numam-dpdk/drivers/net/mlx5/mlx5.c

2561 lines
72 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 6WIND S.A.
* Copyright 2015 Mellanox Technologies, Ltd
*/
#include <stddef.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <dlfcn.h>
#include <stdint.h>
#include <stdlib.h>
#include <errno.h>
#include <net/if.h>
#include <sys/mman.h>
#include <linux/rtnetlink.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_malloc.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_common.h>
#include <rte_config.h>
#include <rte_eal_memconfig.h>
#include <rte_kvargs.h>
#include <rte_rwlock.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>
#include <rte_alarm.h>
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_glue.h"
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
#include "mlx5_mr.h"
#include "mlx5_flow.h"
net/mlx5: handle Rx CQE compression Mini (compressed) completion queue entries (CQEs) are returned by the NIC when PCI back pressure is detected, in which case the first CQE64 contains common packet information followed by a number of CQE8 providing the rest, followed by a matching number of empty CQE64 entries to be used by software for decompression. Before decompression: 0 1 2 6 7 8 +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | |-------| |---------| |-------| |-------| |-------| |-------| | ..... | | cqe8[0] | | | . | | | | | ..... | | ..... | | cqe8[1] | | | . | | | | | ..... | | ..... | | ....... | | | . | | | | | ..... | | ..... | | cqe8[7] | | | | | | | | ..... | +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ After decompression: 0 1 ... 8 +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | |-------| |-------| |-------| | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | | ..... | +-------+ +-------+ +-------+ This patch does not perform the entire decompression step as it would be really expensive, instead the first CQE64 is consumed and an internal context is maintained to interpret the following CQE8 entries directly. Intermediate empty CQE64 entries are handed back to HW without further processing. Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com> Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Signed-off-by: Olga Shern <olgas@mellanox.com> Signed-off-by: Vasily Philipov <vasilyf@mellanox.com>
2016-06-24 13:17:54 +00:00
/* Device parameter to enable RX completion queue compression. */
#define MLX5_RXQ_CQE_COMP_EN "rxq_cqe_comp_en"
/* Device parameter to enable RX completion entry padding to 128B. */
#define MLX5_RXQ_CQE_PAD_EN "rxq_cqe_pad_en"
/* Device parameter to enable padding Rx packet to cacheline size. */
#define MLX5_RXQ_PKT_PAD_EN "rxq_pkt_pad_en"
/* Device parameter to enable Multi-Packet Rx queue. */
#define MLX5_RX_MPRQ_EN "mprq_en"
/* Device parameter to configure log 2 of the number of strides for MPRQ. */
#define MLX5_RX_MPRQ_LOG_STRIDE_NUM "mprq_log_stride_num"
/* Device parameter to limit the size of memcpy'd packet for MPRQ. */
#define MLX5_RX_MPRQ_MAX_MEMCPY_LEN "mprq_max_memcpy_len"
/* Device parameter to set the minimum number of Rx queues to enable MPRQ. */
#define MLX5_RXQS_MIN_MPRQ "rxqs_min_mprq"
/* Device parameter to configure inline send. Deprecated, ignored.*/
#define MLX5_TXQ_INLINE "txq_inline"
/* Device parameter to limit packet size to inline with ordinary SEND. */
#define MLX5_TXQ_INLINE_MAX "txq_inline_max"
/* Device parameter to configure minimal data size to inline. */
#define MLX5_TXQ_INLINE_MIN "txq_inline_min"
/* Device parameter to limit packet size to inline with Enhanced MPW. */
#define MLX5_TXQ_INLINE_MPW "txq_inline_mpw"
/*
* Device parameter to configure the number of TX queues threshold for
* enabling inline send.
*/
#define MLX5_TXQS_MIN_INLINE "txqs_min_inline"
/*
* Device parameter to configure the number of TX queues threshold for
* enabling vectorized Tx, deprecated, ignored (no vectorized Tx routines).
*/
#define MLX5_TXQS_MAX_VEC "txqs_max_vec"
/* Device parameter to enable multi-packet send WQEs. */
#define MLX5_TXQ_MPW_EN "txq_mpw_en"
/*
* Device parameter to include 2 dsegs in the title WQEBB.
* Deprecated, ignored.
*/
#define MLX5_TXQ_MPW_HDR_DSEG_EN "txq_mpw_hdr_dseg_en"
/*
* Device parameter to limit the size of inlining packet.
* Deprecated, ignored.
*/
#define MLX5_TXQ_MAX_INLINE_LEN "txq_max_inline_len"
/*
* Device parameter to enable hardware Tx vector.
* Deprecated, ignored (no vectorized Tx routines anymore).
*/
#define MLX5_TX_VEC_EN "tx_vec_en"
/* Device parameter to enable hardware Rx vector. */
#define MLX5_RX_VEC_EN "rx_vec_en"
/* Allow L3 VXLAN flow creation. */
#define MLX5_L3_VXLAN_EN "l3_vxlan_en"
/* Activate DV E-Switch flow steering. */
#define MLX5_DV_ESW_EN "dv_esw_en"
/* Activate DV flow steering. */
#define MLX5_DV_FLOW_EN "dv_flow_en"
/* Activate Netlink support in VF mode. */
#define MLX5_VF_NL_EN "vf_nl_en"
/* Enable extending memsegs when creating a MR. */
#define MLX5_MR_EXT_MEMSEG_EN "mr_ext_memseg_en"
/* Select port representors to instantiate. */
#define MLX5_REPRESENTOR "representor"
/* Device parameter to configure the maximum number of dump files per queue. */
#define MLX5_MAX_DUMP_FILES_NUM "max_dump_files_num"
/* Configure timeout of LRO session (in microseconds). */
#define MLX5_LRO_TIMEOUT_USEC "lro_timeout_usec"
#ifndef HAVE_IBV_MLX5_MOD_MPW
#define MLX5DV_CONTEXT_FLAGS_MPW_ALLOWED (1 << 2)
#define MLX5DV_CONTEXT_FLAGS_ENHANCED_MPW (1 << 3)
#endif
#ifndef HAVE_IBV_MLX5_MOD_CQE_128B_COMP
#define MLX5DV_CONTEXT_FLAGS_CQE_128B_COMP (1 << 4)
#endif
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
static const char *MZ_MLX5_PMD_SHARED_DATA = "mlx5_pmd_shared_data";
/* Shared memory between primary and secondary processes. */
struct mlx5_shared_data *mlx5_shared_data;
/* Spinlock for mlx5_shared_data allocation. */
static rte_spinlock_t mlx5_shared_data_lock = RTE_SPINLOCK_INITIALIZER;
/* Process local data for secondary processes. */
static struct mlx5_local_data mlx5_local_data;
/** Driver-specific log messages type. */
int mlx5_logtype;
/** Data associated with devices to spawn. */
struct mlx5_dev_spawn_data {
uint32_t ifindex; /**< Network interface index. */
uint32_t max_port; /**< IB device maximal port index. */
uint32_t ibv_port; /**< IB device physical port index. */
struct mlx5_switch_info info; /**< Switch information. */
struct ibv_device *ibv_dev; /**< Associated IB device. */
struct rte_eth_dev *eth_dev; /**< Associated Ethernet device. */
struct rte_pci_device *pci_dev; /**< Backend PCI device. */
};
static LIST_HEAD(, mlx5_ibv_shared) mlx5_ibv_list = LIST_HEAD_INITIALIZER();
static pthread_mutex_t mlx5_ibv_list_mutex = PTHREAD_MUTEX_INITIALIZER;
net/mlx5: accelerate DV flow counter transactions The DevX interface exposes a new feature to the PMD that can allocate a batch of counters by one FW command. It can improve the flow transaction rate (with count action). Add a new counter pools mechanism to manage HW counters in the PMD. So, for each flow with counter creation the PMD will try to find a free counter in the PMD pools container and only if there is no a free counter, it will allocate a new DevX batch counters. Currently we cannot support batch counter for a group 0 flow, so create a 2 container types, one which allocates counters one by one and one which allocates X counters by the batch feature. The allocated counters objects are never released back to the HW assuming the flows maximum number will be close to the actual value of the flows number. Later, it can be updated, and dynamic release mechanism can be added. The counters are contained in pools, each pool with 512 counters. The pools are contained in counter containers according to the allocation resolution type - single or batch. The cache memory of the counters statistics is saved as raw data per pool. All the raw data memory is allocated for all the container in one memory allocation and is managed by counter_stats_mem_mng structure which registers all the raw memory to the HW. Each pool points to one raw data structure. The query operation is in pool resolution which updates all the pool counter raw data by one operation. Signed-off-by: Matan Azrad <matan@mellanox.com> Acked-by: Shahaf Shuler <shahafs@mellanox.com>
2019-07-16 14:34:53 +00:00
/**
* Initialize the counters management structure.
