6b195d32a1
cause a problem of spiraling death due to buffer resource limitations. The vfs_bio code in general had little ability to handle buffer resource management, and now it does. Also, there are a lot more knobs for tuning the vfs_bio code now. The knobs came free because of the need that there always be some immediately available buffers (non-delayed or locked) for use. Note that the buffer cache code is much less likely to get bogged down with lots of delayed writes, even more so than before.
1265 lines
33 KiB
C
1265 lines
33 KiB
C
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
|
|
* $Id: lfs_segment.c,v 1.21 1997/03/23 00:45:17 bde Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
|
|
#include <miscfs/specfs/specdev.h>
|
|
#include <miscfs/fifofs/fifo.h>
|
|
|
|
#include <ufs/ufs/quota.h>
|
|
#include <ufs/ufs/inode.h>
|
|
#include <ufs/ufs/dir.h>
|
|
#include <ufs/ufs/ufsmount.h>
|
|
#include <ufs/ufs/ufs_extern.h>
|
|
|
|
#include <ufs/lfs/lfs.h>
|
|
#include <ufs/lfs/lfs_extern.h>
|
|
|
|
extern int count_lock_queue __P((void));
|
|
static caddr_t lfs_alloc_buffer __P((int size));
|
|
static void lfs_reclaim_buffers __P((void));
|
|
|
|
#define MAX_ACTIVE 10
|
|
#define MAX_IO_BUFS 256
|
|
#define MAX_IO_SIZE (1024*512)
|
|
static int lfs_total_io_size;
|
|
static int lfs_total_io_count;
|
|
static volatile int lfs_total_free_count;
|
|
static int lfs_free_needed;
|
|
static int lfs_in_buffer_reclaim;
|
|
static struct lfs_freebuf {
|
|
int size;
|
|
caddr_t address;
|
|
} lfs_freebufs[MAX_IO_BUFS];
|
|
|
|
void
|
|
lfs_free_buffer( caddr_t address, int size) {
|
|
lfs_freebufs[lfs_total_free_count].address = address;
|
|
lfs_freebufs[lfs_total_free_count].size = size;
|
|
++lfs_total_free_count;
|
|
if( lfs_free_needed) {
|
|
wakeup((caddr_t) &lfs_free_needed);
|
|
lfs_free_needed = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
lfs_reclaim_buffers() {
|
|
int i,s;
|
|
int reclaimed = 0;
|
|
if( lfs_in_buffer_reclaim)
|
|
return;
|
|
lfs_in_buffer_reclaim = 1;
|
|
s = splhigh();
|
|
for(i=0;i<lfs_total_free_count;i++) {
|
|
reclaimed = 1;
|
|
if( lfs_freebufs[i].address ){
|
|
splx(s);
|
|
free(lfs_freebufs[i].address, M_SEGMENT);
|
|
s = splhigh();
|
|
}
|
|
lfs_total_io_size -= lfs_freebufs[i].size;
|
|
lfs_total_io_count -= 1;
|
|
}
|
|
lfs_in_buffer_reclaim = 0;
|
|
lfs_total_free_count = 0;
|
|
splx(s);
|
|
if( reclaimed) {
|
|
wakeup((caddr_t) &lfs_free_needed);
|
|
}
|
|
}
|
|
|
|
static caddr_t
|
|
lfs_alloc_buffer(int size) {
|
|
int s;
|
|
caddr_t rtval;
|
|
if( lfs_total_free_count)
|
|
lfs_reclaim_buffers();
|
|
s = splhigh(); /* XXX can't this just be splbio?? */
|
|
while( ((lfs_total_io_count+1) >= MAX_IO_BUFS) ||
|
|
(lfs_total_io_size >= MAX_IO_SIZE)) {
|
|
lfs_free_needed = 1;
|
|
tsleep(&lfs_free_needed, PRIBIO, "lfsalc", 0);
|
|
splx(s);
|
|
lfs_reclaim_buffers();
|
|
s = splhigh();
|
|
}
|
|
splx(s);
|
|
lfs_total_io_size += size;
|
|
lfs_total_io_count += 1;
|
|
rtval = malloc(size, M_SEGMENT, M_WAITOK);
|
|
return rtval;
|
|
}
|
|
|
|
|
|
/*
|
|
* Determine if it's OK to start a partial in this segment, or if we need
|
|
* to go on to a new segment.
|
|
*/
|
|
#define LFS_PARTIAL_FITS(fs) \
|
|
((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
|
|
1 << (fs)->lfs_fsbtodb)
|
|
|
|
static void lfs_callback __P((struct buf *));
|
|
static void lfs_gather __P((struct lfs *, struct segment *,
|
|
struct vnode *, int (*) __P((struct lfs *, struct buf *))));
|
|
void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
|
|
static int lfs_match_data __P((struct lfs *, struct buf *));
|
|
static int lfs_match_dindir __P((struct lfs *, struct buf *));
|
|
static int lfs_match_indir __P((struct lfs *, struct buf *));
|
|
#ifdef TRIPLE
|
|
static int lfs_match_tindir __P((struct lfs *, struct buf *));
|
|
#endif
|
|
static void lfs_newseg __P((struct lfs *));
|
|
static void lfs_shellsort __P((struct buf **, ufs_daddr_t *, register int));
|
|
static void lfs_supercallback __P((struct buf *));
|
|
static void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
|
|
static void lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
|
|
struct segment *sp, int dirops));
|
|
|
|
/* Statistics Counters */
|
|
#define DOSTATS
|
|
struct lfs_stats lfs_stats;
|
|
|
|
/* op values to lfs_writevnodes */
|
|
#define VN_REG 0
|
|
#define VN_DIROP 1
|
|
#define VN_EMPTY 2
|
|
|
|
/*
|
|
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
|
|
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
|
|
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
|
|
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
|
|
*/
|
|
|
|
int
|
|
|
|
lfs_vflush(vp)
|
|
struct vnode *vp;
|
|
{
|
|
struct inode *ip;
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
int error;
|
|
|
|
fs = VFSTOUFS(vp->v_mount)->um_lfs;
|
|
/* XXX
|
|
* lfs_segwrite uses lfs_writevnodes to flush dirty vnodes.
