELAY(10);
}
OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
}
uint32_t
ar5416GetCurRssi(struct ath_hal *ah)
{
if (AR_SREV_OWL(ah))
return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
return (OS_REG_READ(ah, AR9130_PHY_CURRENT_RSSI) & 0xff);
}
HAL_BOOL
ar5416SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
{
return AH_TRUE;
}
/* Setup decompression for given key index */
HAL_BOOL
ar5416SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
{
return AH_TRUE;
}
/* Setup coverage class */
void
ar5416SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
{
ar5212SetCoverageClass(ah, coverageclass, now);
}
/*
* Return the busy for rx_frame, rx_clear, and tx_frame
*/
HAL_BOOL
ar5416GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
{
struct ath_hal_5416 *ahp = AH5416(ah);
u_int32_t good = AH_TRUE;
/* XXX freeze/unfreeze mib counters */
uint32_t rc = OS_REG_READ(ah, AR_RCCNT);
uint32_t ec = OS_REG_READ(ah, AR_EXTRCCNT);
uint32_t rf = OS_REG_READ(ah, AR_RFCNT);
uint32_t tf = OS_REG_READ(ah, AR_TFCNT);
uint32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cc) {
/*
* Cycle counter wrap (or initial call); it's not possible
* to accurately calculate a value because the registers
* right shift rather than wrap--so punt and return 0.
*/
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cycle counter wrap. ExtBusy = 0\n", __func__);
good = AH_FALSE;
} else {
hsample->cycle_count = cc - ahp->ah_cycleCount;
hsample->chan_busy = rc - ahp->ah_ctlBusy;
hsample->ext_chan_busy = ec - ahp->ah_extBusy;
hsample->rx_busy = rf - ahp->ah_rxBusy;
hsample->tx_busy = tf - ahp->ah_txBusy;
}
/*
* Keep a copy of the MIB results so the next sample has something
* to work from.
*/
ahp->ah_cycleCount = cc;
ahp->ah_rxBusy = rf;
ahp->ah_ctlBusy = rc;
ahp->ah_txBusy = tf;
ahp->ah_extBusy = ec;
return (good);
}
/*
* Setup the TX/RX chainmasks - this needs to be done before a call
* to the reset method as it doesn't update the hardware.
*/
void
ar5416SetChainMasks(struct ath_hal *ah, uint32_t tx_chainmask,
uint32_t rx_chainmask)
{
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
AH5416(ah)->ah_tx_chainmask = tx_chainmask & pCap->halTxChainMask;
AH5416(ah)->ah_rx_chainmask = rx_chainmask & pCap->halRxChainMask;
}
/*
* Return approximation of extension channel busy over an time interval
* 0% (clear) -> 100% (busy)
*
* XXX TODO: update this to correctly sample all the counters,
* rather than a subset of it.
*/
uint32_t
ar5416Get11nExtBusy(struct ath_hal *ah)
{
struct ath_hal_5416 *ahp = AH5416(ah);
uint32_t busy; /* percentage */
uint32_t cycleCount, ctlBusy, extBusy;
ctlBusy = OS_REG_READ(ah, AR_RCCNT);
extBusy = OS_REG_READ(ah, AR_EXTRCCNT);
cycleCount = OS_REG_READ(ah, AR_CCCNT);
if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cycleCount) {
/*
* Cycle counter wrap (or initial call); it's not possible
* to accurately calculate a value because the registers
* right shift rather than wrap--so punt and return 0.
*/
busy = 0;
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycle counter wrap. ExtBusy = 0\n",
__func__);
} else {
uint32_t cycleDelta = cycleCount - ahp->ah_cycleCount;
uint32_t ctlBusyDelta = ctlBusy - ahp->ah_ctlBusy;
uint32_t extBusyDelta = extBusy - ahp->ah_extBusy;
uint32_t ctlClearDelta = 0;
/* Compute control channel rxclear.
* The cycle delta may be less than the control channel delta.
* This could be solved by freezing the timers (or an atomic read,
* if one was available). Checking for the condition should be
* sufficient.
*/
if (cycleDelta > ctlBusyDelta) {
ctlClearDelta = cycleDelta - ctlBusyDelta;
}
/* Compute ratio of extension channel busy to control channel clear
* as an approximation to extension channel cleanliness.