*
* @param[in] sh
* Pointer to mlx5_ibv_shared object to free
*/
static void
mlx5_flow_counters_mng_init(struct mlx5_ibv_shared *sh)
{
uint8_t i;
TAILQ_INIT(&sh->cmng.flow_counters);
for (i = 0; i < RTE_DIM(sh->cmng.ccont); ++i)
TAILQ_INIT(&sh->cmng.ccont[i].pool_list);
}
/**
* Destroy all the resources allocated for a counter memory management.
*
* @param[in] mng
* Pointer to the memory management structure.
*/
static void
mlx5_flow_destroy_counter_stat_mem_mng(struct mlx5_counter_stats_mem_mng *mng)
{
uint8_t *mem = (uint8_t *)(uintptr_t)mng->raws[0].data;
LIST_REMOVE(mng, next);
claim_zero(mlx5_devx_cmd_destroy(mng->dm));
claim_zero(mlx5_glue->devx_umem_dereg(mng->umem));
rte_free(mem);
}
/**
* Close and release all the resources of the counters management.
*
* @param[in] sh
* Pointer to mlx5_ibv_shared object to free.
*/
static void
mlx5_flow_counters_mng_close(struct mlx5_ibv_shared *sh)
{
struct mlx5_counter_stats_mem_mng *mng;
uint8_t i;
int j;
int retries = 1024;
rte_errno = 0;
while (--retries) {
rte_eal_alarm_cancel(mlx5_flow_query_alarm, sh);
if (rte_errno != EINPROGRESS)
break;
rte_pause();
}
net/mlx5: accelerate DV flow counter transactions The DevX interface exposes a new feature to the PMD that can allocate a batch of counters by one FW command. It can improve the flow transaction rate (with count action). Add a new counter pools mechanism to manage HW counters in the PMD. So, for each flow with counter creation the PMD will try to find a free counter in the PMD pools container and only if there is no a free counter, it will allocate a new DevX batch counters. Currently we cannot support batch counter for a group 0 flow, so create a 2 container types, one which allocates counters one by one and one which allocates X counters by the batch feature. The allocated counters objects are never released back to the HW assuming the flows maximum number will be close to the actual value of the flows number. Later, it can be updated, and dynamic release mechanism can be added. The counters are contained in pools, each pool with 512 counters. The pools are contained in counter containers according to the allocation resolution type - single or batch. The cache memory of the counters statistics is saved as raw data per pool. All the raw data memory is allocated for all the container in one memory allocation and is managed by counter_stats_mem_mng structure which registers all the raw memory to the HW. Each pool points to one raw data structure. The query operation is in pool resolution which updates all the pool counter raw data by one operation. Signed-off-by: Matan Azrad <matan@mellanox.com> Acked-by: Shahaf Shuler <shahafs@mellanox.com>
2019-07-16 14:34:53 +00:00
for (i = 0; i < RTE_DIM(sh->cmng.ccont); ++i) {
struct mlx5_flow_counter_pool *pool;
uint32_t batch = !!(i % 2);
if (!sh->cmng.ccont[i].pools)
continue;
pool = TAILQ_FIRST(&sh->cmng.ccont[i].pool_list);
while (pool) {
if (batch) {
if (pool->min_dcs)
claim_zero
(mlx5_devx_cmd_destroy(pool->min_dcs));
}
for (j = 0; j < MLX5_COUNTERS_PER_POOL; ++j) {
if (pool->counters_raw[j].action)
claim_zero
(mlx5_glue->destroy_flow_action
(pool->counters_raw[j].action));
if (!batch && pool->counters_raw[j].dcs)
claim_zero(mlx5_devx_cmd_destroy
(pool->counters_raw[j].dcs));
}
TAILQ_REMOVE(&sh->cmng.ccont[i].pool_list, pool,
next);
rte_free(pool);
pool = TAILQ_FIRST(&sh->cmng.ccont[i].pool_list);
}
rte_free(sh->cmng.ccont[i].pools);
}
mng = LIST_FIRST(&sh->cmng.mem_mngs);
while (mng) {
mlx5_flow_destroy_counter_stat_mem_mng(mng);
mng = LIST_FIRST(&sh->cmng.mem_mngs);
}
memset(&sh->cmng, 0, sizeof(sh->cmng));
}
/**
* Allocate shared IB device context. If there is multiport device the
* master and representors will share this context, if there is single
* port dedicated IB device, the context will be used by only given
* port due to unification.
*
* Routine first searches the context for the specified IB device name,
* if found the shared context assumed and reference counter is incremented.
* If no context found the new one is created and initialized with specified
* IB device context and parameters.
*
* @param[in] spawn
* Pointer to the IB device attributes (name, port, etc).
*
* @return
* Pointer to mlx5_ibv_shared object on success,
* otherwise NULL and rte_errno is set.
*/
static struct mlx5_ibv_shared *
mlx5_alloc_shared_ibctx(const struct mlx5_dev_spawn_data *spawn)
{
struct mlx5_ibv_shared *sh;
int err = 0;
uint32_t i;
assert(spawn);
/* Secondary process should not create the shared context. */
assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
pthread_mutex_lock(&mlx5_ibv_list_mutex);
/* Search for IB context by device name. */
LIST_FOREACH(sh, &mlx5_ibv_list, next) {
if (!strcmp(sh->ibdev_name, spawn->ibv_dev->name)) {
sh->refcnt++;
goto exit;
}
}
/* No device found, we have to create new shared context. */
assert(spawn->max_port);
sh = rte_zmalloc("ethdev shared ib context",
sizeof(struct mlx5_ibv_shared) +
spawn->max_port *
sizeof(struct mlx5_ibv_shared_port),
RTE_CACHE_LINE_SIZE);
if (!sh) {
DRV_LOG(ERR, "shared context allocation failure");
rte_errno = ENOMEM;
goto exit;
}
/* Try to open IB device with DV first, then usual Verbs. */
errno = 0;
sh->ctx = mlx5_glue->dv_open_device(spawn->ibv_dev);
if (sh->ctx) {
sh->devx = 1;
DRV_LOG(DEBUG, "DevX is supported");
} else {
sh->ctx = mlx5_glue->open_device(spawn->ibv_dev);
if (!sh->ctx) {
err = errno ? errno : ENODEV;
goto error;
}
DRV_LOG(DEBUG, "DevX is NOT supported");
}
err = mlx5_glue->query_device_ex(sh->ctx, NULL, &sh->device_attr);
if (err) {
DRV_LOG(DEBUG, "ibv_query_device_ex() failed");
goto error;
}
sh->refcnt = 1;
sh->max_port = spawn->max_port;
strncpy(sh->ibdev_name, sh->ctx->device->name,
sizeof(sh->ibdev_name));
strncpy(sh->ibdev_path, sh->ctx->device->ibdev_path,
sizeof(sh->ibdev_path));
sh->pci_dev = spawn->pci_dev;
pthread_mutex_init(&sh->intr_mutex, NULL);
/*
* Setting port_id to max unallowed value means
* there is no interrupt subhandler installed for
* the given port index i.
