656 lines
15 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium, Inc
*/
#include <string.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cpuflags.h>
#include <rte_malloc.h>
#include "otx_zip.h"
static const struct rte_compressdev_capabilities
octtx_zip_pmd_capabilities[] = {
{ .algo = RTE_COMP_ALGO_DEFLATE,
/* Deflate */
.comp_feature_flags = RTE_COMP_FF_HUFFMAN_FIXED |
RTE_COMP_FF_HUFFMAN_DYNAMIC,
/* Non sharable Priv XFORM and Stateless */
.window_size = {
.min = 1,
.max = 14,
.increment = 1
/* size supported 2^1 to 2^14 */
},
},
RTE_COMP_END_OF_CAPABILITIES_LIST()
};
/*
* Reset session to default state for next set of stateless operation
*/
static inline void
reset_stream(struct zip_stream *z_stream)
{
union zip_inst_s *inst = (union zip_inst_s *)(z_stream->inst);
inst->s.bf = 1;
inst->s.ef = 0;
}
int
zip_process_op(struct rte_comp_op *op,
struct zipvf_qp *qp,
struct zip_stream *zstrm)
{
union zip_inst_s *inst = zstrm->inst;
volatile union zip_zres_s *zresult = NULL;
if ((op->m_src->nb_segs > 1) || (op->m_dst->nb_segs > 1) ||
(op->src.offset > rte_pktmbuf_pkt_len(op->m_src)) ||
(op->dst.offset > rte_pktmbuf_pkt_len(op->m_dst))) {
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
ZIP_PMD_ERR("Segmented packet is not supported\n");
return 0;
}
zipvf_prepare_cmd_stateless(op, zstrm);
zresult = (union zip_zres_s *)zstrm->bufs[RES_BUF];
zresult->s.compcode = 0;
#ifdef ZIP_DBG
zip_dump_instruction(inst);
#endif
/* Submit zip command */
zipvf_push_command(qp, (void *)inst);
/* Check and Process results in sync mode */
do {
} while (!zresult->s.compcode);
if (zresult->s.compcode == ZIP_COMP_E_SUCCESS) {
op->status = RTE_COMP_OP_STATUS_SUCCESS;
} else {
/* FATAL error cannot do anything */
ZIP_PMD_ERR("operation failed with error code:%d\n",
zresult->s.compcode);
if (zresult->s.compcode == ZIP_COMP_E_DSTOP)
op->status = RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED;
else
op->status = RTE_COMP_OP_STATUS_ERROR;
}
ZIP_PMD_INFO("written %d\n", zresult->s.totalbyteswritten);
/* Update op stats */
switch (op->status) {
case RTE_COMP_OP_STATUS_SUCCESS:
op->consumed = zresult->s.totalbytesread;
/* Fall-through */
case RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED:
op->produced = zresult->s.totalbyteswritten;
break;
default:
ZIP_PMD_ERR("stats not updated for status:%d\n",
op->status);
break;
}
/* zstream is reset irrespective of result */
reset_stream(zstrm);
zresult->s.compcode = ZIP_COMP_E_NOTDONE;
return 0;
}
/** Parse xform parameters and setup a stream */
static int
zip_set_stream_parameters(struct rte_compressdev *dev,
const struct rte_comp_xform *xform,
struct zip_stream *z_stream)
{
int ret;
union zip_inst_s *inst;
struct zip_vf *vf = (struct zip_vf *)dev->data->dev_private;
void *res;
/* Allocate resources required by a stream */
ret = rte_mempool_get_bulk(vf->zip_mp,
z_stream->bufs, MAX_BUFS_PER_STREAM);
if (ret < 0)
return -1;
/* get one command buffer from pool and set up */
inst = (union zip_inst_s *)z_stream->bufs[CMD_BUF];
res = z_stream->bufs[RES_BUF];
memset(inst->u, 0, sizeof(inst->u));
/* set bf for only first ops of stream */
inst->s.bf = 1;
if (xform->type == RTE_COMP_COMPRESS) {
inst->s.op = ZIP_OP_E_COMP;
switch (xform->compress.deflate.huffman) {
case RTE_COMP_HUFFMAN_DEFAULT:
inst->s.cc = ZIP_CC_DEFAULT;
break;
case RTE_COMP_HUFFMAN_FIXED:
inst->s.cc = ZIP_CC_FIXED_HUFF;
break;
case RTE_COMP_HUFFMAN_DYNAMIC:
inst->s.cc = ZIP_CC_DYN_HUFF;
break;
default:
ret = -1;
goto err;
}
switch (xform->compress.level) {
case RTE_COMP_LEVEL_MIN:
inst->s.ss = ZIP_COMP_E_LEVEL_MIN;
break;
case RTE_COMP_LEVEL_MAX:
inst->s.ss = ZIP_COMP_E_LEVEL_MAX;
break;
case RTE_COMP_LEVEL_NONE:
ZIP_PMD_ERR("Compression level not supported");
ret = -1;
goto err;
default:
/* for any value between min and max , choose
* PMD default.
