numam-dpdk/drivers/net/mlx5/mlx5_utils.h

666 lines
19 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox Technologies, Ltd
*/
#ifndef RTE_PMD_MLX5_UTILS_H_
#define RTE_PMD_MLX5_UTILS_H_
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <limits.h>
#include <errno.h>
#include <rte_spinlock.h>
#include <rte_rwlock.h>
#include <rte_memory.h>
#include <rte_bitmap.h>
#include <mlx5_common.h>
#include <mlx5_common_utils.h>
#include "mlx5_defs.h"
/* Convert a bit number to the corresponding 64-bit mask */
#define MLX5_BITSHIFT(v) (UINT64_C(1) << (v))
/* Save and restore errno around argument evaluation. */
#define ERRNO_SAFE(x) ((errno = (int []){ errno, ((x), 0) }[0]))
extern int mlx5_logtype;
#define MLX5_NET_LOG_PREFIX "mlx5_net"
/* Generic printf()-like logging macro with automatic line feed. */
#define DRV_LOG(level, ...) \
PMD_DRV_LOG_(level, mlx5_logtype, MLX5_NET_LOG_PREFIX, \
__VA_ARGS__ PMD_DRV_LOG_STRIP PMD_DRV_LOG_OPAREN, \
PMD_DRV_LOG_CPAREN)
/* Convenience macros for accessing mbuf fields. */
#define NEXT(m) ((m)->next)
#define DATA_LEN(m) ((m)->data_len)
#define PKT_LEN(m) ((m)->pkt_len)
#define DATA_OFF(m) ((m)->data_off)
#define SET_DATA_OFF(m, o) ((m)->data_off = (o))
#define NB_SEGS(m) ((m)->nb_segs)
#define PORT(m) ((m)->port)
/* Transpose flags. Useful to convert IBV to DPDK flags. */
#define TRANSPOSE(val, from, to) \
(((from) >= (to)) ? \
(((val) & (from)) / ((from) / (to))) : \
(((val) & (from)) * ((to) / (from))))
/*
* For the case which data is linked with sequence increased index, the
* array table will be more efficient than hash table once need to search
* one data entry in large numbers of entries. Since the traditional hash
* tables has fixed table size, when huge numbers of data saved to the hash
* table, it also comes lots of hash conflict.
*
* But simple array table also has fixed size, allocates all the needed
* memory at once will waste lots of memory. For the case don't know the
* exactly number of entries will be impossible to allocate the array.
*
* Then the multiple level table helps to balance the two disadvantages.
* Allocate a global high level table with sub table entries at first,
* the global table contains the sub table entries, and the sub table will
* be allocated only once the corresponding index entry need to be saved.
* e.g. for up to 32-bits index, three level table with 10-10-12 splitting,
* with sequence increased index, the memory grows with every 4K entries.
*
* The currently implementation introduces 10-10-12 32-bits splitting
* Three-Level table to help the cases which have millions of enties to
* save. The index entries can be addressed directly by the index, no
* search will be needed.q
*/
/* L3 table global table define. */
#define MLX5_L3T_GT_OFFSET 22
#define MLX5_L3T_GT_SIZE (1 << 10)
#define MLX5_L3T_GT_MASK (MLX5_L3T_GT_SIZE - 1)
/* L3 table middle table define. */
#define MLX5_L3T_MT_OFFSET 12
#define MLX5_L3T_MT_SIZE (1 << 10)
#define MLX5_L3T_MT_MASK (MLX5_L3T_MT_SIZE - 1)
/* L3 table entry table define. */
#define MLX5_L3T_ET_OFFSET 0
#define MLX5_L3T_ET_SIZE (1 << 12)
#define MLX5_L3T_ET_MASK (MLX5_L3T_ET_SIZE - 1)
/* L3 table type. */
enum mlx5_l3t_type {
MLX5_L3T_TYPE_WORD = 0,
MLX5_L3T_TYPE_DWORD,
MLX5_L3T_TYPE_QWORD,