*/
for (i = 0; i < sh->max_port; i++)
sh->port[i].ih_port_id = RTE_MAX_ETHPORTS;
sh->pd = mlx5_glue->alloc_pd(sh->ctx);
if (sh->pd == NULL) {
DRV_LOG(ERR, "PD allocation failure");
err = ENOMEM;
goto error;
}
/*
* Once the device is added to the list of memory event
* callback, its global MR cache table cannot be expanded
* on the fly because of deadlock. If it overflows, lookup
* should be done by searching MR list linearly, which is slow.
*
* At this point the device is not added to the memory
* event list yet, context is just being created.
*/
err = mlx5_mr_btree_init(&sh->mr.cache,
MLX5_MR_BTREE_CACHE_N * 2,
sh->pci_dev->device.numa_node);
if (err) {
err = rte_errno;
goto error;
}
net/mlx5: accelerate DV flow counter transactions The DevX interface exposes a new feature to the PMD that can allocate a batch of counters by one FW command. It can improve the flow transaction rate (with count action). Add a new counter pools mechanism to manage HW counters in the PMD. So, for each flow with counter creation the PMD will try to find a free counter in the PMD pools container and only if there is no a free counter, it will allocate a new DevX batch counters. Currently we cannot support batch counter for a group 0 flow, so create a 2 container types, one which allocates counters one by one and one which allocates X counters by the batch feature. The allocated counters objects are never released back to the HW assuming the flows maximum number will be close to the actual value of the flows number. Later, it can be updated, and dynamic release mechanism can be added. The counters are contained in pools, each pool with 512 counters. The pools are contained in counter containers according to the allocation resolution type - single or batch. The cache memory of the counters statistics is saved as raw data per pool. All the raw data memory is allocated for all the container in one memory allocation and is managed by counter_stats_mem_mng structure which registers all the raw memory to the HW. Each pool points to one raw data structure. The query operation is in pool resolution which updates all the pool counter raw data by one operation. Signed-off-by: Matan Azrad <matan@mellanox.com> Acked-by: Shahaf Shuler <shahafs@mellanox.com>
2019-07-16 14:34:53 +00:00
mlx5_flow_counters_mng_init(sh);
LIST_INSERT_HEAD(&mlx5_ibv_list, sh, next);
exit:
pthread_mutex_unlock(&mlx5_ibv_list_mutex);
return sh;
error:
pthread_mutex_unlock(&mlx5_ibv_list_mutex);
assert(sh);
if (sh->pd)
claim_zero(mlx5_glue->dealloc_pd(sh->pd));
if (sh->ctx)
claim_zero(mlx5_glue->close_device(sh->ctx));
rte_free(sh);
assert(err > 0);
rte_errno = err;
return NULL;
}
/**
* Free shared IB device context. Decrement counter and if zero free
* all allocated resources and close handles.
*
* @param[in] sh
* Pointer to mlx5_ibv_shared object to free
*/
static void
mlx5_free_shared_ibctx(struct mlx5_ibv_shared *sh)
{
pthread_mutex_lock(&mlx5_ibv_list_mutex);
#ifndef NDEBUG
/* Check the object presence in the list. */
struct mlx5_ibv_shared *lctx;
LIST_FOREACH(lctx, &mlx5_ibv_list, next)
if (lctx == sh)
break;
assert(lctx);
if (lctx != sh) {
DRV_LOG(ERR, "Freeing non-existing shared IB context");
goto exit;
}
#endif
assert(sh);
assert(sh->refcnt);
/* Secondary process should not free the shared context. */
assert(rte_eal_process_type() == RTE_PROC_PRIMARY);
if (--sh->refcnt)
goto exit;
/* Release created Memory Regions. */
mlx5_mr_release(sh);
LIST_REMOVE(sh, next);
/*
* Ensure there is no async event handler installed.
* Only primary process handles async device events.
**/
net/mlx5: accelerate DV flow counter transactions The DevX interface exposes a new feature to the PMD that can allocate a batch of counters by one FW command. It can improve the flow transaction rate (with count action). Add a new counter pools mechanism to manage HW counters in the PMD. So, for each flow with counter creation the PMD will try to find a free counter in the PMD pools container and only if there is no a free counter, it will allocate a new DevX batch counters. Currently we cannot support batch counter for a group 0 flow, so create a 2 container types, one which allocates counters one by one and one which allocates X counters by the batch feature. The allocated counters objects are never released back to the HW assuming the flows maximum number will be close to the actual value of the flows number. Later, it can be updated, and dynamic release mechanism can be added. The counters are contained in pools, each pool with 512 counters. The pools are contained in counter containers according to the allocation resolution type - single or batch. The cache memory of the counters statistics is saved as raw data per pool. All the raw data memory is allocated for all the container in one memory allocation and is managed by counter_stats_mem_mng structure which registers all the raw memory to the HW. Each pool points to one raw data structure. The query operation is in pool resolution which updates all the pool counter raw data by one operation. Signed-off-by: Matan Azrad <matan@mellanox.com> Acked-by: Shahaf Shuler <shahafs@mellanox.com>
2019-07-16 14:34:53 +00:00
mlx5_flow_counters_mng_close(sh);
assert(!sh->intr_cnt);
if (sh->intr_cnt)
mlx5_intr_callback_unregister
(&sh->intr_handle, mlx5_dev_interrupt_handler, sh);
pthread_mutex_destroy(&sh->intr_mutex);
if (sh->pd)
claim_zero(mlx5_glue->dealloc_pd(sh->pd));
if (sh->ctx)
claim_zero(mlx5_glue->close_device(sh->ctx));
rte_free(sh);
exit:
pthread_mutex_unlock(&mlx5_ibv_list_mutex);
}
/**
* Initialize DR related data within private structure.
* Routine checks the reference counter and does actual
* resources creation/initialization only if counter is zero.
*
* @param[in] priv
* Pointer to the private device data structure.
*
* @return
* Zero on success, positive error code otherwise.
*/
static int
mlx5_alloc_shared_dr(struct mlx5_priv *priv)
{
#ifdef HAVE_MLX5DV_DR
struct mlx5_ibv_shared *sh = priv->sh;
int err = 0;
void *domain;
assert(sh);
if (sh->dv_refcnt) {
/* Shared DV/DR structures is already initialized. */
sh->dv_refcnt++;
priv->dr_shared = 1;
return 0;
}
/* Reference counter is zero, we should initialize structures. */
domain = mlx5_glue->dr_create_domain(sh->ctx,
MLX5DV_DR_DOMAIN_TYPE_NIC_RX);
if (!domain) {
DRV_LOG(ERR, "ingress mlx5dv_dr_create_domain failed");
err = errno;
goto error;
}
sh->rx_domain = domain;
domain = mlx5_glue->dr_create_domain(sh->ctx,
MLX5DV_DR_DOMAIN_TYPE_NIC_TX);
if (!domain) {
DRV_LOG(ERR, "egress mlx5dv_dr_create_domain failed");
err = errno;
goto error;
}
pthread_mutex_init(&sh->dv_mutex, NULL);
sh->tx_domain = domain;
#ifdef HAVE_MLX5DV_DR_ESWITCH
if (priv->config.dv_esw_en) {
domain = mlx5_glue->dr_create_domain
(sh->ctx, MLX5DV_DR_DOMAIN_TYPE_FDB);
if (!domain) {
DRV_LOG(ERR, "FDB mlx5dv_dr_create_domain failed");
err = errno;
goto error;
}
sh->fdb_domain = domain;
sh->esw_drop_action = mlx5_glue->dr_create_flow_action_drop();
}
#endif
sh->dv_refcnt++;
priv->dr_shared = 1;
return 0;
error:
/* Rollback the created objects. */
if (sh->rx_domain) {
mlx5_glue->dr_destroy_domain(sh->rx_domain);
sh->rx_domain = NULL;
}
if (sh->tx_domain) {
mlx5_glue->dr_destroy_domain(sh->tx_domain);
sh->tx_domain = NULL;
}
if (sh->fdb_domain) {
mlx5_glue->dr_destroy_domain(sh->fdb_domain);
sh->fdb_domain = NULL;
}
if (sh->esw_drop_action) {
mlx5_glue->destroy_flow_action(sh->esw_drop_action);
sh->esw_drop_action = NULL;
}
return err;
#else
(void)priv;
return 0;
#endif
}
/**
* Destroy DR related data within private structure.
