2017-12-02 00:07:31 +00:00

662 lines
14 KiB
C

/*-
* Copyright (c) 2013-2014 Robert N. M. Watson
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 1998 Robert Nordier
* All rights reserved.
*
* Redistribution and use in source and binary forms are freely
* permitted provided that the above copyright notice and this
* paragraph and the following disclaimer are duplicated in all
* such forms.
*
* This software is provided "AS IS" and without any express or
* implied warranties, including, without limitation, the implied
* warranties of merchantability and fitness for a particular
* purpose.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/disklabel.h>
#include <sys/diskmbr.h>
#include <sys/dirent.h>
#include <sys/endian.h>
#include <sys/reboot.h>
#include <machine/bootinfo.h>
#include <machine/elf.h>
#include <stand.h>
#include <stdarg.h>
#include <string.h>
#include <beri.h>
#include <cfi.h>
#include <cons.h>
#include <mips.h>
#include <sdcard.h>
#include "paths.h"
#include "rbx.h"
static int beri_argc;
static const char **beri_argv, **beri_envv;
static uint64_t beri_memsize;
#define IO_KEYBOARD 1
#define IO_SERIAL 2
#define SECOND 1 /* Circa that many ticks in a second. */
#define ARGS 0x900
#define NOPT 14
#define MEM_BASE 0x12
#define MEM_EXT 0x15
/*
* XXXRW: I think this has to do with whether boot2 expects a partition
* table?
*/
#define DRV_HARD 0x80
#define DRV_MASK 0x7f
/* Default to using CFI flash. */
#define TYPE_DEFAULT BOOTINFO_DEV_TYPE_SDCARD
/* Hard-coded assumption about location of JTAG-loaded kernel. */
#define DRAM_KERNEL_ADDR ((void *)mips_phys_to_cached(0x20000))
extern uint32_t _end;
static const char optstr[NOPT] = "DhaCcdgmnpqrsv"; /* Also 'P', 'S' */
static const unsigned char flags[NOPT] = {
RBX_DUAL,
RBX_SERIAL,
RBX_ASKNAME,
RBX_CDROM,
RBX_CONFIG,
RBX_KDB,
RBX_GDB,
RBX_MUTE,
RBX_NOINTR,
RBX_PAUSE,
RBX_QUIET,
RBX_DFLTROOT,
RBX_SINGLE,
RBX_VERBOSE
};
/* These must match BOOTINFO_DEV_TYPE constants. */
static const char *const dev_nm[] = {"dram", "cfi", "sdcard"};
static const u_int dev_nm_count = nitems(dev_nm);
static struct dmadat __dmadat;
static struct dsk {
unsigned type; /* BOOTINFO_DEV_TYPE_x object type. */
uintptr_t unitptr; /* Unit number or pointer to object. */
uint8_t slice;
uint8_t part;
#if 0
unsigned start;
int init;
#endif
} dsk;
static char cmd[512], cmddup[512], knamebuf[1024];
static const char *kname;
uint32_t opts;
#if 0
static int comspeed = SIOSPD;
#endif
struct bootinfo bootinfo;
static uint8_t ioctrl = IO_KEYBOARD;
void exit(int);
void putchar(int);
static void boot_fromdram(void);
static void boot_fromfs(void);
static void load(void);
static int parse(void);
static int dskread(void *, unsigned, unsigned);
static int xputc(int);
static int xgetc(int);
#define UFS_SMALL_CGBASE
#include "ufsread.c"
static inline int
xfsread(ufs_ino_t inode, void *buf, size_t nbyte)
{
