2017-12-19 15:49:03 +00:00
|
|
|
/* SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
* Copyright(c) 2017 Intel Corporation
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _RTE_GRO_H_
|
|
|
|
#define _RTE_GRO_H_
|
|
|
|
|
2017-07-11 06:18:43 +00:00
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
* Interface to GRO library
|
|
|
|
*/
|
|
|
|
|
2017-08-04 09:55:41 +00:00
|
|
|
#include <stdint.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
|
|
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
2017-07-11 06:18:43 +00:00
|
|
|
#define RTE_GRO_MAX_BURST_ITEM_NUM 128U
|
|
|
|
/**< the max number of packets that rte_gro_reassemble_burst()
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
* can process in each invocation.
|
|
|
|
*/
|
|
|
|
#define RTE_GRO_TYPE_MAX_NUM 64
|
2017-07-11 06:18:43 +00:00
|
|
|
/**< the max number of supported GRO types */
|
2018-01-10 14:03:12 +00:00
|
|
|
#define RTE_GRO_TYPE_SUPPORT_NUM 2
|
2017-07-11 06:18:43 +00:00
|
|
|
/**< the number of currently supported GRO types */
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
|
lib/gro: support TCP/IPv4
In this patch, we introduce five APIs to support TCP/IPv4 GRO.
- gro_tcp4_reassemble: reassemble an inputted TCP/IPv4 packet.
- gro_tcp4_tbl_create: create a TCP/IPv4 reassembly table, which is used
to merge packets.
- gro_tcp4_tbl_destroy: free memory space of a TCP/IPv4 reassembly table.
- gro_tcp4_tbl_pkt_count: return the number of packets in a TCP/IPv4
reassembly table.
- gro_tcp4_tbl_timeout_flush: flush timeout packets from a TCP/IPv4
reassembly table.
TCP/IPv4 GRO API assumes all inputted packets are with correct IPv4
and TCP checksums. And TCP/IPv4 GRO API doesn't update IPv4 and TCP
checksums for merged packets. If inputted packets are IP fragmented,
TCP/IPv4 GRO API assumes they are complete packets (i.e. with L4
headers).
In TCP/IPv4 GRO, we use a table structure, called TCP/IPv4 reassembly
table, to reassemble packets. A TCP/IPv4 reassembly table includes a key
array and a item array, where the key array keeps the criteria to merge
packets and the item array keeps packet information.
One key in the key array points to an item group, which consists of
packets which have the same criteria value. If two packets are able to
merge, they must be in the same item group. Each key in the key array
includes two parts:
- criteria: the criteria of merging packets. If two packets can be
merged, they must have the same criteria value.
- start_index: the index of the first incoming packet of the item group.
Each element in the item array keeps the information of one packet. It
mainly includes three parts:
- firstseg: the address of the first segment of the packet
- lastseg: the address of the last segment of the packet
- next_pkt_index: the index of the next packet in the same item group.
All packets in the same item group are chained by next_pkt_index.
With next_pkt_index, we can locate all packets in the same item
group one by one.
To process an incoming packet needs three steps:
a. check if the packet should be processed. Packets with one of the
following properties won't be processed:
- FIN, SYN, RST, URG, PSH, ECE or CWR bit is set;
- packet payload length is 0.
b. traverse the key array to find a key which has the same criteria
value with the incoming packet. If find, goto step c. Otherwise,
insert a new key and insert the packet into the item array.
c. locate the first packet in the item group via the start_index in the
key. Then traverse all packets in the item group via next_pkt_index.
If find one packet which can merge with the incoming one, merge them
together. If can't find, insert the packet into this item group.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:45 +00:00
|
|
|
#define RTE_GRO_TCP_IPV4_INDEX 0
|
|
|
|
#define RTE_GRO_TCP_IPV4 (1ULL << RTE_GRO_TCP_IPV4_INDEX)
|
2017-07-11 06:18:43 +00:00
|
|
|
/**< TCP/IPv4 GRO flag */
|
2018-01-10 14:03:12 +00:00
|
|
|
#define RTE_GRO_IPV4_VXLAN_TCP_IPV4_INDEX 1
|
|
|
|
#define RTE_GRO_IPV4_VXLAN_TCP_IPV4 (1ULL << RTE_GRO_IPV4_VXLAN_TCP_IPV4_INDEX)
|
|
|
|
/**< VxLAN GRO flag. */
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
|
2017-07-11 06:18:43 +00:00
|
|
|
/**
|
2018-01-10 14:03:10 +00:00
|
|
|
* Structure used to create GRO context objects or used to pass
|
|
|
|
* application-determined parameters to rte_gro_reassemble_burst().