*/
inst->s.ss = ZIP_COMP_E_LEVEL_MED; /** PMD default **/
break;
}
} else if (xform->type == RTE_COMP_DECOMPRESS) {
inst->s.op = ZIP_OP_E_DECOMP;
/* from HRM,
* For DEFLATE decompression, [CC] must be 0x0.
* For decompression, [SS] must be 0x0
*/
inst->s.cc = 0;
/* Speed bit should not be set for decompression */
inst->s.ss = 0;
/* decompression context is supported only for STATEFUL
* operations. Currently we support STATELESS ONLY so
* skip setting of ctx pointer
*/
} else {
ZIP_PMD_ERR("\nxform type not supported");
ret = -1;
goto err;
}
inst->s.res_ptr_addr.s.addr = rte_mempool_virt2iova(res);
inst->s.res_ptr_ctl.s.length = 0;
z_stream->inst = inst;
z_stream->func = zip_process_op;
return 0;
err:
rte_mempool_put_bulk(vf->zip_mp,
(void *)&(z_stream->bufs[0]),
MAX_BUFS_PER_STREAM);
return ret;
}
/** Configure device */
static int
zip_pmd_config(struct rte_compressdev *dev,
struct rte_compressdev_config *config)
{
int nb_streams;
char res_pool[RTE_MEMZONE_NAMESIZE];
struct zip_vf *vf;
struct rte_mempool *zip_buf_mp;
if (!config || !dev)
return -EIO;
vf = (struct zip_vf *)(dev->data->dev_private);
/* create pool with maximum numbers of resources
* required by streams
*/
/* use common pool for non-shareable priv_xform and stream */
nb_streams = config->max_nb_priv_xforms + config->max_nb_streams;
snprintf(res_pool, RTE_MEMZONE_NAMESIZE, "octtx_zip_res_pool%u",
dev->data->dev_id);
/** TBD Should we use the per core object cache for stream resources */
zip_buf_mp = rte_mempool_create(
res_pool,
nb_streams * MAX_BUFS_PER_STREAM,
ZIP_BUF_SIZE,
0,
0,
NULL,
NULL,
NULL,
NULL,
SOCKET_ID_ANY,
0);
if (zip_buf_mp == NULL) {
ZIP_PMD_ERR(
"Failed to create buf mempool octtx_zip_res_pool%u",
dev->data->dev_id);
return -1;
}
vf->zip_mp = zip_buf_mp;
return 0;
}
/** Start device */
static int
zip_pmd_start(__rte_unused struct rte_compressdev *dev)
{
return 0;
}
/** Stop device */
static void
zip_pmd_stop(__rte_unused struct rte_compressdev *dev)
{
}
/** Close device */
static int
zip_pmd_close(struct rte_compressdev *dev)
{
if (dev == NULL)
return -1;
struct zip_vf *vf = (struct zip_vf *)dev->data->dev_private;
rte_mempool_free(vf->zip_mp);
return 0;
}
/** Get device statistics */
static void
zip_pmd_stats_get(struct rte_compressdev *dev,
struct rte_compressdev_stats *stats)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct zipvf_qp *qp = dev->data->queue_pairs[qp_id];
stats->enqueued_count += qp->qp_stats.enqueued_count;
stats->dequeued_count += qp->qp_stats.dequeued_count;
stats->enqueue_err_count += qp->qp_stats.enqueue_err_count;
stats->dequeue_err_count += qp->qp_stats.dequeue_err_count;
}
}
/** Reset device statistics */
static void
zip_pmd_stats_reset(struct rte_compressdev *dev)
{
int qp_id;
for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
struct zipvf_qp *qp = dev->data->queue_pairs[qp_id];
memset(&qp->qp_stats, 0, sizeof(qp->qp_stats));
}
}
/** Get device info */
static void
zip_pmd_info_get(struct rte_compressdev *dev,
struct rte_compressdev_info *dev_info)
{
struct zip_vf *vf = (struct zip_vf *)dev->data->dev_private;
if (dev_info != NULL) {
dev_info->driver_name = dev->device->driver->name;
dev_info->feature_flags = dev->feature_flags;
dev_info->capabilities = octtx_zip_pmd_capabilities;
dev_info->max_nb_queue_pairs = vf->max_nb_queue_pairs;
}
}
/** Release queue pair */
static int
zip_pmd_qp_release(struct rte_compressdev *dev, uint16_t qp_id)
{
struct zipvf_qp *qp = dev->data->queue_pairs[qp_id];
if (qp != NULL) {
zipvf_q_term(qp);
if (qp->processed_pkts)