MLX5_L3T_TYPE_PTR,
MLX5_L3T_TYPE_MAX,
};
struct mlx5_indexed_pool;
/* Generic data struct. */
union mlx5_l3t_data {
uint16_t word;
uint32_t dword;
uint64_t qword;
void *ptr;
};
/* L3 level table data structure. */
struct mlx5_l3t_level_tbl {
uint64_t ref_cnt; /* Table ref_cnt. */
void *tbl[]; /* Table array. */
};
/* L3 word entry table data structure. */
struct mlx5_l3t_entry_word {
uint32_t idx; /* Table index. */
uint64_t ref_cnt; /* Table ref_cnt. */
struct {
uint16_t data;
uint32_t ref_cnt;
} entry[MLX5_L3T_ET_SIZE]; /* Entry array */
} __rte_packed;
/* L3 double word entry table data structure. */
struct mlx5_l3t_entry_dword {
uint32_t idx; /* Table index. */
uint64_t ref_cnt; /* Table ref_cnt. */
struct {
uint32_t data;
int32_t ref_cnt;
} entry[MLX5_L3T_ET_SIZE]; /* Entry array */
} __rte_packed;
/* L3 quad word entry table data structure. */
struct mlx5_l3t_entry_qword {
uint32_t idx; /* Table index. */
uint64_t ref_cnt; /* Table ref_cnt. */
struct {
uint64_t data;
uint32_t ref_cnt;
} entry[MLX5_L3T_ET_SIZE]; /* Entry array */
} __rte_packed;
/* L3 pointer entry table data structure. */
struct mlx5_l3t_entry_ptr {
uint32_t idx; /* Table index. */
uint64_t ref_cnt; /* Table ref_cnt. */
struct {
void *data;
uint32_t ref_cnt;
} entry[MLX5_L3T_ET_SIZE]; /* Entry array */
} __rte_packed;
/* L3 table data structure. */
struct mlx5_l3t_tbl {
enum mlx5_l3t_type type; /* Table type. */
struct mlx5_indexed_pool *eip;
/* Table index pool handles. */
struct mlx5_l3t_level_tbl *tbl; /* Global table index. */
rte_spinlock_t sl; /* The table lock. */
};
/** Type of function that is used to handle the data before freeing. */
typedef int32_t (*mlx5_l3t_alloc_callback_fn)(void *ctx,
union mlx5_l3t_data *data);
/*
* The indexed memory entry index is made up of trunk index and offset of
* the entry in the trunk. Since the entry index is 32 bits, in case user
* prefers to have small trunks, user can change the macro below to a big
* number which helps the pool contains more trunks with lots of entries
* allocated.
*/
#define TRUNK_IDX_BITS 16
#define TRUNK_MAX_IDX ((1 << TRUNK_IDX_BITS) - 1)
#define TRUNK_INVALID TRUNK_MAX_IDX
#define MLX5_IPOOL_DEFAULT_TRUNK_SIZE (1 << (28 - TRUNK_IDX_BITS))
#ifdef RTE_LIBRTE_MLX5_DEBUG
#define POOL_DEBUG 1
#endif
struct mlx5_indexed_pool_config {
uint32_t size; /* Pool entry size. */
uint32_t trunk_size:22;
/*
* Trunk entry number. Must be power of 2. It can be increased
* if trunk_grow enable. The trunk entry number increases with
* left shift grow_shift. Trunks with index are after grow_trunk
* will keep the entry number same with the last grow trunk.
*/
uint32_t grow_trunk:4;
/*
* Trunks with entry number increase in the pool. Set it to 0
* to make the pool works as trunk entry fixed pool. It works
* only if grow_shift is not 0.
*/
uint32_t grow_shift:4;
/*
* Trunk entry number increase shift value, stop after grow_trunk.
* It works only if grow_trunk is not 0.
*/
uint32_t need_lock:1;
/* Lock is needed for multiple thread usage. */
uint32_t release_mem_en:1; /* Rlease trunk when it is free. */
uint32_t max_idx; /* The maximum index can be allocated. */
uint32_t per_core_cache;
/*
* Cache entry number per core for performance. Should not be
* set with release_mem_en.