|
|
* lfs_writevnodes (by way of a check with lfs_vref) passes over
|
|
* locked vnodes. Since we usually come here with vp locked, anytime
|
|
* we just happen to call lfs_vflush and we are past the "MAX_ACTIVE"
|
|
* threshold, we used to call lfs_seqwrite and assume it would take
|
|
* care of the problem... but of course it didn't. Now the question
|
|
* remains, is this the right thing to do, or should lfs_seqwrite or
|
|
* lfs_writevnodes be fixed to handle locked vnodes??
|
|
*/
|
|
if (fs->lfs_nactive > MAX_ACTIVE){
|
|
error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
|
|
if(error)
|
|
return(error);
|
|
}
|
|
|
|
lfs_seglock(fs, SEGM_SYNC);
|
|
sp = fs->lfs_sp;
|
|
|
|
ip = VTOI(vp);
|
|
|
|
if (vp->v_dirtyblkhd.lh_first == NULL)
|
|
lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
|
|
|
|
do {
|
|
do {
|
|
if (vp->v_dirtyblkhd.lh_first != NULL)
|
|
lfs_writefile(fs, sp, vp);
|
|
} while (lfs_writeinode(fs, sp, ip));
|
|
|
|
} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
|
|
|
|
if (vp->v_dirtyblkhd.lh_first != NULL)
|
|
panic("lfs_vflush: dirty bufs!!!");
|
|
|
|
#ifdef DOSTATS
|
|
++lfs_stats.nwrites;
|
|
if (sp->seg_flags & SEGM_SYNC)
|
|
++lfs_stats.nsync_writes;
|
|
if (sp->seg_flags & SEGM_CKP)
|
|
++lfs_stats.ncheckpoints;
|
|
#endif
|
|
lfs_segunlock(fs);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
lfs_writevnodes(fs, mp, sp, op)
|
|
struct lfs *fs;
|
|
struct mount *mp;
|
|
struct segment *sp;
|
|
int op;
|
|
{
|
|
struct inode *ip;
|
|
struct vnode *vp;
|
|
|
|
/* BEGIN HACK */
|
|
#define VN_OFFSET (((void *)&vp->v_mntvnodes.le_next) - (void *)vp)
|
|
#define BACK_VP(VP) ((struct vnode *)(((void *)VP->v_mntvnodes.le_prev) - VN_OFFSET))
|
|
#define BEG_OF_VLIST ((struct vnode *)(((void *)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
|
|
|
|
/* Find last vnode. */
|
|
loop: for (vp = mp->mnt_vnodelist.lh_first;
|
|
vp && vp->v_mntvnodes.le_next != NULL;
|
|
vp = vp->v_mntvnodes.le_next);
|
|
for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
|
|
/* END HACK */
|
|
/*
|
|
loop:
|
|
for (vp = mp->mnt_vnodelist.lh_first;
|
|
vp != NULL;
|
|
vp = vp->v_mntvnodes.le_next) {
|
|
*/
|
|
/*
|
|
* If the vnode that we are about to sync is no longer
|
|
* associated with this mount point, start over.
|
|
*/
|
|
if (vp->v_mount != mp)
|
|
goto loop;
|
|
|
|
/* XXX ignore dirops for now
|
|
if (op == VN_DIROP && !(vp->v_flag & VDIROP) ||
|
|
op != VN_DIROP && (vp->v_flag & VDIROP))
|
|
continue;
|
|
*/
|
|
|
|
if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first)
|
|
continue;
|
|
|
|
if (vp->v_type == VNON)
|
|
continue;
|
|
|
|
if (lfs_vref(vp))
|
|
continue;
|
|
|
|
/*
|
|
* Write the inode/file if dirty and it's not the
|
|
* the IFILE.
|
|
*/
|
|
ip = VTOI(vp);
|
|
if ((ip->i_flag &
|
|
(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE) ||
|
|
vp->v_dirtyblkhd.lh_first != NULL) &&
|
|
ip->i_number != LFS_IFILE_INUM) {
|
|
if (vp->v_dirtyblkhd.lh_first != NULL)
|
|
lfs_writefile(fs, sp, vp);
|
|
(void) lfs_writeinode(fs, sp, ip);
|
|
}
|
|
vp->v_flag &= ~VDIROP;
|
|
lfs_vunref(vp);
|
|
}
|
|
}
|
|
|
|
int
|
|
lfs_segwrite(mp, flags)
|
|
struct mount *mp;
|
|
int flags; /* Do a checkpoint. */
|
|
{
|
|
struct proc *p = curproc; /* XXX */
|
|
struct buf *bp;
|
|
struct inode *ip;
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct vnode *vp;
|
|
SEGUSE *segusep;
|
|
ufs_daddr_t ibno;
|
|
CLEANERINFO *cip;
|
|
int clean, do_ckp, error, i;
|
|
|
|
fs = VFSTOUFS(mp)->um_lfs;
|
|
|
|
/*
|
|
* If we have fewer than 2 clean segments, wait until cleaner
|
|
* writes.
|
|
*/
|
|
do {
|
|
LFS_CLEANERINFO(cip, fs, bp);
|
|
clean = cip->clean;
|
|
brelse(bp);
|
|
if (clean <= 2 || fs->lfs_avail <= 0) {
|
|
printf("lfs_segwrite: ran out of clean segments, waiting for cleaner\n");
|
|
wakeup(&lfs_allclean_wakeup);
|
|
wakeup(&fs->lfs_nextseg);
|
|
if (error = tsleep(&fs->lfs_avail, PRIBIO + 1,
|
|
"lfs writer", 0))
|
|
return (error);
|
|
}
|
|
} while (clean <= 2 || fs->lfs_avail <= 0);
|
|
|
|
/*
|
|
* Allocate a segment structure and enough space to hold pointers to
|
|
* the maximum possible number of buffers which can be described in a
|
|
* single summary block.