if ((size_t)fsread(inode, buf, nbyte) != nbyte) {
printf("Invalid %s\n", "format");
return -1;
}
return 0;
}
static inline void
getstr(void)
{
char *s;
int c;
s = cmd;
for (;;) {
switch (c = xgetc(0)) {
case 0:
break;
case '\177':
case '\b':
if (s > cmd) {
s--;
printf("\b \b");
}
break;
case '\n':
case '\r':
putchar('\n');
*s = 0;
return;
default:
if (s - cmd < sizeof(cmd) - 1)
*s++ = c;
putchar(c);
}
}
}
int
main(u_int argc, const char *argv[], const char *envv[], uint64_t memsize)
{
uint8_t autoboot;
ufs_ino_t ino;
size_t nbyte;
/* Arguments from Miniboot. */
beri_argc = argc;
beri_argv = argv;
beri_envv = envv;
beri_memsize = memsize;
dmadat = &__dmadat;
#if 0
/* XXXRW: more here. */
v86.ctl = V86_FLAGS;
v86.efl = PSL_RESERVED_DEFAULT | PSL_I;
dsk.drive = *(uint8_t *)PTOV(ARGS);
#endif
dsk.type = TYPE_DEFAULT;
#if 0
dsk.unit = dsk.drive & DRV_MASK;
dsk.slice = *(uint8_t *)PTOV(ARGS + 1) + 1;
#endif
bootinfo.bi_version = BOOTINFO_VERSION;
bootinfo.bi_size = sizeof(bootinfo);
/* Process configuration file */
autoboot = 1;
if ((ino = lookup(PATH_CONFIG)) ||
(ino = lookup(PATH_DOTCONFIG))) {
nbyte = fsread(ino, cmd, sizeof(cmd) - 1);
cmd[nbyte] = '\0';
}
if (*cmd) {
memcpy(cmddup, cmd, sizeof(cmd));
if (parse())
autoboot = 0;
if (!OPT_CHECK(RBX_QUIET))
printf("%s: %s", PATH_CONFIG, cmddup);
/* Do not process this command twice */
*cmd = 0;
}
/*
* Try to exec stage 3 boot loader. If interrupted by a keypress,
* or in case of failure, try to load a kernel directly instead.
*/
if (!kname) {
kname = PATH_LOADER;
if (autoboot && !keyhit(3*SECOND)) {
boot_fromfs();
kname = PATH_KERNEL;
}
}
/* Present the user with the boot2 prompt. */
for (;;) {
if (!autoboot || !OPT_CHECK(RBX_QUIET))
printf("\nFreeBSD/mips boot\n"
"Default: %s%ju:%s\n"
"boot: ",
dev_nm[dsk.type], dsk.unitptr, kname);
#if 0
if (ioctrl & IO_SERIAL)
sio_flush();
#endif
if (!autoboot || keyhit(3*SECOND))
getstr();
else if (!autoboot || !OPT_CHECK(RBX_QUIET))
putchar('\n');
autoboot = 0;
if (parse())
putchar('\a');
else
load();
}
}
/* XXX - Needed for btxld to link the boot2 binary; do not remove. */
void
exit(int x)
{
}
static void
boot(void *entryp, int argc, const char *argv[], const char *envv[])
{
bootinfo.bi_kernelname = (bi_ptr_t)kname;
bootinfo.bi_boot2opts = opts & RBX_MASK;
bootinfo.bi_boot_dev_type = dsk.type;
bootinfo.bi_boot_dev_unitptr = dsk.unitptr;
bootinfo.bi_memsize = beri_memsize;
#if 0
/*
* XXXRW: A possible future way to distinguish Miniboot passing a memory
* size vs DTB..?
*/
if (beri_memsize <= BERI_MEMVSDTB)
bootinfo.bi_memsize = beri_memsize;
else
bootinfo.bi_dtb = beri_memsize;
#endif
((void(*)(int, const char **, const char **, void *))entryp)(argc, argv,
envv, &bootinfo);
}
/*
* Boot a kernel that has mysteriously (i.e., by JTAG) appeared in DRAM;
* assume that it is already properly relocated, etc, and invoke its entry
* address without question or concern.