*/
const char *type; /* Memory allocate type name. */
void *(*malloc)(uint32_t flags, size_t size, unsigned int align,
int socket);
/* User defined memory allocator. */
void (*free)(void *addr); /* User defined memory release. */
};
struct mlx5_indexed_trunk {
uint32_t idx; /* Trunk id. */
uint32_t prev; /* Previous free trunk in free list. */
uint32_t next; /* Next free trunk in free list. */
uint32_t free; /* Free entries available */
struct rte_bitmap *bmp;
uint8_t data[] __rte_cache_aligned; /* Entry data start. */
};
struct mlx5_indexed_cache {
struct mlx5_indexed_trunk **trunks;
volatile uint32_t n_trunk_valid; /* Trunks allocated. */
uint32_t n_trunk; /* Trunk pointer array size. */
uint32_t ref_cnt;
uint32_t len;
uint32_t idx[];
};
struct mlx5_ipool_per_lcore {
struct mlx5_indexed_cache *lc;
uint32_t len; /**< Current cache count. */
uint32_t idx[]; /**< Cache objects. */
};
struct mlx5_indexed_pool {
struct mlx5_indexed_pool_config cfg; /* Indexed pool configuration. */
rte_spinlock_t rsz_lock; /* Pool lock for multiple thread usage. */
rte_spinlock_t lcore_lock;
/* Dim of trunk pointer array. */
union {
struct {
uint32_t n_trunk_valid; /* Trunks allocated. */
uint32_t n_trunk; /* Trunk pointer array size. */
struct mlx5_indexed_trunk **trunks;
uint32_t free_list; /* Index to first free trunk. */
};
struct {
struct mlx5_indexed_cache *gc;
/* Global cache. */
struct mlx5_ipool_per_lcore *cache[RTE_MAX_LCORE + 1];
/* Local cache. */
struct rte_bitmap *ibmp;
void *bmp_mem;
/* Allocate objects bitmap. Use during flush. */
};
};
#ifdef POOL_DEBUG
uint32_t n_entry;
uint32_t trunk_new;
uint32_t trunk_avail;
uint32_t trunk_empty;
uint32_t trunk_free;
#endif
uint32_t grow_tbl[]; /* Save the index offset for the grow trunks. */
};
/**
* Return logarithm of the nearest power of two above input value.
*
* @param v
* Input value.
*
* @return
* Logarithm of the nearest power of two above input value.
*/
static inline unsigned int
log2above(unsigned int v)
{
unsigned int l;
unsigned int r;
for (l = 0, r = 0; (v >> 1); ++l, v >>= 1)
r |= (v & 1);
return l + r;
}
/********************************* indexed pool *************************/
/**
* This function allocates non-initialized memory entry from pool.
* In NUMA systems, the memory entry allocated resides on the same
* NUMA socket as the core that calls this function.
*
* Memory entry is allocated from memory trunk, no alignment.
*
* @param pool
* Pointer to indexed memory entry pool.
* No initialization required.
* @param[out] idx
* Pointer to memory to save allocated index.
* Memory index always positive value.
* @return
* - Pointer to the allocated memory entry.
* - NULL on error. Not enough memory, or invalid arguments.
*/
void *mlx5_ipool_malloc(struct mlx5_indexed_pool *pool, uint32_t *idx);
/**
* This function allocates zero initialized memory entry from pool.
* In NUMA systems, the memory entry allocated resides on the same
* NUMA socket as the core that calls this function.
*
* Memory entry is allocated from memory trunk, no alignment.
*
* @param pool
* Pointer to indexed memory pool.
* No initialization required.
* @param[out] idx
* Pointer to memory to save allocated index.
* Memory index always positive value.
* @return
* - Pointer to the allocated memory entry .
* - NULL on error. Not enough memory, or invalid arguments.
*/
void *mlx5_ipool_zmalloc(struct mlx5_indexed_pool *pool, uint32_t *idx);
/**
* This function frees indexed memory entry to pool.
* Caller has to make sure that the index is allocated from same pool.
*
* @param pool
* Pointer to indexed memory pool.
* @param idx
* Allocated memory entry index.
*/
void mlx5_ipool_free(struct mlx5_indexed_pool *pool, uint32_t idx);
/**
* This function returns pointer of indexed memory entry from index.
* Caller has to make sure that the index is valid, and allocated
* from same pool.
*
* @param pool
* Pointer to indexed memory pool.
* @param idx
* Allocated memory index.
* @return
* - Pointer to indexed memory entry.
*/
void *mlx5_ipool_get(struct mlx5_indexed_pool *pool, uint32_t idx);
/**
* This function creates indexed memory pool.
* Caller has to configure the configuration accordingly.
*
* @param pool
* Pointer to indexed memory pool.
* @param cfg
* Allocated memory index.
*/
struct mlx5_indexed_pool *
mlx5_ipool_create(struct mlx5_indexed_pool_config *cfg);
/**
* This function releases all resources of pool.
* Caller has to make sure that all indexes and memories allocated
* from this pool not referenced anymore.
*
* @param pool
* Pointer to indexed memory pool.
* @return
* - non-zero value on error.
* - 0 on success.
*/
int mlx5_ipool_destroy(struct mlx5_indexed_pool *pool);
/**
* This function dumps debug info of pool.
*
* @param pool
* Pointer to indexed memory pool.
*/
void mlx5_ipool_dump(struct mlx5_indexed_pool *pool);
/**
* This function flushes all the cache index back to pool trunk.