|
|
*/
|
|
do_ckp = flags & SEGM_CKP || fs->lfs_nactive > MAX_ACTIVE;
|
|
lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
|
|
sp = fs->lfs_sp;
|
|
|
|
lfs_writevnodes(fs, mp, sp, VN_REG);
|
|
|
|
/* XXX ignore ordering of dirops for now */
|
|
/* XXX
|
|
fs->lfs_writer = 1;
|
|
if (fs->lfs_dirops && (error =
|
|
tsleep(&fs->lfs_writer, PRIBIO + 1, "lfs writer", 0))) {
|
|
free(sp->bpp, M_SEGMENT);
|
|
free(sp, M_SEGMENT);
|
|
fs->lfs_writer = 0;
|
|
return (error);
|
|
}
|
|
|
|
lfs_writevnodes(fs, mp, sp, VN_DIROP);
|
|
*/
|
|
|
|
/*
|
|
* If we are doing a checkpoint, mark everything since the
|
|
* last checkpoint as no longer ACTIVE.
|
|
*/
|
|
if (do_ckp)
|
|
for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
|
|
--ibno >= fs->lfs_cleansz; ) {
|
|
if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize,
|
|
NOCRED, &bp))
|
|
|
|
panic("lfs: ifile read");
|
|
segusep = (SEGUSE *)bp->b_data;
|
|
for (i = fs->lfs_sepb; i--; segusep++)
|
|
segusep->su_flags &= ~SEGUSE_ACTIVE;
|
|
|
|
error = VOP_BWRITE(bp);
|
|
}
|
|
|
|
if (do_ckp || fs->lfs_doifile) {
|
|
redo:
|
|
vp = fs->lfs_ivnode;
|
|
while (vget(vp, LK_EXCLUSIVE, p))
|
|
continue;
|
|
ip = VTOI(vp);
|
|
if (vp->v_dirtyblkhd.lh_first != NULL)
|
|
lfs_writefile(fs, sp, vp);
|
|
(void)lfs_writeinode(fs, sp, ip);
|
|
vput(vp);
|
|
if (lfs_writeseg(fs, sp) && do_ckp)
|
|
goto redo;
|
|
} else
|
|
(void) lfs_writeseg(fs, sp);
|
|
|
|
/*
|
|
* If the I/O count is non-zero, sleep until it reaches zero. At the
|
|
* moment, the user's process hangs around so we can sleep.
|
|
*/
|
|
/* XXX ignore dirops for now
|
|
fs->lfs_writer = 0;
|
|
fs->lfs_doifile = 0;
|
|
wakeup(&fs->lfs_dirops);
|
|
*/
|
|
|
|
#ifdef DOSTATS
|
|
++lfs_stats.nwrites;
|
|
if (sp->seg_flags & SEGM_SYNC)
|
|
++lfs_stats.nsync_writes;
|
|
if (sp->seg_flags & SEGM_CKP)
|
|
++lfs_stats.ncheckpoints;
|
|
#endif
|
|
lfs_segunlock(fs);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write the dirty blocks associated with a vnode.
|
|
*/
|
|
static void
|
|
lfs_writefile(fs, sp, vp)
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct vnode *vp;
|
|
{
|
|
struct buf *bp;
|
|
struct finfo *fip;
|
|
IFILE *ifp;
|
|
|
|
if (sp->seg_bytes_left < fs->lfs_bsize ||
|
|
sp->sum_bytes_left < sizeof(struct finfo))
|
|
(void) lfs_writeseg(fs, sp);
|
|
|
|
sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
|
|
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
|
|
|
|
fip = sp->fip;
|
|
fip->fi_nblocks = 0;
|
|
fip->fi_ino = VTOI(vp)->i_number;
|
|
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
|
|
fip->fi_version = ifp->if_version;
|
|
brelse(bp);
|
|
|
|
/*
|
|
* It may not be necessary to write the meta-data blocks at this point,
|
|
* as the roll-forward recovery code should be able to reconstruct the
|
|
* list.