*/
static void
boot_fromdram(void)
{
void *kaddr = DRAM_KERNEL_ADDR; /* XXXRW: Something better here. */
Elf64_Ehdr *ehp = kaddr;
if (!IS_ELF(*ehp)) {
printf("Invalid %s\n", "format");
return;
}
boot((void *)ehp->e_entry, beri_argc, beri_argv, beri_envv);
}
static void
boot_fromfs(void)
{
union {
Elf64_Ehdr eh;
} hdr;
static Elf64_Phdr ep[2];
#if 0
static Elf64_Shdr es[2];
#endif
caddr_t p;
ufs_ino_t ino;
uint64_t addr;
int i, j;
if (!(ino = lookup(kname))) {
if (!ls)
printf("No %s\n", kname);
return;
}
if (xfsread(ino, &hdr, sizeof(hdr)))
return;
if (IS_ELF(hdr.eh)) {
fs_off = hdr.eh.e_phoff;
for (j = i = 0; i < hdr.eh.e_phnum && j < 2; i++) {
if (xfsread(ino, ep + j, sizeof(ep[0])))
return;
if (ep[j].p_type == PT_LOAD)
j++;
}
for (i = 0; i < 2; i++) {
p = (caddr_t)ep[i].p_paddr;
fs_off = ep[i].p_offset;
if (xfsread(ino, p, ep[i].p_filesz))
return;
}
p += roundup2(ep[1].p_memsz, PAGE_SIZE);
#if 0
bootinfo.bi_symtab = VTOP(p);
if (hdr.eh.e_shnum == hdr.eh.e_shstrndx + 3) {
fs_off = hdr.eh.e_shoff + sizeof(es[0]) *
(hdr.eh.e_shstrndx + 1);
if (xfsread(ino, &es, sizeof(es)))
return;
for (i = 0; i < 2; i++) {
*(Elf32_Word *)p = es[i].sh_size;
p += sizeof(es[i].sh_size);
fs_off = es[i].sh_offset;
if (xfsread(ino, p, es[i].sh_size))
return;
p += es[i].sh_size;
}
}
#endif
addr = hdr.eh.e_entry;
#if 0
bootinfo.bi_esymtab = VTOP(p);
#endif
} else {
printf("Invalid %s\n", "format");
return;
}
boot((void *)addr, beri_argc, beri_argv, beri_envv);
}
static void
load(void)
{
switch (dsk.type) {
case BOOTINFO_DEV_TYPE_DRAM:
boot_fromdram();
break;
default:
boot_fromfs();
break;
}
}
static int
parse()
{
char *arg = cmd;
char *ep, *p, *q;
char unit;
size_t len;
const char *cp;
#if 0
int c, i, j;
#else
int c, i;
#endif
while ((c = *arg++)) {
if (c == ' ' || c == '\t' || c == '\n')
continue;
for (p = arg; *p && *p != '\n' && *p != ' ' && *p != '\t'; p++);
ep = p;
if (*p)
*p++ = 0;
if (c == '-') {
while ((c = *arg++)) {
if (c == 'P') {
cp = "yes";
#if 0
} else {
opts |= OPT_SET(RBX_DUAL) | OPT_SET(RBX_SERIAL);
cp = "no";
}
#endif
printf("Keyboard: %s\n", cp);
continue;
#if 0
} else if (c == 'S') {
j = 0;
while ((unsigned int)(i = *arg++ - '0') <= 9)
j = j * 10 + i;
if (j > 0 && i == -'0') {
comspeed = j;
break;
}
/* Fall through to error below ('S' not in optstr[]). */
#endif
}
for (i = 0; c != optstr[i]; i++)
if (i == NOPT - 1)
return -1;
opts ^= OPT_SET(flags[i]);
}
ioctrl = OPT_CHECK(RBX_DUAL) ? (IO_SERIAL|IO_KEYBOARD) :
OPT_CHECK(RBX_SERIAL) ? IO_SERIAL : IO_KEYBOARD;
#if 0
if (ioctrl & IO_SERIAL) {
if (sio_init(115200 / comspeed) != 0)
ioctrl &= ~IO_SERIAL;
}
#endif
} else {
/*-
* Parse a device/kernel name. Format(s):
*
* path
* deviceX:path
*
* NB: Utterly incomprehensible but space-efficient ARM/i386
* parsing removed in favour of larger but easier-to-read C. This
* is still not great, however -- e.g., relating to unit handling.
*
* TODO: it would be nice if a DRAM pointer could be specified
* here.
*
* XXXRW: Pick up pieces here.
*/
/*
* Search for a parens; if none, then it's just a path.
* Otherwise, it's a devicename.
*/
arg--;
q = strsep(&arg, ":");
if (arg != NULL) {
len = strlen(q);
if (len < 2) {
printf("Invalid device: name too short\n");
return (-1);
}
/*
* First, handle one-digit unit.