rte_ring_free(qp->processed_pkts);
rte_free(qp);
dev->data->queue_pairs[qp_id] = NULL;
}
return 0;
}
/** Create a ring to place process packets on */
static struct rte_ring *
zip_pmd_qp_create_processed_pkts_ring(struct zipvf_qp *qp,
unsigned int ring_size, int socket_id)
{
struct rte_ring *r;
r = rte_ring_lookup(qp->name);
if (r) {
if (rte_ring_get_size(r) >= ring_size) {
ZIP_PMD_INFO("Reusing existing ring %s for processed"
" packets", qp->name);
return r;
}
ZIP_PMD_ERR("Unable to reuse existing ring %s for processed"
" packets", qp->name);
return NULL;
}
return rte_ring_create(qp->name, ring_size, socket_id,
RING_F_EXACT_SZ);
}
/** Setup a queue pair */
static int
zip_pmd_qp_setup(struct rte_compressdev *dev, uint16_t qp_id,
uint32_t max_inflight_ops, int socket_id)
{
struct zipvf_qp *qp = NULL;
struct zip_vf *vf;
char *name;
int ret;
if (!dev)
return -1;
vf = (struct zip_vf *) (dev->data->dev_private);
/* Free memory prior to re-allocation if needed. */
if (dev->data->queue_pairs[qp_id] != NULL) {
ZIP_PMD_INFO("Using existing queue pair %d ", qp_id);
return 0;
}
name = rte_malloc(NULL, RTE_COMPRESSDEV_NAME_MAX_LEN, 0);
snprintf(name, RTE_COMPRESSDEV_NAME_MAX_LEN,
"zip_pmd_%u_qp_%u",
dev->data->dev_id, qp_id);
/* Allocate the queue pair data structure. */
qp = rte_zmalloc_socket(name, sizeof(*qp),
RTE_CACHE_LINE_SIZE, socket_id);
if (qp == NULL)
return (-ENOMEM);
qp->name = name;
/* Create completion queue upto max_inflight_ops */
qp->processed_pkts = zip_pmd_qp_create_processed_pkts_ring(qp,
max_inflight_ops, socket_id);
if (qp->processed_pkts == NULL)
goto qp_setup_cleanup;
qp->id = qp_id;
qp->vf = vf;
ret = zipvf_q_init(qp);
if (ret < 0)
goto qp_setup_cleanup;
dev->data->queue_pairs[qp_id] = qp;
memset(&qp->qp_stats, 0, sizeof(qp->qp_stats));
return 0;
qp_setup_cleanup:
if (qp->processed_pkts)
rte_ring_free(qp->processed_pkts);
if (qp)
rte_free(qp);
return -1;
}
static int
zip_pmd_stream_create(struct rte_compressdev *dev,
const struct rte_comp_xform *xform, void **stream)
{
int ret;
struct zip_stream *strm = NULL;
strm = rte_malloc(NULL,
sizeof(struct zip_stream), 0);
if (strm == NULL)
return (-ENOMEM);
ret = zip_set_stream_parameters(dev, xform, strm);
if (ret < 0) {
ZIP_PMD_ERR("failed configure xform parameters");
rte_free(strm);
return ret;
}
*stream = strm;
return 0;
}
static int
zip_pmd_stream_free(struct rte_compressdev *dev, void *stream)
{
struct zip_vf *vf = (struct zip_vf *) (dev->data->dev_private);
struct zip_stream *z_stream;
if (stream == NULL)
return 0;
z_stream = (struct zip_stream *)stream;
/* Free resources back to pool */
rte_mempool_put_bulk(vf->zip_mp,
(void *)&(z_stream->bufs[0]),
MAX_BUFS_PER_STREAM);
/* Zero out the whole structure */
memset(stream, 0, sizeof(struct zip_stream));
rte_free(stream);
return 0;
}
static uint16_t
zip_pmd_enqueue_burst_sync(void *queue_pair,
struct rte_comp_op **ops, uint16_t nb_ops)
{
struct zipvf_qp *qp = queue_pair;
struct rte_comp_op *op;
struct zip_stream *zstrm;
int i, ret = 0;
uint16_t enqd = 0;
for (i = 0; i < nb_ops; i++) {
op = ops[i];
if (op->op_type == RTE_COMP_OP_STATEFUL) {
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
} else {
/* process stateless ops */
zstrm = (struct zip_stream *)op->private_xform;
if (unlikely(zstrm == NULL))
op->status = RTE_COMP_OP_STATUS_INVALID_ARGS;
else
ret = zstrm->func(op, qp, zstrm);
}
/* Whatever is out of op, put it into completion queue with
* its status
*/
if (!ret)
ret = rte_ring_enqueue(qp->processed_pkts, (void *)op);