|
2017-07-11 06:18:43 +00:00
|
|
|
*/
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
struct rte_gro_param {
|
|
|
|
uint64_t gro_types;
|
2017-07-11 06:18:43 +00:00
|
|
|
/**< desired GRO types */
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
uint16_t max_flow_num;
|
2017-07-11 06:18:43 +00:00
|
|
|
/**< max flow number */
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
uint16_t max_item_per_flow;
|
2017-07-11 06:18:43 +00:00
|
|
|
/**< max packet number per flow */
|
|
|
|
uint16_t socket_id;
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
/**< socket index for allocating GRO related data structures,
|
|
|
|
* like reassembly tables. When use rte_gro_reassemble_burst(),
|
|
|
|
* applications don't need to set this value.
|
|
|
|
*/
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @warning
|
|
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
|
|
*
|
|
|
|
* This function create a GRO context object, which is used to merge
|
|
|
|
* packets in rte_gro_reassemble().
|
|
|
|
*
|
|
|
|
* @param param
|
|
|
|
* applications use it to pass needed parameters to create a GRO
|
|
|
|
* context object.
|
|
|
|
*
|
|
|
|
* @return
|
|
|
|
* if create successfully, return a pointer which points to the GRO
|
|
|
|
* context object. Otherwise, return NULL.
|
|
|
|
*/
|
|
|
|
void *rte_gro_ctx_create(const struct rte_gro_param *param);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @warning
|
|
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
|
|
*
|
|
|
|
* This function destroys a GRO context object.
|
|
|
|
*
|
|
|
|
* @param ctx
|
|
|
|
* pointer points to a GRO context object.
|
|
|
|
*/
|
|
|
|
void rte_gro_ctx_destroy(void *ctx);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This is one of the main reassembly APIs, which merges numbers of
|
2018-01-10 14:03:10 +00:00
|
|
|
* packets at a time. It doesn't check if input packets have correct
|
|
|
|
* checksums and doesn't re-calculate checksums for merged packets.
|
|
|
|
* It assumes the packets are complete (i.e., MF==0 && frag_off==0),
|
|
|
|
* when IP fragmentation is possible (i.e., DF==0). The GROed packets
|
|
|
|
* are returned as soon as the function finishes.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*
|
|
|
|
* @param pkts
|
2018-01-10 14:03:10 +00:00
|
|
|
* Pointer array pointing to the packets to reassemble. Besides, it
|
|
|
|
* keeps MBUF addresses for the GROed packets.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
* @param nb_pkts
|
2018-01-10 14:03:10 +00:00
|
|
|
* The number of packets to reassemble
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
* @param param
|
2018-01-10 14:03:10 +00:00
|
|
|
* Application-determined parameters for reassembling packets.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*
|
|
|
|
* @return
|
2018-01-10 14:03:10 +00:00
|
|
|
* The number of packets after been GROed. If no packets are merged,
|
|
|
|
* the return value is equals to nb_pkts.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*/
|
|
|
|
uint16_t rte_gro_reassemble_burst(struct rte_mbuf **pkts,
|
|
|
|
uint16_t nb_pkts,
|
|
|
|
const struct rte_gro_param *param);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @warning
|
|
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
|
|
*
|
2018-01-10 14:03:10 +00:00
|
|
|
* Reassembly function, which tries to merge input packets with the
|
|
|
|
* existed packets in the reassembly tables of a given GRO context.
|
|
|
|
* It doesn't check if input packets have correct checksums and doesn't
|
|
|
|
* re-calculate checksums for merged packets. Additionally, it assumes
|
|
|
|
* the packets are complete (i.e., MF==0 && frag_off==0), when IP
|
|
|
|
* fragmentation is possible (i.e., DF==0).