*
* @param[in] priv
* Pointer to the private device data structure.
*/
static void
mlx5_free_shared_dr(struct mlx5_priv *priv)
{
#ifdef HAVE_MLX5DV_DR
struct mlx5_ibv_shared *sh;
if (!priv->dr_shared)
return;
priv->dr_shared = 0;
sh = priv->sh;
assert(sh);
assert(sh->dv_refcnt);
if (sh->dv_refcnt && --sh->dv_refcnt)
return;
if (sh->rx_domain) {
mlx5_glue->dr_destroy_domain(sh->rx_domain);
sh->rx_domain = NULL;
}
if (sh->tx_domain) {
mlx5_glue->dr_destroy_domain(sh->tx_domain);
sh->tx_domain = NULL;
}
#ifdef HAVE_MLX5DV_DR_ESWITCH
if (sh->fdb_domain) {
mlx5_glue->dr_destroy_domain(sh->fdb_domain);
sh->fdb_domain = NULL;
}
if (sh->esw_drop_action) {
mlx5_glue->destroy_flow_action(sh->esw_drop_action);
sh->esw_drop_action = NULL;
}
#endif
pthread_mutex_destroy(&sh->dv_mutex);
#else
(void)priv;
#endif
}
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
/**
* Initialize shared data between primary and secondary process.
*
* A memzone is reserved by primary process and secondary processes attach to
* the memzone.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
*/
static int
mlx5_init_shared_data(void)
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
{
const struct rte_memzone *mz;
int ret = 0;
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
rte_spinlock_lock(&mlx5_shared_data_lock);
if (mlx5_shared_data == NULL) {
if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
/* Allocate shared memory. */
mz = rte_memzone_reserve(MZ_MLX5_PMD_SHARED_DATA,
sizeof(*mlx5_shared_data),
SOCKET_ID_ANY, 0);
if (mz == NULL) {
DRV_LOG(ERR,
"Cannot allocate mlx5 shared data\n");
ret = -rte_errno;
goto error;
}
mlx5_shared_data = mz->addr;
memset(mlx5_shared_data, 0, sizeof(*mlx5_shared_data));
rte_spinlock_init(&mlx5_shared_data->lock);
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
} else {
/* Lookup allocated shared memory. */
mz = rte_memzone_lookup(MZ_MLX5_PMD_SHARED_DATA);
if (mz == NULL) {
DRV_LOG(ERR,
"Cannot attach mlx5 shared data\n");
ret = -rte_errno;
goto error;
}
mlx5_shared_data = mz->addr;
memset(&mlx5_local_data, 0, sizeof(mlx5_local_data));
net/mlx5: add new memory region support This is the new design of Memory Region (MR) for mlx PMD, in order to: - Accommodate the new memory hotplug model. - Support non-contiguous Mempool. There are multiple layers for MR search. L0 is to look up the last-hit entry which is pointed by mr_ctrl->mru (Most Recently Used). If L0 misses, L1 is to look up the address in a fixed-sized array by linear search. L0/L1 is in an inline function - mlx5_mr_lookup_cache(). If L1 misses, the bottom-half function is called to look up the address from the bigger local cache of the queue. This is L2 - mlx5_mr_addr2mr_bh() and it is not an inline function. Data structure for L2 is the Binary Tree. If L2 misses, the search falls into the slowest path which takes locks in order to access global device cache (priv->mr.cache) which is also a B-tree and caches the original MR list (priv->mr.mr_list) of the device. Unless the global cache is overflowed, it is all-inclusive of the MR list. This is L3 - mlx5_mr_lookup_dev(). The size of the L3 cache table is limited and can't be expanded on the fly due to deadlock. Refer to the comments in the code for the details - mr_lookup_dev(). If L3 is overflowed, the list will have to be searched directly bypassing the cache although it is slower. If L3 misses, a new MR for the address should be created - mlx5_mr_create(). When it creates a new MR, it tries to register adjacent memsegs as much as possible which are virtually contiguous around the address. This must take two locks - memory_hotplug_lock and priv->mr.rwlock. Due to memory_hotplug_lock, there can't be any allocation/free of memory inside. In the free callback of the memory hotplug event, freed space is searched from the MR list and corresponding bits are cleared from the bitmap of MRs. This can fragment a MR and the MR will have multiple search entries in the caches. Once there's a change by the event, the global cache must be rebuilt and all the per-queue caches will be flushed as well. If memory is frequently freed in run-time, that may cause jitter on dataplane processing in the worst case by incurring MR cache flush and rebuild. But, it would be the least probable scenario. To guarantee the most optimal performance, it is highly recommended to use an EAL option - '--socket-mem'. Then, the reserved memory will be pinned and won't be freed dynamically. And it is also recommended to configure per-lcore cache of Mempool. Even though there're many MRs for a device or MRs are highly fragmented, the cache of Mempool will be much helpful to reduce misses on per-queue caches anyway. '--legacy-mem' is also supported. Signed-off-by: Yongseok Koh <yskoh@mellanox.com>
2018-05-09 11:09:04 +00:00
}
}
error:
rte_spinlock_unlock(&mlx5_shared_data_lock);
return ret;
}
/**
* Retrieve integer value from environment variable.
*
* @param[in] name
* Environment variable name.
*
* @return
* Integer value, 0 if the variable is not set.
*/
int
mlx5_getenv_int(const char *name)
{
const char *val = getenv(name);
if (val == NULL)
return 0;
return atoi(val);
}
/**
* Verbs callback to allocate a memory. This function should allocate the space
* according to the size provided residing inside a huge page.
* Please note that all allocation must respect the alignment from libmlx5
* (i.e. currently sysconf(_SC_PAGESIZE)).
*
* @param[in] size
* The size in bytes of the memory to allocate.
* @param[in] data
* A pointer to the callback data.
*
* @return
* Allocated buffer, NULL otherwise and rte_errno is set.
*/
static void *
mlx5_alloc_verbs_buf(size_t size, void *data)
{
struct mlx5_priv *priv = data;
void *ret;
size_t alignment = sysconf(_SC_PAGESIZE);
unsigned int socket = SOCKET_ID_ANY;
if (priv->verbs_alloc_ctx.type == MLX5_VERBS_ALLOC_TYPE_TX_QUEUE) {
const struct mlx5_txq_ctrl *ctrl = priv->verbs_alloc_ctx.obj;
socket = ctrl->socket;
} else if (priv->verbs_alloc_ctx.type ==
MLX5_VERBS_ALLOC_TYPE_RX_QUEUE) {
const struct mlx5_rxq_ctrl *ctrl = priv->verbs_alloc_ctx.obj;
socket = ctrl->socket;
}
assert(data != NULL);
ret = rte_malloc_socket(__func__, size, alignment, socket);
if (!ret && size)
rte_errno = ENOMEM;
return ret;
}
/**
* Verbs callback to free a memory.
*
* @param[in] ptr
* A pointer to the memory to free.