*
* According to the hardware folks, ext rxclear is undefined
* if the ctrl rxclear is de-asserted (i.e. busy)
*/
if (ctlClearDelta) {
busy = (extBusyDelta * 100) / ctlClearDelta;
} else {
busy = 100;
}
if (busy > 100) {
busy = 100;
}
#if 0
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycleDelta 0x%x, ctlBusyDelta 0x%x, "
"extBusyDelta 0x%x, ctlClearDelta 0x%x, "
"busy %d\n",
__func__, cycleDelta, ctlBusyDelta, extBusyDelta, ctlClearDelta, busy);
#endif
}
ahp->ah_cycleCount = cycleCount;
ahp->ah_ctlBusy = ctlBusy;
ahp->ah_extBusy = extBusy;
return busy;
}
/*
* Configure 20/40 operation
*
* 20/40 = joint rx clear (control and extension)
* 20 = rx clear (control)
*
* - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz when changing
* from 20/40 => 20 only
*/
void
ar5416Set11nMac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
{
uint32_t macmode;
/* Configure MAC for 20/40 operation */
if (mode == HAL_HT_MACMODE_2040) {
macmode = AR_2040_JOINED_RX_CLEAR;
} else {
macmode = 0;
}
OS_REG_WRITE(ah, AR_2040_MODE, macmode);
}
/*
* Get Rx clear (control/extension channel)
*
* Returns active low (busy) for ctrl/ext channel
* Owl 2.0
*/
HAL_HT_RXCLEAR
ar5416Get11nRxClear(struct ath_hal *ah)
{
HAL_HT_RXCLEAR rxclear = 0;
uint32_t val;
val = OS_REG_READ(ah, AR_DIAG_SW);
/* control channel */
if (val & AR_DIAG_RXCLEAR_CTL_LOW) {
rxclear |= HAL_RX_CLEAR_CTL_LOW;
}
/* extension channel */
if (val & AR_DIAG_RXCLEAR_EXT_LOW) {
rxclear |= HAL_RX_CLEAR_EXT_LOW;
}
return rxclear;
}
/*
* Set Rx clear (control/extension channel)
*
* Useful for forcing the channel to appear busy for
* debugging/diagnostics
* Owl 2.0
*/
void
ar5416Set11nRxClear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
{
/* control channel */
if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW);
} else {
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW);
}
/* extension channel */
if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW);
} else {
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW);
}
}
/* XXX shouldn't be here! */
#define TU_TO_USEC(_tu) ((_tu) << 10)
HAL_STATUS
ar5416SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
uint32_t nextStart, HAL_QUIET_FLAG flag)
{
uint32_t period_us = TU_TO_USEC(period); /* convert to us unit */
uint32_t nextStart_us = TU_TO_USEC(nextStart); /* convert to us unit */
if (flag & HAL_QUIET_ENABLE) {
if ((!nextStart) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
/* Add the nextStart offset to the current TSF */
nextStart_us += OS_REG_READ(ah, AR_TSF_L32);
}
if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
nextStart_us += ah->ah_config.ah_sw_beacon_response_time;
}
OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
OS_REG_WRITE(ah, AR_QUIET_PERIOD, period_us);
OS_REG_WRITE(ah, AR_NEXT_QUIET, nextStart_us);
OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
} else {
OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
}
return HAL_OK;
}
#undef TU_TO_USEC
HAL_STATUS
ar5416GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
uint32_t capability, uint32_t *result)
{
switch (type) {
case HAL_CAP_BB_HANG:
switch (capability) {
case HAL_BB_HANG_RIFS:
return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP;
case HAL_BB_HANG_DFS:
return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP;
case HAL_BB_HANG_RX_CLEAR:
return AR_SREV_MERLIN(ah) ? HAL_OK : HAL_ENOTSUPP;
}
break;
case HAL_CAP_MAC_HANG:
return ((ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCI) ||
(ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCIE) ||
AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ?