|
|
*/
|
|
lfs_gather(fs, sp, vp, lfs_match_data);
|
|
lfs_gather(fs, sp, vp, lfs_match_indir);
|
|
lfs_gather(fs, sp, vp, lfs_match_dindir);
|
|
#ifdef TRIPLE
|
|
lfs_gather(fs, sp, vp, lfs_match_tindir);
|
|
#endif
|
|
|
|
fip = sp->fip;
|
|
if (fip->fi_nblocks != 0) {
|
|
sp->fip =
|
|
(struct finfo *)((caddr_t)fip + sizeof(struct finfo) +
|
|
sizeof(ufs_daddr_t) * (fip->fi_nblocks - 1));
|
|
sp->start_lbp = &sp->fip->fi_blocks[0];
|
|
} else {
|
|
sp->sum_bytes_left += sizeof(struct finfo) - sizeof(ufs_daddr_t);
|
|
--((SEGSUM *)(sp->segsum))->ss_nfinfo;
|
|
}
|
|
}
|
|
|
|
int
|
|
lfs_writeinode(fs, sp, ip)
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct inode *ip;
|
|
{
|
|
struct buf *bp, *ibp;
|
|
IFILE *ifp;
|
|
SEGUSE *sup;
|
|
ufs_daddr_t daddr;
|
|
ino_t ino;
|
|
int error, i, ndx;
|
|
int redo_ifile = 0;
|
|
|
|
if (!(ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)))
|
|
return(0);
|
|
|
|
/* Allocate a new inode block if necessary. */
|
|
if (sp->ibp == NULL) {
|
|
/* Allocate a new segment if necessary. */
|
|
if (sp->seg_bytes_left < fs->lfs_bsize ||
|
|
sp->sum_bytes_left < sizeof(ufs_daddr_t))
|
|
(void) lfs_writeseg(fs, sp);
|
|
|
|
/* Get next inode block. */
|
|
daddr = fs->lfs_offset;
|
|
fs->lfs_offset += fsbtodb(fs, 1);
|
|
sp->ibp = *sp->cbpp++ =
|
|
lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr,
|
|
fs->lfs_bsize);
|
|
/* Zero out inode numbers */
|
|
for (i = 0; i < INOPB(fs); ++i)
|
|
((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
|
|
++sp->start_bpp;
|
|
fs->lfs_avail -= fsbtodb(fs, 1);
|
|
/* Set remaining space counters. */
|
|
sp->seg_bytes_left -= fs->lfs_bsize;
|
|
sp->sum_bytes_left -= sizeof(ufs_daddr_t);
|
|
ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
|
|
sp->ninodes / INOPB(fs) - 1;
|
|
((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
|
|
}
|
|
|
|
/* Update the inode times and copy the inode onto the inode page. */
|
|
if (ip->i_flag & IN_MODIFIED)
|
|
--fs->lfs_uinodes;
|
|
ITIMES(ip, &time, &time);
|
|
ip->i_flag &= ~(IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE);
|
|
bp = sp->ibp;
|
|
((struct dinode *)bp->b_data)[sp->ninodes % INOPB(fs)] = ip->i_din;
|
|
/* Increment inode count in segment summary block. */
|
|
++((SEGSUM *)(sp->segsum))->ss_ninos;
|
|
|
|
/* If this page is full, set flag to allocate a new page. */
|
|
if (++sp->ninodes % INOPB(fs) == 0)
|
|
sp->ibp = NULL;
|
|
|
|
/*
|
|
* If updating the ifile, update the super-block. Update the disk
|
|
* address and access times for this inode in the ifile.
|
|
*/
|
|
ino = ip->i_number;
|
|
if (ino == LFS_IFILE_INUM) {
|
|
daddr = fs->lfs_idaddr;
|
|
fs->lfs_idaddr = bp->b_blkno;
|
|
} else {
|
|
LFS_IENTRY(ifp, fs, ino, ibp);
|
|
daddr = ifp->if_daddr;
|
|
ifp->if_daddr = bp->b_blkno;
|
|
error = VOP_BWRITE(ibp);
|
|
}
|
|
|
|
/*
|
|
* No need to update segment usage if there was no former inode address
|
|
* or if the last inode address is in the current partial segment.
|
|
*/
|
|
if (daddr != LFS_UNUSED_DADDR &&
|
|
!(daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)) {
|
|
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
|
|
#ifdef DIAGNOSTIC
|
|
if (sup->su_nbytes < sizeof(struct dinode)) {
|
|
/* XXX -- Change to a panic. */
|
|
printf("lfs: negative bytes (segment %ld)\n",
|
|
datosn(fs, daddr));
|
|
panic("negative bytes");
|
|
}
|
|
#endif
|
|
sup->su_nbytes -= sizeof(struct dinode);
|
|
redo_ifile =
|
|
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
|
|
error = VOP_BWRITE(bp);
|
|
}
|
|
return (redo_ifile);
|
|
}
|
|
|
|
int
|
|
lfs_gatherblock(sp, bp, sptr)
|
|
struct segment *sp;
|
|
struct buf *bp;
|
|
int *sptr;
|
|
{
|
|
struct lfs *fs;
|
|
int version;
|
|
|
|
/*
|
|
* If full, finish this segment. We may be doing I/O, so
|
|
* release and reacquire the splbio().
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if (sp->vp == NULL)
|
|
panic ("lfs_gatherblock: Null vp in segment");
|
|
#endif
|
|
fs = sp->fs;
|
|
if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
|
|
sp->seg_bytes_left < bp->b_bcount) {
|
|
if (sptr)
|
|
splx(*sptr);
|
|
lfs_updatemeta(sp);
|
|
|
|
version = sp->fip->fi_version;
|
|
(void) lfs_writeseg(fs, sp);
|
|
|
|
sp->fip->fi_version = version;
|
|
sp->fip->fi_ino = VTOI(sp->vp)->i_number;
|
|
/* Add the current file to the segment summary. */
|
|
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
|
|
sp->sum_bytes_left -=
|
|
sizeof(struct finfo) - sizeof(ufs_daddr_t);
|
|
|
|
if (sptr)
|
|
*sptr = splbio();
|
|
return(1);
|
|
}
|
|
|
|
/* Insert into the buffer list, update the FINFO block. */
|
|
bp->b_flags |= B_GATHERED;
|
|
*sp->cbpp++ = bp;
|
|
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
|
|
|
|
sp->sum_bytes_left -= sizeof(ufs_daddr_t);
|
|
sp->seg_bytes_left -= bp->b_bcount;
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
lfs_gather(fs, sp, vp, match)
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct vnode *vp;
|
|
int (*match) __P((struct lfs *, struct buf *));
|
|
{
|
|
struct buf *bp;
|
|
int s;
|
|
|
|
sp->vp = vp;
|
|
s = splbio();
|
|
/* This is a hack to see if ordering the blocks in LFS makes a difference. */
|
|
/* BEGIN HACK */
|
|
#define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
|
|
#define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
|
|
#define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
|
|
|
|
|
|
/*loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {*/
|
|
/* Find last buffer. */
|
|
loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
|
|
bp = bp->b_vnbufs.le_next);
|
|
for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
|
|
/* END HACK */
|
|
if (bp->b_flags & B_BUSY || !match(fs, bp) ||
|
|
bp->b_flags & B_GATHERED)
|
|
continue;
|
|
#ifdef DIAGNOSTIC
|
|
if (!(bp->b_flags & B_DELWRI))
|
|
panic("lfs_gather: bp not B_DELWRI");
|
|
if (!(bp->b_flags & B_LOCKED))
|
|
panic("lfs_gather: bp not B_LOCKED");
|
|
#endif
|
|
if (lfs_gatherblock(sp, bp, &s))
|
|
goto loop;
|
|
}
|
|
splx(s);
|
|
lfs_updatemeta(sp);
|
|
sp->vp = NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Update the metadata that points to the blocks listed in the FINFO
|
|
* array.