* @param[in] data
* A pointer to the callback data.
*/
static void
mlx5_free_verbs_buf(void *ptr, void *data __rte_unused)
{
assert(data != NULL);
rte_free(ptr);
}
/**
* Initialize process private data structure.
*
* @param dev
* Pointer to Ethernet device structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
int
mlx5_proc_priv_init(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_proc_priv *ppriv;
size_t ppriv_size;
/*
* UAR register table follows the process private structure. BlueFlame
* registers for Tx queues are stored in the table.
*/
ppriv_size =
sizeof(struct mlx5_proc_priv) + priv->txqs_n * sizeof(void *);
ppriv = rte_malloc_socket("mlx5_proc_priv", ppriv_size,
RTE_CACHE_LINE_SIZE, dev->device->numa_node);
if (!ppriv) {
rte_errno = ENOMEM;
return -rte_errno;
}
ppriv->uar_table_sz = ppriv_size;
dev->process_private = ppriv;
return 0;
}
/**
* Un-initialize process private data structure.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx5_proc_priv_uninit(struct rte_eth_dev *dev)
{
if (!dev->process_private)
return;
rte_free(dev->process_private);
dev->process_private = NULL;
}
/**
* DPDK callback to close the device.
*
* Destroy all queues and objects, free memory.
*
* @param dev
* Pointer to Ethernet device structure.
*/
static void
mlx5_dev_close(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
unsigned int i;
int ret;
DRV_LOG(DEBUG, "port %u closing device \"%s\"",
dev->data->port_id,
((priv->sh->ctx != NULL) ? priv->sh->ctx->device->name : ""));
mlx5: refactor Rx code for the new verbs RSS API The new Verbs RSS API is lower-level than the previous one and much more flexible but requires RX queues to use Work Queues (WQs) internally instead of Queue Pairs (QPs), which are grouped in an indirection table used by a new kind of hash RX QPs. Hash RX QPs and the indirection table together replace the parent RSS QP while WQs are mostly similar to child QPs. RSS hash key is not configurable yet. Summary of changes: - Individual DPDK RX queues do not store flow properties anymore, this info is now part of the hash RX queues. - All functions affecting the parent queue when RSS is enabled or the basic queues otherwise are modified to affect hash RX queues instead. - Hash RX queues are also used when a single DPDK RX queue is configured (no RSS) to remove that special case. - Hash RX queues and indirection table are created/destroyed when device is started/stopped in addition to create/destroy flows. - Contrary to QPs, WQs are moved to the "ready" state before posting RX buffers, otherwise they are ignored. - Resource domain information is added to WQs for better performance. - CQs are not resized anymore when switching between non-SG and SG modes as it does not work correctly with WQs. Use the largest possible size instead, since CQ size does not have to be the same as the number of elements in the RX queue. This also applies to the maximum number of outstanding WRs in a WQ (max_recv_wr). Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Signed-off-by: Olga Shern <olgas@mellanox.com> Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com> Signed-off-by: Or Ami <ora@mellanox.com> Signed-off-by: Yaacov Hazan <yaacovh@mellanox.com>
2015-10-30 18:55:06 +00:00
/* In case mlx5_dev_stop() has not been called. */
mlx5_dev_interrupt_handler_uninstall(dev);
mlx5_traffic_disable(dev);
mlx5_flow_flush(dev, NULL);
/* Prevent crashes when queues are still in use. */
dev->rx_pkt_burst = removed_rx_burst;
dev->tx_pkt_burst = removed_tx_burst;
rte_wmb();
/* Disable datapath on secondary process. */
mlx5_mp_req_stop_rxtx(dev);
if (priv->rxqs != NULL) {
/* XXX race condition if mlx5_rx_burst() is still running. */
usleep(1000);
for (i = 0; (i != priv->rxqs_n); ++i)
mlx5_rxq_release(dev, i);
priv->rxqs_n = 0;
priv->rxqs = NULL;
}
if (priv->txqs != NULL) {
/* XXX race condition if mlx5_tx_burst() is still running. */
usleep(1000);
for (i = 0; (i != priv->txqs_n); ++i)
mlx5_txq_release(dev, i);
priv->txqs_n = 0;
priv->txqs = NULL;
}
mlx5_proc_priv_uninit(dev);
mlx5_mprq_free_mp(dev);
/* Remove from memory callback device list. */
rte_rwlock_write_lock(&mlx5_shared_data->mem_event_rwlock);
assert(priv->sh);
LIST_REMOVE(priv->sh, mem_event_cb);
rte_rwlock_write_unlock(&mlx5_shared_data->mem_event_rwlock);
mlx5_free_shared_dr(priv);
if (priv->rss_conf.rss_key != NULL)
rte_free(priv->rss_conf.rss_key);
if (priv->reta_idx != NULL)
rte_free(priv->reta_idx);
if (priv->config.vf)
mlx5_nl_mac_addr_flush(dev);
if (priv->nl_socket_route >= 0)
close(priv->nl_socket_route);
if (priv->nl_socket_rdma >= 0)
close(priv->nl_socket_rdma);
if (priv->sh) {
/*
* Free the shared context in last turn, because the cleanup
* routines above may use some shared fields, like
* mlx5_nl_mac_addr_flush() uses ibdev_path for retrieveing
* ifindex if Netlink fails.
*/
mlx5_free_shared_ibctx(priv->sh);
priv->sh = NULL;
}
ret = mlx5_hrxq_ibv_verify(dev);
if (ret)
DRV_LOG(WARNING, "port %u some hash Rx queue still remain",
dev->data->port_id);
ret = mlx5_ind_table_ibv_verify(dev);
if (ret)
DRV_LOG(WARNING, "port %u some indirection table still remain",
dev->data->port_id);
ret = mlx5_rxq_ibv_verify(dev);
if (ret)
DRV_LOG(WARNING, "port %u some Verbs Rx queue still remain",
dev->data->port_id);
ret = mlx5_rxq_verify(dev);
if (ret)
DRV_LOG(WARNING, "port %u some Rx queues still remain",
dev->data->port_id);
ret = mlx5_txq_ibv_verify(dev);
if (ret)
DRV_LOG(WARNING, "port %u some Verbs Tx queue still remain",
dev->data->port_id);
ret = mlx5_txq_verify(dev);
if (ret)
DRV_LOG(WARNING, "port %u some Tx queues still remain",
dev->data->port_id);
ret = mlx5_flow_verify(dev);
if (ret)
DRV_LOG(WARNING, "port %u some flows still remain",
dev->data->port_id);
if (priv->domain_id != RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
unsigned int c = 0;
uint16_t port_id;
RTE_ETH_FOREACH_DEV_OF(port_id, dev->device) {
struct mlx5_priv *opriv =
rte_eth_devices[port_id].data->dev_private;
if (!opriv ||
opriv->domain_id != priv->domain_id ||
&rte_eth_devices[port_id] == dev)
continue;
++c;
}
if (!c)
claim_zero(rte_eth_switch_domain_free(priv->domain_id));
}
memset(priv, 0, sizeof(*priv));
priv->domain_id = RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID;
/*
* Reset mac_addrs to NULL such that it is not freed as part of
* rte_eth_dev_release_port(). mac_addrs is part of dev_private so
* it is freed when dev_private is freed.