HAL_OK : HAL_ENOTSUPP;
case HAL_CAP_DIVERSITY: /* disable classic fast diversity */
return HAL_ENXIO;
case HAL_CAP_ENFORCE_TXOP:
(*result) =
!! (AH5212(ah)->ah_miscMode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
return (HAL_OK);
default:
break;
}
return ar5212GetCapability(ah, type, capability, result);
}
HAL_BOOL
ar5416SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
{
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
switch (type) {
case HAL_CAP_RX_CHAINMASK:
setting &= ath_hal_eepromGet(ah, AR_EEP_RXMASK, NULL);
pCap->halRxChainMask = setting;
if (owl_get_ntxchains(setting) > 2)
pCap->halRxStreams = 2;
else
pCap->halRxStreams = 1;
return AH_TRUE;
case HAL_CAP_TX_CHAINMASK:
setting &= ath_hal_eepromGet(ah, AR_EEP_TXMASK, NULL);
pCap->halTxChainMask = setting;
if (owl_get_ntxchains(setting) > 2)
pCap->halTxStreams = 2;
else
pCap->halTxStreams = 1;
return AH_TRUE;
case HAL_CAP_ENFORCE_TXOP:
if (setting) {
AH5212(ah)->ah_miscMode
|= AR_PCU_TXOP_TBTT_LIMIT_ENA;
OS_REG_SET_BIT(ah, AR_MISC_MODE,
AR_PCU_TXOP_TBTT_LIMIT_ENA);
} else {
AH5212(ah)->ah_miscMode
&= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
OS_REG_CLR_BIT(ah, AR_MISC_MODE,
AR_PCU_TXOP_TBTT_LIMIT_ENA);
}
return AH_TRUE;
default:
break;
}
return ar5212SetCapability(ah, type, capability, setting, status);
}
static int ar5416DetectMacHang(struct ath_hal *ah);
static int ar5416DetectBBHang(struct ath_hal *ah);
HAL_BOOL
ar5416GetDiagState(struct ath_hal *ah, int request,
const void *args, uint32_t argsize,
void **result, uint32_t *resultsize)
{
struct ath_hal_5416 *ahp = AH5416(ah);
int hangs;
if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
return AH_TRUE;
switch (request) {
case HAL_DIAG_EEPROM:
return ath_hal_eepromDiag(ah, request,
args, argsize, result, resultsize);
case HAL_DIAG_CHECK_HANGS:
if (argsize != sizeof(int))
return AH_FALSE;
hangs = *(const int *) args;
ahp->ah_hangs = 0;
if (hangs & HAL_BB_HANGS)
ahp->ah_hangs |= ar5416DetectBBHang(ah);
/* NB: if BB is hung MAC will be hung too so skip check */
if (ahp->ah_hangs == 0 && (hangs & HAL_MAC_HANGS))
ahp->ah_hangs |= ar5416DetectMacHang(ah);
*result = &ahp->ah_hangs;
*resultsize = sizeof(ahp->ah_hangs);
return AH_TRUE;
}
return ar5212GetDiagState(ah, request,
args, argsize, result, resultsize);
}
HAL_BOOL
ar5416SetRifsDelay(struct ath_hal *ah, const struct ieee80211_channel *chan,
HAL_BOOL enable)
{
uint32_t val;
HAL_BOOL is_chan_2g = AH_FALSE;
HAL_BOOL is_ht40 = AH_FALSE;
if (chan)
is_chan_2g = IEEE80211_IS_CHAN_2GHZ(chan);
if (chan)
is_ht40 = IEEE80211_IS_CHAN_HT40(chan);
/* Only support disabling RIFS delay for now */
HALASSERT(enable == AH_FALSE);
if (enable == AH_TRUE)
return AH_FALSE;
/* Change RIFS init delay to 0 */
val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
val &= ~AR_PHY_RIFS_INIT_DELAY;
OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
/*
* For Owl, RIFS RX parameters are controlled differently;
* it isn't enabled in the inivals by default.
*
* For Sowl/Howl, RIFS RX is enabled in the inivals by default;
* the following code sets them back to non-RIFS values.
*
* For > Sowl/Howl, RIFS RX can be left on by default and so
* this function shouldn't be called.