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*
|
2018-01-10 14:03:10 +00:00
|
|
|
* If the input packets have invalid parameters (e.g. no data payload,
|
|
|
|
* unsupported GRO types), they are returned to applications. Otherwise,
|
|
|
|
* they are either merged or inserted into the table. Applications need
|
|
|
|
* to flush packets from the tables by flush API, if they want to get the
|
|
|
|
* GROed packets.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*
|
|
|
|
* @param pkts
|
2018-01-10 14:03:10 +00:00
|
|
|
* Packets to reassemble. It's also used to store the unprocessed packets.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
* @param nb_pkts
|
2018-01-10 14:03:10 +00:00
|
|
|
* The number of packets to reassemble
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
* @param ctx
|
2018-01-10 14:03:10 +00:00
|
|
|
* GRO context object pointer
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*
|
|
|
|
* @return
|
2018-01-10 14:03:10 +00:00
|
|
|
* The number of unprocessed packets.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*/
|
|
|
|
uint16_t rte_gro_reassemble(struct rte_mbuf **pkts,
|
|
|
|
uint16_t nb_pkts,
|
|
|
|
void *ctx);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @warning
|
|
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
|
|
*
|
2018-01-10 14:03:10 +00:00
|
|
|
* This function flushes the timeout packets from the reassembly tables
|
|
|
|
* of desired GRO types. The max number of flushed packets is the
|
|
|
|
* element number of 'out'.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*
|
2018-01-10 14:03:10 +00:00
|
|
|
* Additionally, the flushed packets may have incorrect checksums, since
|
|
|
|
* this function doesn't re-calculate checksums for merged packets.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*
|
|
|
|
* @param ctx
|
2018-01-10 14:03:10 +00:00
|
|
|
* GRO context object pointer.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
* @param timeout_cycles
|
2018-01-10 14:03:10 +00:00
|
|
|
* The max TTL for packets in reassembly tables, measured in nanosecond.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
* @param gro_types
|
2018-01-10 14:03:10 +00:00
|
|
|
* This function flushes packets whose GRO types are specified by
|
|
|
|
* gro_types.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
* @param out
|
2018-01-10 14:03:10 +00:00
|
|
|
* Pointer array used to keep flushed packets.
|
2017-07-11 06:18:43 +00:00
|
|
|
* @param max_nb_out
|
2018-01-10 14:03:10 +00:00
|
|
|
* The element number of 'out'. It's also the max number of timeout
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
* packets that can be flushed finally.
|
|
|
|
*
|
|
|
|
* @return
|
2018-01-10 14:03:10 +00:00
|
|
|
* The number of flushed packets.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*/
|
|
|
|
uint16_t rte_gro_timeout_flush(void *ctx,
|
|
|
|
uint64_t timeout_cycles,
|
|
|
|
uint64_t gro_types,
|
|
|
|
struct rte_mbuf **out,
|
|
|
|
uint16_t max_nb_out);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @warning
|
|
|
|
* @b EXPERIMENTAL: this API may change without prior notice
|
|
|
|
*
|
|
|
|
* This function returns the number of packets in all reassembly tables
|
|
|
|
* of a given GRO context.
|
|
|
|
*
|
|
|
|
* @param ctx
|
2018-01-10 14:03:10 +00:00
|
|
|
* GRO context object pointer.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*
|
|
|
|
* @return
|
2018-01-10 14:03:10 +00:00
|
|
|
* The number of packets in the tables.
|
lib/gro: add Generic Receive Offload API framework
Generic Receive Offload (GRO) is a widely used SW-based offloading
technique to reduce per-packet processing overhead. It gains
performance by reassembling small packets into large ones. This
patchset is to support GRO in DPDK. To support GRO, this patch
implements a GRO API framework.
To enable more flexibility to applications, DPDK GRO is implemented as
a user library. Applications explicitly use the GRO library to merge
small packets into large ones. DPDK GRO provides two reassembly modes.
One is called lightweight mode, the other is called heavyweight mode.
If applications want to merge packets in a simple way and the number
of packets is relatively small, they can use the lightweight mode.
If applications need more fine-grained controls, they can choose the
heavyweight mode.
rte_gro_reassemble_burst is the main reassembly API which is used in
lightweight mode and processes N packets at a time. For applications,
performing GRO in lightweight mode is simple. They just need to invoke
rte_gro_reassemble_burst. Applications can get GROed packets as soon as
rte_gro_reassemble_burst returns.
rte_gro_reassemble is the main reassembly API which is used in
heavyweight mode and tries to merge N inputted packets with the packets
in GRO reassembly tables. For applications, performing GRO in heavyweight
mode is relatively complicated. Before performing GRO, applications need
to create a GRO context object, which keeps reassembly tables of
desired GRO types, by rte_gro_ctx_create. Then applications can use
rte_gro_reassemble to merge packets. The GROed packets are in the
reassembly tables of the GRO context object. If applications want to get
them, applications need to manually flush them by flush API.
Signed-off-by: Jiayu Hu <jiayu.hu@intel.com>
Reviewed-by: Jianfeng Tan <jianfeng.tan@intel.com>
2017-07-09 05:46:44 +00:00
|
|
|
*/
|
|
|
|
uint64_t rte_gro_get_pkt_count(void *ctx);
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _RTE_GRO_H_ */
|