*/
dev->data->mac_addrs = NULL;
}
const struct eth_dev_ops mlx5_dev_ops = {
.dev_configure = mlx5_dev_configure,
.dev_start = mlx5_dev_start,
.dev_stop = mlx5_dev_stop,
.dev_set_link_down = mlx5_set_link_down,
.dev_set_link_up = mlx5_set_link_up,
.dev_close = mlx5_dev_close,
.promiscuous_enable = mlx5_promiscuous_enable,
.promiscuous_disable = mlx5_promiscuous_disable,
.allmulticast_enable = mlx5_allmulticast_enable,
.allmulticast_disable = mlx5_allmulticast_disable,
.link_update = mlx5_link_update,
.stats_get = mlx5_stats_get,
.stats_reset = mlx5_stats_reset,
.xstats_get = mlx5_xstats_get,
.xstats_reset = mlx5_xstats_reset,
.xstats_get_names = mlx5_xstats_get_names,
.fw_version_get = mlx5_fw_version_get,
.dev_infos_get = mlx5_dev_infos_get,
.read_clock = mlx5_read_clock,
.dev_supported_ptypes_get = mlx5_dev_supported_ptypes_get,
.vlan_filter_set = mlx5_vlan_filter_set,
.rx_queue_setup = mlx5_rx_queue_setup,
.tx_queue_setup = mlx5_tx_queue_setup,
.rx_queue_release = mlx5_rx_queue_release,
.tx_queue_release = mlx5_tx_queue_release,
.flow_ctrl_get = mlx5_dev_get_flow_ctrl,
.flow_ctrl_set = mlx5_dev_set_flow_ctrl,
.mac_addr_remove = mlx5_mac_addr_remove,
.mac_addr_add = mlx5_mac_addr_add,
.mac_addr_set = mlx5_mac_addr_set,
.set_mc_addr_list = mlx5_set_mc_addr_list,
.mtu_set = mlx5_dev_set_mtu,
.vlan_strip_queue_set = mlx5_vlan_strip_queue_set,
.vlan_offload_set = mlx5_vlan_offload_set,
.reta_update = mlx5_dev_rss_reta_update,
.reta_query = mlx5_dev_rss_reta_query,
.rss_hash_update = mlx5_rss_hash_update,
.rss_hash_conf_get = mlx5_rss_hash_conf_get,
.filter_ctrl = mlx5_dev_filter_ctrl,
.rx_descriptor_status = mlx5_rx_descriptor_status,
.tx_descriptor_status = mlx5_tx_descriptor_status,
.rx_queue_count = mlx5_rx_queue_count,
.rx_queue_intr_enable = mlx5_rx_intr_enable,
.rx_queue_intr_disable = mlx5_rx_intr_disable,
.is_removed = mlx5_is_removed,
};
/* Available operations from secondary process. */
static const struct eth_dev_ops mlx5_dev_sec_ops = {
.stats_get = mlx5_stats_get,
.stats_reset = mlx5_stats_reset,
.xstats_get = mlx5_xstats_get,
.xstats_reset = mlx5_xstats_reset,
.xstats_get_names = mlx5_xstats_get_names,
.fw_version_get = mlx5_fw_version_get,
.dev_infos_get = mlx5_dev_infos_get,
.rx_descriptor_status = mlx5_rx_descriptor_status,
.tx_descriptor_status = mlx5_tx_descriptor_status,
};
/* Available operations in flow isolated mode. */
const struct eth_dev_ops mlx5_dev_ops_isolate = {
.dev_configure = mlx5_dev_configure,
.dev_start = mlx5_dev_start,
.dev_stop = mlx5_dev_stop,
.dev_set_link_down = mlx5_set_link_down,
.dev_set_link_up = mlx5_set_link_up,
.dev_close = mlx5_dev_close,
.promiscuous_enable = mlx5_promiscuous_enable,
.promiscuous_disable = mlx5_promiscuous_disable,
.allmulticast_enable = mlx5_allmulticast_enable,
.allmulticast_disable = mlx5_allmulticast_disable,
.link_update = mlx5_link_update,
.stats_get = mlx5_stats_get,
.stats_reset = mlx5_stats_reset,
.xstats_get = mlx5_xstats_get,
.xstats_reset = mlx5_xstats_reset,
.xstats_get_names = mlx5_xstats_get_names,
.fw_version_get = mlx5_fw_version_get,
.dev_infos_get = mlx5_dev_infos_get,
.dev_supported_ptypes_get = mlx5_dev_supported_ptypes_get,
.vlan_filter_set = mlx5_vlan_filter_set,
.rx_queue_setup = mlx5_rx_queue_setup,
.tx_queue_setup = mlx5_tx_queue_setup,
.rx_queue_release = mlx5_rx_queue_release,
.tx_queue_release = mlx5_tx_queue_release,
.flow_ctrl_get = mlx5_dev_get_flow_ctrl,
.flow_ctrl_set = mlx5_dev_set_flow_ctrl,
.mac_addr_remove = mlx5_mac_addr_remove,
.mac_addr_add = mlx5_mac_addr_add,
.mac_addr_set = mlx5_mac_addr_set,
.set_mc_addr_list = mlx5_set_mc_addr_list,
.mtu_set = mlx5_dev_set_mtu,
.vlan_strip_queue_set = mlx5_vlan_strip_queue_set,
.vlan_offload_set = mlx5_vlan_offload_set,
.filter_ctrl = mlx5_dev_filter_ctrl,
.rx_descriptor_status = mlx5_rx_descriptor_status,
.tx_descriptor_status = mlx5_tx_descriptor_status,
.rx_queue_intr_enable = mlx5_rx_intr_enable,
.rx_queue_intr_disable = mlx5_rx_intr_disable,
.is_removed = mlx5_is_removed,
};
/**
* Verify and store value for device argument.
*
* @param[in] key
* Key argument to verify.
* @param[in] val
* Value associated with key.
* @param opaque
* User data.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_args_check(const char *key, const char *val, void *opaque)
{
struct mlx5_dev_config *config = opaque;
net/mlx5: handle Rx CQE compression Mini (compressed) completion queue entries (CQEs) are returned by the NIC when PCI back pressure is detected, in which case the first CQE64 contains common packet information followed by a number of CQE8 providing the rest, followed by a matching number of empty CQE64 entries to be used by software for decompression. Before decompression: 0 1 2 6 7 8 +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | |-------| |---------| |-------| |-------| |-------| |-------| | ..... | | cqe8[0] | | | . | | | | | ..... | | ..... | | cqe8[1] | | | . | | | | | ..... | | ..... | | ....... | | | . | | | | | ..... | | ..... | | cqe8[7] | | | | | | | | ..... | +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ After decompression: 0 1 ... 8 +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | |-------| |-------| |-------| | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | | ..... | +-------+ +-------+ +-------+ This patch does not perform the entire decompression step as it would be really expensive, instead the first CQE64 is consumed and an internal context is maintained to interpret the following CQE8 entries directly. Intermediate empty CQE64 entries are handed back to HW without further processing. Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com> Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Signed-off-by: Olga Shern <olgas@mellanox.com> Signed-off-by: Vasily Philipov <vasilyf@mellanox.com>
2016-06-24 13:17:54 +00:00
unsigned long tmp;
/* No-op, port representors are processed in mlx5_dev_spawn(). */
if (!strcmp(MLX5_REPRESENTOR, key))
return 0;
net/mlx5: handle Rx CQE compression Mini (compressed) completion queue entries (CQEs) are returned by the NIC when PCI back pressure is detected, in which case the first CQE64 contains common packet information followed by a number of CQE8 providing the rest, followed by a matching number of empty CQE64 entries to be used by software for decompression. Before decompression: 0 1 2 6 7 8 +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | |-------| |---------| |-------| |-------| |-------| |-------| | ..... | | cqe8[0] | | | . | | | | | ..... | | ..... | | cqe8[1] | | | . | | | | | ..... | | ..... | | ....... | | | . | | | | | ..... | | ..... | | cqe8[7] | | | | | | | | ..... | +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ After decompression: 0 1 ... 8 +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | |-------| |-------| |-------| | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | | ..... | +-------+ +-------+ +-------+ This patch does not perform the entire decompression step as it would be really expensive, instead the first CQE64 is consumed and an internal context is maintained to interpret the following CQE8 entries directly. Intermediate empty CQE64 entries are handed back to HW without further processing. Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com> Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Signed-off-by: Olga Shern <olgas@mellanox.com> Signed-off-by: Vasily Philipov <vasilyf@mellanox.com>