*/
if ((! AR_SREV_SOWL(ah)) && (! AR_SREV_HOWL(ah)))
return AH_TRUE;
/* Reset search delay to default values */
if (is_chan_2g)
if (is_ht40)
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x268);
else
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x134);
else
if (is_ht40)
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x370);
else
OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x1b8);
return AH_TRUE;
}
static HAL_BOOL
ar5416CompareDbgHang(struct ath_hal *ah, const mac_dbg_regs_t *regs,
const hal_mac_hang_check_t *check)
{
int found_states;
found_states = 0;
if (check->states & dcu_chain_state) {
int i;
for (i = 0; i < 6; i++) {
if (((regs->dma_dbg_4 >> (5*i)) & 0x1f) ==
check->dcu_chain_state)
found_states |= dcu_chain_state;
}
for (i = 0; i < 4; i++) {
if (((regs->dma_dbg_5 >> (5*i)) & 0x1f) ==
check->dcu_chain_state)
found_states |= dcu_chain_state;
}
}
if (check->states & dcu_complete_state) {
if ((regs->dma_dbg_6 & 0x3) == check->dcu_complete_state)
found_states |= dcu_complete_state;
}
if (check->states & qcu_stitch_state) {
if (((regs->dma_dbg_3 >> 18) & 0xf) == check->qcu_stitch_state)
found_states |= qcu_stitch_state;
}
if (check->states & qcu_fetch_state) {
if (((regs->dma_dbg_3 >> 22) & 0xf) == check->qcu_fetch_state)
found_states |= qcu_fetch_state;
}
if (check->states & qcu_complete_state) {
if (((regs->dma_dbg_3 >> 26) & 0x7) == check->qcu_complete_state)
found_states |= qcu_complete_state;
}
return (found_states == check->states);
}
#define NUM_STATUS_READS 50
static int
ar5416DetectMacHang(struct ath_hal *ah)
{
static const hal_mac_hang_check_t hang_sig1 = {
.dcu_chain_state = 0x6,
.dcu_complete_state = 0x1,
.states = dcu_chain_state
| dcu_complete_state,
};
static const hal_mac_hang_check_t hang_sig2 = {
.qcu_stitch_state = 0x9,
.qcu_fetch_state = 0x8,
.qcu_complete_state = 0x4,
.states = qcu_stitch_state
| qcu_fetch_state
| qcu_complete_state,
};
mac_dbg_regs_t mac_dbg;
int i;
mac_dbg.dma_dbg_3 = OS_REG_READ(ah, AR_DMADBG_3);
mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
for (i = 1; i <= NUM_STATUS_READS; i++) {
if (mac_dbg.dma_dbg_3 != OS_REG_READ(ah, AR_DMADBG_3) ||
mac_dbg.dma_dbg_4 != OS_REG_READ(ah, AR_DMADBG_4) ||
mac_dbg.dma_dbg_5 != OS_REG_READ(ah, AR_DMADBG_5) ||
mac_dbg.dma_dbg_6 != OS_REG_READ(ah, AR_DMADBG_6))
return 0;
}
if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig1))
return HAL_MAC_HANG_SIG1;
if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig2))
return HAL_MAC_HANG_SIG2;
HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown MAC hang signature "
"DMADBG_3=0x%x DMADBG_4=0x%x DMADBG_5=0x%x DMADBG_6=0x%x\n",
__func__, mac_dbg.dma_dbg_3, mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
mac_dbg.dma_dbg_6);
return 0;
}
/*
* Determine if the baseband using the Observation Bus Register
*/
static int
ar5416DetectBBHang(struct ath_hal *ah)
{
#define N(a) (sizeof(a)/sizeof(a[0]))
/*
* Check the PCU Observation Bus 1 register (0x806c)
* NUM_STATUS_READS times
*
* 4 known BB hang signatures -
* [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
* [2] bits 8,9 are 1, bit 11 is 0. State machine state
* (bits 25-31) is 0x52
* [3] bits 8,9 are 1, bit 11 is 0. State machine state
* (bits 25-31) is 0x18
* [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
* Rx State (bits 20-24) is 0x7.
*/
static const struct {
uint32_t val;
uint32_t mask;
int code;
} hang_list[] = {
/* Reg Value Reg Mask Hang Code XXX */
{ 0x1E000000, 0x7E000B00, HAL_BB_HANG_DFS },
{ 0x52000B00, 0x7E000B00, HAL_BB_HANG_RIFS },
{ 0x18000B00, 0x7E000B00, HAL_BB_HANG_RX_CLEAR },
{ 0x00702400, 0x7E7FFFEF, HAL_BB_HANG_RX_CLEAR }
};
uint32_t hang_sig;
int i;
hang_sig = OS_REG_READ(ah, AR_OBSERV_1);
for (i = 1; i <= NUM_STATUS_READS; i++) {
if (hang_sig != OS_REG_READ(ah, AR_OBSERV_1))
return 0;
}
for (i = 0; i < N(hang_list); i++)
if ((hang_sig & hang_list[i].mask) == hang_list[i].val) {
HALDEBUG(ah, HAL_DEBUG_HANG,
"%s BB hang, signature 0x%x, code 0x%x\n",
__func__, hang_sig, hang_list[i].code);
return hang_list[i].code;
}
HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown BB hang signature! "
"<0x806c>=0x%x\n", __func__, hang_sig);
return 0;
#undef N
}
#undef NUM_STATUS_READS