*/
unit = q[len-1];
if (unit < '0' || unit > '9') {
printf("Invalid device: invalid unit %c\n",
unit);
return (-1);
}
unit -= '0';
q[len-1] = '\0';
/*
* Next, find matching device.
*/
for (i = 0; i < dev_nm_count; i++) {
if (strcmp(q, dev_nm[i]) == 0)
break;
}
if (i == dev_nm_count) {
printf("Invalid device: no driver match\n");
return (-1);
}
dsk.type = i;
dsk.unitptr = unit; /* Someday: also a DRAM pointer? */
} else
arg = q;
if ((i = ep - arg)) {
if ((size_t)i >= sizeof(knamebuf))
return -1;
memcpy(knamebuf, arg, i + 1);
kname = knamebuf;
}
}
arg = p;
}
return 0;
}
static int
drvread(void *buf, unsigned lba, unsigned nblk)
{
/* XXXRW: eventually, we may want to pass 'drive' and 'unit' here. */
switch (dsk.type) {
case BOOTINFO_DEV_TYPE_CFI:
return (cfi_read(buf, lba, nblk));
case BOOTINFO_DEV_TYPE_SDCARD:
return (altera_sdcard_read(buf, lba, nblk));
default:
return (-1);
}
}
static int
dskread(void *buf, unsigned lba, unsigned nblk)
{
#if 0
/*
* XXXRW: For now, assume no partition table around the file system; it's
* just in raw flash.
*/
struct dos_partition *dp;
struct disklabel *d;
char *sec;
unsigned i;
uint8_t sl;
if (!dsk_meta) {
sec = dmadat->secbuf;
dsk.start = 0;
if (drvread(sec, DOSBBSECTOR, 1))
return -1;
dp = (void *)(sec + DOSPARTOFF);
sl = dsk.slice;
if (sl < BASE_SLICE) {
for (i = 0; i < NDOSPART; i++)
if (dp[i].dp_typ == DOSPTYP_386BSD &&
(dp[i].dp_flag & 0x80 || sl < BASE_SLICE)) {
sl = BASE_SLICE + i;
if (dp[i].dp_flag & 0x80 ||
dsk.slice == COMPATIBILITY_SLICE)
break;
}
if (dsk.slice == WHOLE_DISK_SLICE)
dsk.slice = sl;
}
if (sl != WHOLE_DISK_SLICE) {
if (sl != COMPATIBILITY_SLICE)
dp += sl - BASE_SLICE;
if (dp->dp_typ != DOSPTYP_386BSD) {
printf("Invalid %s\n", "slice");
return -1;
}
dsk.start = le32toh(dp->dp_start);
}
if (drvread(sec, dsk.start + LABELSECTOR, 1))
return -1;
d = (void *)(sec + LABELOFFSET);
if (le32toh(d->d_magic) != DISKMAGIC ||
le32toh(d->d_magic2) != DISKMAGIC) {
if (dsk.part != RAW_PART) {
printf("Invalid %s\n", "label");
return -1;
}
} else {
if (!dsk.init) {
if (le16toh(d->d_type) == DTYPE_SCSI)
dsk.type = TYPE_DA;
dsk.init++;
}
if (dsk.part >= le16toh(d->d_npartitions) ||
!(le32toh(d->d_partitions[dsk.part].p_size))) {
printf("Invalid %s\n", "partition");
return -1;
}
dsk.start += le32toh(d->d_partitions[dsk.part].p_offset);
dsk.start -= le32toh(d->d_partitions[RAW_PART].p_offset);
}
}
return drvread(buf, dsk.start + lba, nblk);
#else
return drvread(buf, lba, nblk);
#endif
}
void
putchar(int c)
{
if (c == '\n')
xputc('\r');
xputc(c);
}
static int
xputc(int c)
{
if (ioctrl & IO_KEYBOARD)
putc(c);
#if 0
if (ioctrl & IO_SERIAL)
sio_putc(c);
#endif
return c;
}
static int
xgetc(int fn)
{
if (OPT_CHECK(RBX_NOINTR))
return 0;
for (;;) {
if (ioctrl & IO_KEYBOARD && keyhit(0))
return fn ? 1 : getc();
#if 0
if (ioctrl & IO_SERIAL && sio_ischar())
return fn ? 1 : sio_getc();
#endif
if (fn)
return 0;
}
}