|
|
*/
|
|
void
|
|
lfs_updatemeta(sp)
|
|
struct segment *sp;
|
|
{
|
|
SEGUSE *sup;
|
|
struct buf *bp;
|
|
struct lfs *fs;
|
|
struct vnode *vp;
|
|
struct indir a[NIADDR + 2], *ap;
|
|
struct inode *ip;
|
|
ufs_daddr_t daddr, lbn, off;
|
|
int error, i, nblocks, num;
|
|
|
|
vp = sp->vp;
|
|
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
|
|
if (nblocks < 0)
|
|
panic("This is a bad thing\n");
|
|
if (vp == NULL || nblocks == 0)
|
|
return;
|
|
|
|
/* Sort the blocks. */
|
|
if (!(sp->seg_flags & SEGM_CLEAN))
|
|
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
|
|
|
|
/*
|
|
* Record the length of the last block in case it's a fragment.
|
|
* If there are indirect blocks present, they sort last. An
|
|
* indirect block will be lfs_bsize and its presence indicates
|
|
* that you cannot have fragments.
|
|
*/
|
|
sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
|
|
|
|
/*
|
|
* Assign disk addresses, and update references to the logical
|
|
* block and the segment usage information.
|
|
*/
|
|
fs = sp->fs;
|
|
for (i = nblocks; i--; ++sp->start_bpp) {
|
|
lbn = *sp->start_lbp++;
|
|
(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
|
|
fs->lfs_offset +=
|
|
fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
|
|
|
|
if (error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL))
|
|
panic("lfs_updatemeta: ufs_bmaparray %d", error);
|
|
ip = VTOI(vp);
|
|
switch (num) {
|
|
case 0:
|
|
ip->i_db[lbn] = off;
|
|
break;
|
|
case 1:
|
|
ip->i_ib[a[0].in_off] = off;
|
|
break;
|
|
default:
|
|
ap = &a[num - 1];
|
|
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
|
|
panic("lfs_updatemeta: bread bno %d",
|
|
ap->in_lbn);
|
|
/*
|
|
* Bread may create a new indirect block which needs
|
|
* to get counted for the inode.
|
|
*/
|
|
if (bp->b_blkno == -1 && !(bp->b_flags & B_CACHE)) {
|
|
ip->i_blocks += fsbtodb(fs, 1);
|
|
fs->lfs_bfree -= fragstodb(fs, fs->lfs_frag);
|
|
}
|
|
((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
|
|
VOP_BWRITE(bp);
|
|
}
|
|
|
|
/* Update segment usage information. */
|
|
if (daddr != UNASSIGNED &&
|
|
!(daddr >= fs->lfs_lastpseg && daddr <= off)) {
|
|
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
|
|
#ifdef DIAGNOSTIC
|
|
if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
|
|
/* XXX -- Change to a panic. */
|
|
printf("lfs: negative bytes (segment %ld)\n",
|
|
datosn(fs, daddr));
|
|
printf("lfs: bp = 0x%x, addr = 0x%x\n",
|
|
bp, bp->b_un.b_addr);
|
|
panic ("Negative Bytes");
|
|
}
|
|
#endif
|
|
sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
|
|
error = VOP_BWRITE(bp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start a new segment.
|
|
*/
|
|
int
|
|
lfs_initseg(fs)
|
|
struct lfs *fs;
|
|
{
|
|
struct segment *sp;
|
|
SEGUSE *sup;
|
|
SEGSUM *ssp;
|
|
struct buf *bp;
|
|
int repeat;
|
|
|
|
sp = fs->lfs_sp;
|
|
|
|
repeat = 0;
|
|
/* Advance to the next segment. */
|
|
if (!LFS_PARTIAL_FITS(fs)) {
|
|
/* Wake up any cleaning procs waiting on this file system. */
|
|
wakeup(&lfs_allclean_wakeup);
|
|
wakeup(&fs->lfs_nextseg);
|
|
|
|
lfs_newseg(fs);
|
|
repeat = 1;
|
|
fs->lfs_offset = fs->lfs_curseg;
|
|
sp->seg_number = datosn(fs, fs->lfs_curseg);
|
|
sp->seg_bytes_left = fs->lfs_dbpseg * DEV_BSIZE;
|
|
|
|
/*
|
|
* If the segment contains a superblock, update the offset
|
|
* and summary address to skip over it.