if (unlikely(ret < 0)) {
/* increment count if failed to enqueue op*/
qp->qp_stats.enqueue_err_count++;
} else {
qp->qp_stats.enqueued_count++;
enqd++;
}
}
return enqd;
}
static uint16_t
zip_pmd_dequeue_burst_sync(void *queue_pair,
struct rte_comp_op **ops, uint16_t nb_ops)
{
struct zipvf_qp *qp = queue_pair;
unsigned int nb_dequeued = 0;
nb_dequeued = rte_ring_dequeue_burst(qp->processed_pkts,
(void **)ops, nb_ops, NULL);
qp->qp_stats.dequeued_count += nb_dequeued;
return nb_dequeued;
}
static struct rte_compressdev_ops octtx_zip_pmd_ops = {
.dev_configure = zip_pmd_config,
.dev_start = zip_pmd_start,
.dev_stop = zip_pmd_stop,
.dev_close = zip_pmd_close,
.stats_get = zip_pmd_stats_get,
.stats_reset = zip_pmd_stats_reset,
.dev_infos_get = zip_pmd_info_get,
.queue_pair_setup = zip_pmd_qp_setup,
.queue_pair_release = zip_pmd_qp_release,
.private_xform_create = zip_pmd_stream_create,
.private_xform_free = zip_pmd_stream_free,
.stream_create = NULL,
.stream_free = NULL
};
static int
zip_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
int ret = 0;
char compressdev_name[RTE_COMPRESSDEV_NAME_MAX_LEN];
struct rte_compressdev *compressdev;
struct rte_compressdev_pmd_init_params init_params = {
"",
rte_socket_id(),
};
ZIP_PMD_INFO("vendor_id=0x%x device_id=0x%x",
(unsigned int)pci_dev->id.vendor_id,
(unsigned int)pci_dev->id.device_id);
rte_pci_device_name(&pci_dev->addr, compressdev_name,
sizeof(compressdev_name));
compressdev = rte_compressdev_pmd_create(compressdev_name,
&pci_dev->device, sizeof(struct zip_vf), &init_params);
if (compressdev == NULL) {
ZIP_PMD_ERR("driver %s: create failed", init_params.name);
return -ENODEV;
}
/*
* create only if proc_type is primary.
*/
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
/* create vf dev with given pmd dev id */
ret = zipvf_create(compressdev);
if (ret < 0) {
ZIP_PMD_ERR("Device creation failed");
rte_compressdev_pmd_destroy(compressdev);
return ret;
}
}
compressdev->dev_ops = &octtx_zip_pmd_ops;
/* register rx/tx burst functions for data path */
compressdev->dequeue_burst = zip_pmd_dequeue_burst_sync;
compressdev->enqueue_burst = zip_pmd_enqueue_burst_sync;
compressdev->feature_flags = RTE_COMPDEV_FF_HW_ACCELERATED;
return ret;
}
static int
zip_pci_remove(struct rte_pci_device *pci_dev)
{
struct rte_compressdev *compressdev;
char compressdev_name[RTE_COMPRESSDEV_NAME_MAX_LEN];
if (pci_dev == NULL) {
ZIP_PMD_ERR(" Invalid PCI Device\n");
return -EINVAL;
}
rte_pci_device_name(&pci_dev->addr, compressdev_name,
sizeof(compressdev_name));
compressdev = rte_compressdev_pmd_get_named_dev(compressdev_name);
if (compressdev == NULL)
return -ENODEV;
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
if (zipvf_destroy(compressdev) < 0)
return -ENODEV;
}
return rte_compressdev_pmd_destroy(compressdev);
}
static struct rte_pci_id pci_id_octtx_zipvf_table[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM,
PCI_DEVICE_ID_OCTEONTX_ZIPVF),
},
{
.device_id = 0
},
};
/**
* Structure that represents a PCI driver
*/
static struct rte_pci_driver octtx_zip_pmd = {
.id_table = pci_id_octtx_zipvf_table,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = zip_pci_probe,
.remove = zip_pci_remove,
};
RTE_PMD_REGISTER_PCI(COMPRESSDEV_NAME_ZIP_PMD, octtx_zip_pmd);
RTE_PMD_REGISTER_PCI_TABLE(COMPRESSDEV_NAME_ZIP_PMD, pci_id_octtx_zipvf_table);
RTE_INIT(octtx_zip_init_log)
{
octtx_zip_logtype_driver = rte_log_register("pmd.compress.octeontx");
if (octtx_zip_logtype_driver >= 0)
rte_log_set_level(octtx_zip_logtype_driver, RTE_LOG_INFO);
}