*
* @param pool
* Pointer to the index memory pool handler.
*
*/
void mlx5_ipool_flush_cache(struct mlx5_indexed_pool *pool);
/**
* This function gets the available entry from pos.
*
* @param pool
* Pointer to the index memory pool handler.
* @param pos
* Pointer to the index position start from.
*
* @return
* - Pointer to the next available entry.
*
*/
void *mlx5_ipool_get_next(struct mlx5_indexed_pool *pool, uint32_t *pos);
/**
* This function allocates new empty Three-level table.
*
* @param type
* The l3t can set as word, double word, quad word or pointer with index.
*
* @return
* - Pointer to the allocated l3t.
* - NULL on error. Not enough memory, or invalid arguments.
*/
struct mlx5_l3t_tbl *mlx5_l3t_create(enum mlx5_l3t_type type);
/**
* This function destroys Three-level table.
*
* @param tbl
* Pointer to the l3t.
*/
void mlx5_l3t_destroy(struct mlx5_l3t_tbl *tbl);
/**
* This function gets the index entry from Three-level table.
*
* @param tbl
* Pointer to the l3t.
* @param idx
* Index to the entry.
* @param data
* Pointer to the memory which saves the entry data.
* When function call returns 0, data contains the entry data get from
* l3t.
* When function call returns -1, data is not modified.
*
* @return
* 0 if success, -1 on error.
*/
int32_t mlx5_l3t_get_entry(struct mlx5_l3t_tbl *tbl, uint32_t idx,
union mlx5_l3t_data *data);
/**
* This function decreases and clear index entry if reference
* counter is 0 from Three-level table.
*
* @param tbl
* Pointer to the l3t.
* @param idx
* Index to the entry.
*
* @return
* The remaining reference count, 0 means entry be cleared, -1 on error.
*/
int32_t mlx5_l3t_clear_entry(struct mlx5_l3t_tbl *tbl, uint32_t idx);
/**
* This function sets the index entry to Three-level table.
* If the entry is already set, the EEXIST errno will be given, and
* the set data will be filled to the data.
*
* @param tbl[in]
* Pointer to the l3t.
* @param idx[in]
* Index to the entry.
* @param data[in/out]
* Pointer to the memory which contains the entry data save to l3t.
* If the entry is already set, the set data will be filled.
*
* @return
* 0 if success, -1 on error.
*/
int32_t mlx5_l3t_set_entry(struct mlx5_l3t_tbl *tbl, uint32_t idx,
union mlx5_l3t_data *data);
static inline void *
mlx5_l3t_get_next(struct mlx5_l3t_tbl *tbl, uint32_t *pos)
{
struct mlx5_l3t_level_tbl *g_tbl, *m_tbl;
uint32_t i, j, k, g_start, m_start, e_start;
uint32_t idx = *pos;
void *e_tbl;
struct mlx5_l3t_entry_word *w_e_tbl;
struct mlx5_l3t_entry_dword *dw_e_tbl;
struct mlx5_l3t_entry_qword *qw_e_tbl;
struct mlx5_l3t_entry_ptr *ptr_e_tbl;
if (!tbl)
return NULL;
g_tbl = tbl->tbl;
if (!g_tbl)
return NULL;
g_start = (idx >> MLX5_L3T_GT_OFFSET) & MLX5_L3T_GT_MASK;
m_start = (idx >> MLX5_L3T_MT_OFFSET) & MLX5_L3T_MT_MASK;
e_start = idx & MLX5_L3T_ET_MASK;
for (i = g_start; i < MLX5_L3T_GT_SIZE; i++) {
m_tbl = g_tbl->tbl[i];
if (!m_tbl) {
/* Jump to new table, reset the sub table start. */
m_start = 0;
e_start = 0;
continue;
}
for (j = m_start; j < MLX5_L3T_MT_SIZE; j++) {
if (!m_tbl->tbl[j]) {
/*
* Jump to new table, reset the sub table
* start.