|
|
*/
|
|
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
|
|
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
|
|
fs->lfs_offset += LFS_SBPAD / DEV_BSIZE;
|
|
sp->seg_bytes_left -= LFS_SBPAD;
|
|
}
|
|
brelse(bp);
|
|
} else {
|
|
sp->seg_number = datosn(fs, fs->lfs_curseg);
|
|
sp->seg_bytes_left = (fs->lfs_dbpseg -
|
|
(fs->lfs_offset - fs->lfs_curseg)) * DEV_BSIZE;
|
|
}
|
|
fs->lfs_lastpseg = fs->lfs_offset;
|
|
|
|
sp->fs = fs;
|
|
sp->ibp = NULL;
|
|
sp->ninodes = 0;
|
|
|
|
/* Get a new buffer for SEGSUM and enter it into the buffer list. */
|
|
sp->cbpp = sp->bpp;
|
|
*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_offset,
|
|
LFS_SUMMARY_SIZE);
|
|
sp->segsum = (*sp->cbpp)->b_data;
|
|
bzero(sp->segsum, LFS_SUMMARY_SIZE);
|
|
sp->start_bpp = ++sp->cbpp;
|
|
fs->lfs_offset += LFS_SUMMARY_SIZE / DEV_BSIZE;
|
|
|
|
/* Set point to SEGSUM, initialize it. */
|
|
ssp = sp->segsum;
|
|
ssp->ss_next = fs->lfs_nextseg;
|
|
ssp->ss_nfinfo = ssp->ss_ninos = 0;
|
|
ssp->ss_magic = SS_MAGIC;
|
|
|
|
/* Set pointer to first FINFO, initialize it. */
|
|
sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
|
|
sp->fip->fi_nblocks = 0;
|
|
sp->start_lbp = &sp->fip->fi_blocks[0];
|
|
sp->fip->fi_lastlength = 0;
|
|
|
|
sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
|
|
sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
|
|
|
|
return(repeat);
|
|
}
|
|
|
|
/*
|
|
* Return the next segment to write.
|
|
*/
|
|
static void
|
|
lfs_newseg(fs)
|
|
struct lfs *fs;
|
|
{
|
|
CLEANERINFO *cip;
|
|
SEGUSE *sup;
|
|
struct buf *bp;
|
|
int curseg, isdirty, sn;
|
|
|
|
LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
|
|
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
|
|
sup->su_nbytes = 0;
|
|
sup->su_nsums = 0;
|
|
sup->su_ninos = 0;
|
|
(void) VOP_BWRITE(bp);
|
|
|
|
LFS_CLEANERINFO(cip, fs, bp);
|
|
--cip->clean;
|
|
++cip->dirty;
|
|
(void) VOP_BWRITE(bp);
|
|
|
|
fs->lfs_lastseg = fs->lfs_curseg;
|
|
fs->lfs_curseg = fs->lfs_nextseg;
|
|
for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
|
|
sn = (sn + 1) % fs->lfs_nseg;
|
|
if (sn == curseg)
|
|
panic("lfs_nextseg: no clean segments");
|
|
LFS_SEGENTRY(sup, fs, sn, bp);
|
|
isdirty = sup->su_flags & SEGUSE_DIRTY;
|
|
brelse(bp);
|
|
if (!isdirty)
|
|
break;
|
|
}
|
|
|
|
++fs->lfs_nactive;
|
|
fs->lfs_nextseg = sntoda(fs, sn);
|
|
#ifdef DOSTATS
|
|
++lfs_stats.segsused;
|
|
#endif
|
|
}
|
|
|
|
int
|
|
lfs_writeseg(fs, sp)
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
{
|
|
struct buf **bpp, *bp, *cbp;
|
|
SEGUSE *sup;
|
|
SEGSUM *ssp;
|
|
dev_t i_dev;
|
|
u_long *datap, *dp;
|
|
int do_again, i, nblocks, s;
|
|
int (*strategy)__P((struct vop_strategy_args *));
|
|
struct vop_strategy_args vop_strategy_a;
|
|
u_short ninos;
|
|
char *p;
|
|
|
|
/*
|
|
* If there are no buffers other than the segment summary to write
|
|
* and it is not a checkpoint, don't do anything. On a checkpoint,
|
|
* even if there aren't any buffers, you need to write the superblock.
|
|
*/
|
|
if ((nblocks = sp->cbpp - sp->bpp) == 1)
|
|
return (0);
|
|
|
|
/* Update the segment usage information. */
|
|
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
|
|
|
|
/* Loop through all blocks, except the segment summary. */
|
|
for (bpp = sp->bpp; ++bpp < sp->cbpp; )
|
|
sup->su_nbytes += (*bpp)->b_bcount;
|
|
|
|
ssp = (SEGSUM *)sp->segsum;
|
|
|
|
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
|
|
sup->su_nbytes += ssp->ss_ninos * sizeof(struct dinode);
|
|
sup->su_nbytes += LFS_SUMMARY_SIZE;
|
|
sup->su_lastmod = time.tv_sec;
|
|
sup->su_ninos += ninos;
|
|
++sup->su_nsums;
|
|
do_again = !(bp->b_flags & B_GATHERED);
|
|
(void)VOP_BWRITE(bp);
|
|
/*
|
|
* Compute checksum across data and then across summary; the first
|
|
* block (the summary block) is skipped. Set the create time here
|
|
* so that it's guaranteed to be later than the inode mod times.
|
|
*
|
|
* XXX
|
|
* Fix this to do it inline, instead of malloc/copy.
|
|
*/
|
|
datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
|
|
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
|
|
if ((*++bpp)->b_flags & B_INVAL) {
|
|
if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
|
|
panic("lfs_writeseg: copyin failed");
|
|
} else
|
|
*dp++ = ((u_long *)(*bpp)->b_data)[0];
|
|
}
|
|
ssp->ss_create = time.tv_sec;
|
|
ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
|
|
ssp->ss_sumsum =
|
|
cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
|
|
free(datap, M_SEGMENT);
|
|
#ifdef DIAGNOSTIC
|
|
if (fs->lfs_bfree < fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE)
|
|
panic("lfs_writeseg: No diskspace for summary");
|
|
#endif
|
|
fs->lfs_bfree -= (fsbtodb(fs, ninos) + LFS_SUMMARY_SIZE / DEV_BSIZE);
|
|
|
|
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
|
|
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
|
|
|
|
/*
|
|
* When we simply write the blocks we lose a rotation for every block
|
|
* written. To avoid this problem, we allocate memory in chunks, copy
|
|
* the buffers into the chunk and write the chunk. MAXPHYS is the
|
|
* largest size I/O devices can handle.
|
|
* When the data is copied to the chunk, turn off the the B_LOCKED bit
|
|
* and brelse the buffer (which will move them to the LRU list). Add
|
|
* the B_CALL flag to the buffer header so we can count I/O's for the
|
|
* checkpoints and so we can release the allocated memory.