2016-06-24 13:17:54 +00:00
errno = 0;
tmp = strtoul(val, NULL, 0);
if (errno) {
rte_errno = errno;
DRV_LOG(WARNING, "%s: \"%s\" is not a valid integer", key, val);
return -rte_errno;
net/mlx5: handle Rx CQE compression Mini (compressed) completion queue entries (CQEs) are returned by the NIC when PCI back pressure is detected, in which case the first CQE64 contains common packet information followed by a number of CQE8 providing the rest, followed by a matching number of empty CQE64 entries to be used by software for decompression. Before decompression: 0 1 2 6 7 8 +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | |-------| |---------| |-------| |-------| |-------| |-------| | ..... | | cqe8[0] | | | . | | | | | ..... | | ..... | | cqe8[1] | | | . | | | | | ..... | | ..... | | ....... | | | . | | | | | ..... | | ..... | | cqe8[7] | | | | | | | | ..... | +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ After decompression: 0 1 ... 8 +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | |-------| |-------| |-------| | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | | ..... | +-------+ +-------+ +-------+ This patch does not perform the entire decompression step as it would be really expensive, instead the first CQE64 is consumed and an internal context is maintained to interpret the following CQE8 entries directly. Intermediate empty CQE64 entries are handed back to HW without further processing. Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com> Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Signed-off-by: Olga Shern <olgas@mellanox.com> Signed-off-by: Vasily Philipov <vasilyf@mellanox.com>
2016-06-24 13:17:54 +00:00
}
if (strcmp(MLX5_RXQ_CQE_COMP_EN, key) == 0) {
config->cqe_comp = !!tmp;
} else if (strcmp(MLX5_RXQ_CQE_PAD_EN, key) == 0) {
config->cqe_pad = !!tmp;
} else if (strcmp(MLX5_RXQ_PKT_PAD_EN, key) == 0) {
config->hw_padding = !!tmp;
} else if (strcmp(MLX5_RX_MPRQ_EN, key) == 0) {
config->mprq.enabled = !!tmp;
} else if (strcmp(MLX5_RX_MPRQ_LOG_STRIDE_NUM, key) == 0) {
config->mprq.stride_num_n = tmp;
} else if (strcmp(MLX5_RX_MPRQ_MAX_MEMCPY_LEN, key) == 0) {
config->mprq.max_memcpy_len = tmp;
} else if (strcmp(MLX5_RXQS_MIN_MPRQ, key) == 0) {
config->mprq.min_rxqs_num = tmp;
} else if (strcmp(MLX5_TXQ_INLINE, key) == 0) {
DRV_LOG(WARNING, "%s: deprecated parameter,"
" converted to txq_inline_max", key);
config->txq_inline_max = tmp;
} else if (strcmp(MLX5_TXQ_INLINE_MAX, key) == 0) {
config->txq_inline_max = tmp;
} else if (strcmp(MLX5_TXQ_INLINE_MIN, key) == 0) {
config->txq_inline_min = tmp;
} else if (strcmp(MLX5_TXQ_INLINE_MPW, key) == 0) {
config->txq_inline_mpw = tmp;
} else if (strcmp(MLX5_TXQS_MIN_INLINE, key) == 0) {
config->txqs_inline = tmp;
} else if (strcmp(MLX5_TXQS_MAX_VEC, key) == 0) {
DRV_LOG(WARNING, "%s: deprecated parameter, ignored", key);
} else if (strcmp(MLX5_TXQ_MPW_EN, key) == 0) {
config->mps = !!tmp;
} else if (strcmp(MLX5_TXQ_MPW_HDR_DSEG_EN, key) == 0) {
DRV_LOG(WARNING, "%s: deprecated parameter, ignored", key);
} else if (strcmp(MLX5_TXQ_MAX_INLINE_LEN, key) == 0) {
DRV_LOG(WARNING, "%s: deprecated parameter,"
" converted to txq_inline_mpw", key);
config->txq_inline_mpw = tmp;
} else if (strcmp(MLX5_TX_VEC_EN, key) == 0) {
DRV_LOG(WARNING, "%s: deprecated parameter, ignored", key);
} else if (strcmp(MLX5_RX_VEC_EN, key) == 0) {
config->rx_vec_en = !!tmp;
} else if (strcmp(MLX5_L3_VXLAN_EN, key) == 0) {
config->l3_vxlan_en = !!tmp;
} else if (strcmp(MLX5_VF_NL_EN, key) == 0) {
config->vf_nl_en = !!tmp;
} else if (strcmp(MLX5_DV_ESW_EN, key) == 0) {
config->dv_esw_en = !!tmp;
} else if (strcmp(MLX5_DV_FLOW_EN, key) == 0) {
config->dv_flow_en = !!tmp;
} else if (strcmp(MLX5_MR_EXT_MEMSEG_EN, key) == 0) {
config->mr_ext_memseg_en = !!tmp;
} else if (strcmp(MLX5_MAX_DUMP_FILES_NUM, key) == 0) {
config->max_dump_files_num = tmp;
} else if (strcmp(MLX5_LRO_TIMEOUT_USEC, key) == 0) {
config->lro.timeout = tmp;
net/mlx5: handle Rx CQE compression Mini (compressed) completion queue entries (CQEs) are returned by the NIC when PCI back pressure is detected, in which case the first CQE64 contains common packet information followed by a number of CQE8 providing the rest, followed by a matching number of empty CQE64 entries to be used by software for decompression. Before decompression: 0 1 2 6 7 8 +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | |-------| |---------| |-------| |-------| |-------| |-------| | ..... | | cqe8[0] | | | . | | | | | ..... | | ..... | | cqe8[1] | | | . | | | | | ..... | | ..... | | ....... | | | . | | | | | ..... | | ..... | | cqe8[7] | | | | | | | | ..... | +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ After decompression: 0 1 ... 8 +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | |-------| |-------| |-------| | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | | ..... | +-------+ +-------+ +-------+ This patch does not perform the entire decompression step as it would be really expensive, instead the first CQE64 is consumed and an internal context is maintained to interpret the following CQE8 entries directly. Intermediate empty CQE64 entries are handed back to HW without further processing. Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com> Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Signed-off-by: Olga Shern <olgas@mellanox.com> Signed-off-by: Vasily Philipov <vasilyf@mellanox.com>
2016-06-24 13:17:54 +00:00
} else {
DRV_LOG(WARNING, "%s: unknown parameter", key);
rte_errno = EINVAL;
return -rte_errno;
net/mlx5: handle Rx CQE compression Mini (compressed) completion queue entries (CQEs) are returned by the NIC when PCI back pressure is detected, in which case the first CQE64 contains common packet information followed by a number of CQE8 providing the rest, followed by a matching number of empty CQE64 entries to be used by software for decompression. Before decompression: 0 1 2 6 7 8 +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | |-------| |---------| |-------| |-------| |-------| |-------| | ..... | | cqe8[0] | | | . | | | | | ..... | | ..... | | cqe8[1] | | | . | | | | | ..... | | ..... | | ....... | | | . | | | | | ..... | | ..... | | cqe8[7] | | | | | | | | ..... | +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ After decompression: 0 1 ... 8 +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | |-------| |-------| |-------| | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | | ..... | +-------+ +-------+ +-------+ This patch does not perform the entire decompression step as it would be really expensive, instead the first CQE64 is consumed and an internal context is maintained to interpret the following CQE8 entries directly. Intermediate empty CQE64 entries are handed back to HW without further processing. Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com> Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Signed-off-by: Olga Shern <olgas@mellanox.com> Signed-off-by: Vasily Philipov <vasilyf@mellanox.com>
2016-06-24 13:17:54 +00:00
}
return 0;
}
/**
* Parse device parameters.