*/
e_start = 0;
continue;
}
e_tbl = m_tbl->tbl[j];
switch (tbl->type) {
case MLX5_L3T_TYPE_WORD:
w_e_tbl = (struct mlx5_l3t_entry_word *)e_tbl;
for (k = e_start; k < MLX5_L3T_ET_SIZE; k++) {
if (!w_e_tbl->entry[k].data)
continue;
*pos = (i << MLX5_L3T_GT_OFFSET) |
(j << MLX5_L3T_MT_OFFSET) | k;
return (void *)&w_e_tbl->entry[k].data;
}
break;
case MLX5_L3T_TYPE_DWORD:
dw_e_tbl = (struct mlx5_l3t_entry_dword *)e_tbl;
for (k = e_start; k < MLX5_L3T_ET_SIZE; k++) {
if (!dw_e_tbl->entry[k].data)
continue;
*pos = (i << MLX5_L3T_GT_OFFSET) |
(j << MLX5_L3T_MT_OFFSET) | k;
return (void *)&dw_e_tbl->entry[k].data;
}
break;
case MLX5_L3T_TYPE_QWORD:
qw_e_tbl = (struct mlx5_l3t_entry_qword *)e_tbl;
for (k = e_start; k < MLX5_L3T_ET_SIZE; k++) {
if (!qw_e_tbl->entry[k].data)
continue;
*pos = (i << MLX5_L3T_GT_OFFSET) |
(j << MLX5_L3T_MT_OFFSET) | k;
return (void *)&qw_e_tbl->entry[k].data;
}
break;
default:
ptr_e_tbl = (struct mlx5_l3t_entry_ptr *)e_tbl;
for (k = e_start; k < MLX5_L3T_ET_SIZE; k++) {
if (!ptr_e_tbl->entry[k].data)
continue;
*pos = (i << MLX5_L3T_GT_OFFSET) |
(j << MLX5_L3T_MT_OFFSET) | k;
return ptr_e_tbl->entry[k].data;
}
break;
}
}
}
return NULL;
}
/*
* Macros for linked list based on indexed memory.
* Example data structure:
* struct Foo {
* ILIST_ENTRY(uint16_t) next;
* ...
* }
*
*/
#define ILIST_ENTRY(type) \
struct { \
type prev; /* Index of previous element. */ \
type next; /* Index of next element. */ \
}
#define ILIST_INSERT(pool, head, idx, elem, field) \
do { \
typeof(elem) peer; \
MLX5_ASSERT((elem) && (idx)); \
(elem)->field.next = *(head); \
(elem)->field.prev = 0; \
if (*(head)) { \
(peer) = mlx5_ipool_get(pool, *(head)); \
if (peer) \
(peer)->field.prev = (idx); \
} \
*(head) = (idx); \
} while (0)
#define ILIST_REMOVE(pool, head, idx, elem, field) \
do { \
typeof(elem) peer; \
MLX5_ASSERT(elem); \
MLX5_ASSERT(head); \
if ((elem)->field.prev) { \
(peer) = mlx5_ipool_get \
(pool, (elem)->field.prev); \
if (peer) \
(peer)->field.next = (elem)->field.next;\
} \
if ((elem)->field.next) { \
(peer) = mlx5_ipool_get \
(pool, (elem)->field.next); \
if (peer) \
(peer)->field.prev = (elem)->field.prev;\
} \
if (*(head) == (idx)) \
*(head) = (elem)->field.next; \
} while (0)
#define ILIST_FOREACH(pool, head, idx, elem, field) \
for ((idx) = (head), (elem) = \
(idx) ? mlx5_ipool_get(pool, (idx)) : NULL; (elem); \
idx = (elem)->field.next, (elem) = \
(idx) ? mlx5_ipool_get(pool, idx) : NULL)
/* Single index list. */
#define SILIST_ENTRY(type) \
struct { \
type next; /* Index of next element. */ \
}
#define SILIST_INSERT(head, idx, elem, field) \
do { \
MLX5_ASSERT((elem) && (idx)); \
(elem)->field.next = *(head); \
*(head) = (idx); \
} while (0)
#define SILIST_FOREACH(pool, head, idx, elem, field) \
for ((idx) = (head), (elem) = \
(idx) ? mlx5_ipool_get(pool, (idx)) : NULL; (elem); \
idx = (elem)->field.next, (elem) = \
(idx) ? mlx5_ipool_get(pool, idx) : NULL)
#define MLX5_L3T_FOREACH(tbl, idx, entry) \
for (idx = 0, (entry) = mlx5_l3t_get_next((tbl), &idx); \
(entry); \
idx++, (entry) = mlx5_l3t_get_next((tbl), &idx))
#define MLX5_IPOOL_FOREACH(ipool, idx, entry) \
for ((idx) = 0, mlx5_ipool_flush_cache((ipool)), \
(entry) = mlx5_ipool_get_next((ipool), &idx); \
(entry); idx++, (entry) = mlx5_ipool_get_next((ipool), &idx))
#endif /* RTE_PMD_MLX5_UTILS_H_ */