|
|
*
|
|
* XXX
|
|
* This should be removed if the new virtual memory system allows us to
|
|
* easily make the buffers contiguous in kernel memory and if that's
|
|
* fast enough.
|
|
*/
|
|
for (bpp = sp->bpp, i = nblocks; i;) {
|
|
cbp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
|
|
(*bpp)->b_blkno, MAXPHYS);
|
|
cbp->b_dev = i_dev;
|
|
cbp->b_flags |= B_ASYNC | B_BUSY;
|
|
cbp->b_bcount = 0;
|
|
|
|
s = splbio();
|
|
++fs->lfs_iocount;
|
|
for (p = cbp->b_data; i && cbp->b_bcount < MAXPHYS; i--) {
|
|
bp = *bpp;
|
|
if (bp->b_bcount > (MAXPHYS - cbp->b_bcount))
|
|
break;
|
|
bpp++;
|
|
|
|
/*
|
|
* Fake buffers from the cleaner are marked as B_INVAL.
|
|
* We need to copy the data from user space rather than
|
|
* from the buffer indicated.
|
|
* XXX == what do I do on an error?
|
|
*/
|
|
if (bp->b_flags & B_INVAL) {
|
|
if (copyin(bp->b_saveaddr, p, bp->b_bcount))
|
|
panic("lfs_writeseg: copyin failed");
|
|
} else
|
|
bcopy(bp->b_data, p, bp->b_bcount);
|
|
p += bp->b_bcount;
|
|
cbp->b_bcount += bp->b_bcount;
|
|
if (bp->b_flags & B_LOCKED)
|
|
--locked_queue_count;
|
|
if (bp->b_flags & (B_DELWRI|B_LOCKED)) {
|
|
--numdirtybuffers;
|
|
if (needsbuffer)
|
|
vfs_bio_need_satisfy();
|
|
}
|
|
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
|
|
B_LOCKED | B_GATHERED);
|
|
if (bp->b_flags & B_CALL) {
|
|
/* if B_CALL, it was created with newbuf */
|
|
if (!(bp->b_flags & B_INVAL))
|
|
lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE));
|
|
relpbuf(bp);
|
|
} else {
|
|
bremfree(bp);
|
|
bp->b_flags |= B_DONE;
|
|
reassignbuf(bp, bp->b_vp);
|
|
brelse(bp);
|
|
}
|
|
}
|
|
++cbp->b_vp->v_numoutput;
|
|
splx(s);
|
|
/*
|
|
* XXXX This is a gross and disgusting hack. Since these
|
|
* buffers are physically addressed, they hang off the
|
|
* device vnode (devvp). As a result, they have no way
|
|
* of getting to the LFS superblock or lfs structure to
|
|
* keep track of the number of I/O's pending. So, I am
|
|
* going to stuff the fs into the saveaddr field of
|
|
* the buffer (yuk).
|
|
*/
|
|
cbp->b_saveaddr = (caddr_t)fs;
|
|
vop_strategy_a.a_desc = VDESC(vop_strategy);
|
|
vop_strategy_a.a_bp = cbp;
|
|
(strategy)(&vop_strategy_a);
|
|
}
|
|
/*
|
|
* XXX
|
|
* Vinvalbuf can move locked buffers off the locked queue
|
|
* and we have no way of knowing about this. So, after
|
|
* doing a big write, we recalculate how many bufers are
|
|
* really still left on the locked queue.
|
|
*/
|
|
locked_queue_count = count_lock_queue();
|
|
wakeup(&locked_queue_count);
|
|
#ifdef DOSTATS
|
|
++lfs_stats.psegwrites;
|
|
lfs_stats.blocktot += nblocks - 1;
|
|
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
|
|
++lfs_stats.psyncwrites;
|
|
if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
|
|
++lfs_stats.pcleanwrites;
|
|
lfs_stats.cleanblocks += nblocks - 1;
|
|
}
|
|
#endif
|
|
return (lfs_initseg(fs) || do_again);
|
|
}
|
|
|
|
void
|
|
lfs_writesuper(fs)
|
|
struct lfs *fs;
|
|
{
|
|
struct buf *bp;
|
|
dev_t i_dev;
|
|
int (*strategy) __P((struct vop_strategy_args *));
|
|
int s;
|
|
struct vop_strategy_args vop_strategy_a;
|
|
|
|
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
|
|
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
|
|
|
|
/* Checksum the superblock and copy it into a buffer. */
|
|
fs->lfs_cksum = cksum(fs, sizeof(struct lfs) - sizeof(fs->lfs_cksum));
|
|
bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, fs->lfs_sboffs[0],
|
|
LFS_SBPAD);
|
|
*(struct lfs *)bp->b_data = *fs;
|
|
|
|
/* XXX Toggle between first two superblocks; for now just write first */
|
|
bp->b_dev = i_dev;
|
|
bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
|
|
if (bp->b_flags & (B_DELWRI|B_LOCKED)) {
|
|
--numdirtybuffers;
|
|
if (needsbuffer)
|
|
vfs_bio_need_satisfy();
|
|
}
|
|
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
|
|
bp->b_iodone = lfs_supercallback;
|
|
vop_strategy_a.a_desc = VDESC(vop_strategy);
|
|
vop_strategy_a.a_bp = bp;
|
|
s = splbio();
|
|
++bp->b_vp->v_numoutput;
|
|
splx(s);
|
|
(strategy)(&vop_strategy_a);
|
|
}
|
|
|
|
/*
|
|
* Logical block number match routines used when traversing the dirty block
|
|
* chain.
|
|
*/
|
|
static int
|
|
lfs_match_data(fs, bp)
|
|
struct lfs *fs;
|
|
struct buf *bp;
|
|
{
|
|
return (bp->b_lblkno >= 0);
|
|
}
|
|
|
|
static int
|
|
lfs_match_indir(fs, bp)
|
|
struct lfs *fs;
|
|
struct buf *bp;
|
|
{
|
|
int lbn;
|
|
|
|
lbn = bp->b_lblkno;
|
|
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
|
|
}
|
|
|
|
static int
|
|
lfs_match_dindir(fs, bp)
|
|
struct lfs *fs;
|
|
struct buf *bp;
|
|
{
|
|
int lbn;
|
|
|
|
lbn = bp->b_lblkno;
|
|
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
|
|
}
|
|
|
|
#ifdef TRIPLE
|
|
static int
|
|
lfs_match_tindir(fs, bp)
|
|
struct lfs *fs;
|
|
struct buf *bp;
|
|
{
|
|
int lbn;
|
|
|
|
lbn = bp->b_lblkno;
|
|
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Allocate a new buffer header.
|
|
*/
|
|
struct buf *
|
|
lfs_newbuf(vp, daddr, size)
|
|
struct vnode *vp;
|
|
ufs_daddr_t daddr;
|
|
size_t size;
|
|
{
|
|
struct buf *bp;
|
|
size_t nbytes;
|
|
|
|
nbytes = roundup(size, DEV_BSIZE);
|
|
bp = getpbuf();
|
|
if (nbytes)
|
|
bp->b_data = lfs_alloc_buffer( nbytes);
|
|
bp->b_bufsize = size;
|
|
bp->b_bcount = size;
|
|
bp->b_lblkno = daddr;
|
|
bp->b_blkno = daddr;
|
|
bp->b_error = 0;
|
|
bp->b_resid = 0;
|
|
bp->b_iodone = lfs_callback;
|
|
bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
|
|
return (bp);
|
|
}
|
|
|
|
static void
|
|
lfs_callback(bp)
|
|
struct buf *bp;
|
|
{
|
|
struct lfs *fs;
|
|
|
|
fs = (struct lfs *)bp->b_saveaddr;
|
|
#ifdef DIAGNOSTIC
|
|
if (fs->lfs_iocount == 0)
|
|
panic("lfs_callback: zero iocount");
|
|
#endif
|
|
if (--fs->lfs_iocount == 0)
|
|
wakeup(&fs->lfs_iocount);
|
|
|
|
lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE));
|
|
relpbuf(bp);
|
|
|
|
}
|
|
|
|
static void
|
|
lfs_supercallback(bp)
|
|
struct buf *bp;
|
|
{
|
|
if( bp->b_data)
|
|
lfs_free_buffer( bp->b_data, roundup( bp->b_bufsize, DEV_BSIZE));
|
|
relpbuf(bp);
|
|
}
|
|
|
|
/*
|
|
* Shellsort (diminishing increment sort) from Data Structures and
|
|
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
|
|
* see also Knuth Vol. 3, page 84. The increments are selected from
|
|
* formula (8), page 95. Roughly O(N^3/2).
|
|
*/
|
|
/*
|
|
* This is our own private copy of shellsort because we want to sort
|
|
* two parallel arrays (the array of buffer pointers and the array of
|
|
* logical block numbers) simultaneously. Note that we cast the array
|
|
* of logical block numbers to a unsigned in this routine so that the
|
|
* negative block numbers (meta data blocks) sort AFTER the data blocks.
|
|
*/
|
|
static void
|
|
lfs_shellsort(bp_array, lb_array, nmemb)
|
|
struct buf **bp_array;
|
|
ufs_daddr_t *lb_array;
|
|
register int nmemb;
|
|
{
|
|
static int __rsshell_increments[] = { 4, 1, 0 };
|
|
register int incr, *incrp, t1, t2;
|
|
struct buf *bp_temp;
|
|
u_long lb_temp;
|
|
|
|
for (incrp = __rsshell_increments; incr = *incrp++;)
|
|
for (t1 = incr; t1 < nmemb; ++t1)
|
|
for (t2 = t1 - incr; t2 >= 0;)
|
|
if (lb_array[t2] > lb_array[t2 + incr]) {
|
|
lb_temp = lb_array[t2];
|
|
lb_array[t2] = lb_array[t2 + incr];
|
|
lb_array[t2 + incr] = lb_temp;
|
|
bp_temp = bp_array[t2];
|
|
bp_array[t2] = bp_array[t2 + incr];
|
|
bp_array[t2 + incr] = bp_temp;
|
|
t2 -= incr;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
|
|
*/
|
|
int
|
|
lfs_vref(vp)
|
|
register struct vnode *vp;
|
|
{
|
|
struct proc *p = curproc; /* XXX */
|
|
|
|
if ((vp->v_flag & VXLOCK) || /* XXX */
|
|
(vp->v_usecount == 0 &&
|
|
vp->v_freelist.tqe_prev == (struct vnode **)0xdeadb))
|
|
return(1);
|
|
return (vget(vp, 0, p));
|
|
}
|
|
|
|
/*
|
|
* This is vrele except that we do not want to VOP_INACTIVE this vnode. We
|
|
* inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
|
|
*/
|
|
void
|
|
lfs_vunref(vp)
|
|
register struct vnode *vp;
|
|
{
|
|
struct proc *p = curproc; /* XXX */
|
|
extern struct simplelock vnode_free_list_slock; /* XXX */
|
|
extern TAILQ_HEAD(freelst, vnode) vnode_free_list; /* XXX */
|
|
|
|
simple_lock(&vp->v_interlock);
|
|
vp->v_usecount--;
|
|
if (vp->v_usecount > 0) {
|
|
simple_unlock(&vp->v_interlock);
|
|
return;
|
|
}
|
|
/*
|
|
* insert at tail of LRU list
|
|
*/
|
|
simple_lock(&vnode_free_list_slock);
|
|
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
|
|
simple_unlock(&vnode_free_list_slock);
|
|
simple_unlock(&vp->v_interlock);
|
|
}
|