*
* @param config
* Pointer to device configuration structure.
* @param devargs
* Device arguments structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_args(struct mlx5_dev_config *config, struct rte_devargs *devargs)
{
const char **params = (const char *[]){
net/mlx5: handle Rx CQE compression Mini (compressed) completion queue entries (CQEs) are returned by the NIC when PCI back pressure is detected, in which case the first CQE64 contains common packet information followed by a number of CQE8 providing the rest, followed by a matching number of empty CQE64 entries to be used by software for decompression. Before decompression: 0 1 2 6 7 8 +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | | CQE64 | |-------| |---------| |-------| |-------| |-------| |-------| | ..... | | cqe8[0] | | | . | | | | | ..... | | ..... | | cqe8[1] | | | . | | | | | ..... | | ..... | | ....... | | | . | | | | | ..... | | ..... | | cqe8[7] | | | | | | | | ..... | +-------+ +---------+ +-------+ +-------+ +-------+ +-------+ After decompression: 0 1 ... 8 +-------+ +-------+ +-------+ | CQE64 | | CQE64 | | CQE64 | |-------| |-------| |-------| | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | . | ..... | | ..... | | ..... | | ..... | +-------+ +-------+ +-------+ This patch does not perform the entire decompression step as it would be really expensive, instead the first CQE64 is consumed and an internal context is maintained to interpret the following CQE8 entries directly. Intermediate empty CQE64 entries are handed back to HW without further processing. Signed-off-by: Nelio Laranjeiro <nelio.laranjeiro@6wind.com> Signed-off-by: Adrien Mazarguil <adrien.mazarguil@6wind.com> Signed-off-by: Olga Shern <olgas@mellanox.com> Signed-off-by: Vasily Philipov <vasilyf@mellanox.com>
2016-06-24 13:17:54 +00:00
MLX5_RXQ_CQE_COMP_EN,
MLX5_RXQ_CQE_PAD_EN,
MLX5_RXQ_PKT_PAD_EN,
MLX5_RX_MPRQ_EN,
MLX5_RX_MPRQ_LOG_STRIDE_NUM,
MLX5_RX_MPRQ_MAX_MEMCPY_LEN,
MLX5_RXQS_MIN_MPRQ,
MLX5_TXQ_INLINE,
MLX5_TXQ_INLINE_MIN,
MLX5_TXQ_INLINE_MAX,
MLX5_TXQ_INLINE_MPW,
MLX5_TXQS_MIN_INLINE,
MLX5_TXQS_MAX_VEC,
MLX5_TXQ_MPW_EN,
MLX5_TXQ_MPW_HDR_DSEG_EN,
MLX5_TXQ_MAX_INLINE_LEN,
MLX5_TX_VEC_EN,
MLX5_RX_VEC_EN,
MLX5_L3_VXLAN_EN,
MLX5_VF_NL_EN,
MLX5_DV_ESW_EN,
MLX5_DV_FLOW_EN,
MLX5_MR_EXT_MEMSEG_EN,
MLX5_REPRESENTOR,
MLX5_MAX_DUMP_FILES_NUM,
MLX5_LRO_TIMEOUT_USEC,
NULL,
};
struct rte_kvargs *kvlist;
int ret = 0;
int i;
if (devargs == NULL)
return 0;
/* Following UGLY cast is done to pass checkpatch. */
kvlist = rte_kvargs_parse(devargs->args, params);
if (kvlist == NULL) {
rte_errno = EINVAL;
return -rte_errno;
}
/* Process parameters. */
for (i = 0; (params[i] != NULL); ++i) {
if (rte_kvargs_count(kvlist, params[i])) {
ret = rte_kvargs_process(kvlist, params[i],
mlx5_args_check, config);
if (ret) {
rte_errno = EINVAL;
rte_kvargs_free(kvlist);
return -rte_errno;
}
}
}
rte_kvargs_free(kvlist);
return 0;
}
static struct rte_pci_driver mlx5_driver;
/**
* PMD global initialization.
*
* Independent from individual device, this function initializes global
* per-PMD data structures distinguishing primary and secondary processes.
* Hence, each initialization is called once per a process.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_init_once(void)
{
struct mlx5_shared_data *sd;
struct mlx5_local_data *ld = &mlx5_local_data;
int ret = 0;
if (mlx5_init_shared_data())
return -rte_errno;
sd = mlx5_shared_data;
assert(sd);
rte_spinlock_lock(&sd->lock);
switch (rte_eal_process_type()) {
case RTE_PROC_PRIMARY:
if (sd->init_done)
break;
LIST_INIT(&sd->mem_event_cb_list);
rte_rwlock_init(&sd->mem_event_rwlock);
rte_mem_event_callback_register("MLX5_MEM_EVENT_CB",
mlx5_mr_mem_event_cb, NULL);
ret = mlx5_mp_init_primary();
if (ret)
goto out;
sd->init_done = true;
break;
case RTE_PROC_SECONDARY:
if (ld->init_done)
break;
ret = mlx5_mp_init_secondary();
if (ret)
goto out;
++sd->secondary_cnt;
ld->init_done = true;
break;
default:
break;
}
out:
rte_spinlock_unlock(&sd->lock);
return ret;
}
/**
* Configures the minimal amount of data to inline into WQE
* while sending packets.
*
* - the txq_inline_min has the maximal priority, if this
* key is specified in devargs
* - if DevX is enabled the inline mode is queried from the
* device (HCA attributes and NIC vport context if needed).
* - otherwise L2 mode (18 bytes) is assumed for ConnectX-4/4LX
* and none (0 bytes) for other NICs
*
* @param spawn
* Verbs device parameters (name, port, switch_info) to spawn.
* @param config
* Device configuration parameters.
*/
static void
mlx5_set_min_inline(struct mlx5_dev_spawn_data *spawn,
struct mlx5_dev_config *config)
{
if (config->txq_inline_min != MLX5_ARG_UNSET) {
/* Application defines size of inlined data explicitly. */
switch (spawn->pci_dev->id.device_id) {
case PCI_DEVICE_ID_MELLANOX_CONNECTX4:
case PCI_DEVICE_ID_MELLANOX_CONNECTX4VF:
case PCI_DEVICE_ID_MELLANOX_CONNECTX4LX:
case PCI_DEVICE_ID_MELLANOX_CONNECTX4LXVF:
if (config->txq_inline_min <
(int)MLX5_INLINE_HSIZE_L2) {
DRV_LOG(DEBUG,
"txq_inline_mix aligned to minimal"
" ConnectX-4 required value %d",
(int)MLX5_INLINE_HSIZE_L2);
config->txq_inline_min = MLX5_INLINE_HSIZE_L2;
}
break;
}
goto exit;
}
if (config->hca_attr.eth_net_offloads) {
/* We have DevX enabled, inline mode queried successfully. */
switch (config->hca_attr.wqe_inline_mode) {
case MLX5_CAP_INLINE_MODE_L2:
/* outer L2 header must be inlined. */
config->txq_inline_min = MLX5_INLINE_HSIZE_L2;
goto exit;
case MLX5_CAP_INLINE_MODE_NOT_REQUIRED:
/* No inline data are required by NIC. */
config->txq_inline_min = MLX5_INLINE_HSIZE_NONE;
config->hw_vlan_insert =
config->hca_attr.wqe_vlan_insert;
DRV_LOG(DEBUG, "Tx VLAN insertion is supported");
goto exit;
case MLX5_CAP_INLINE_MODE_VPORT_CONTEXT:
/* inline mode is defined by NIC vport context. */
if (!config->hca_attr.eth_virt)
break;
switch (config->hca_attr.vport_inline_mode) {
case MLX5_INLINE_MODE_NONE:
config->txq_inline_min =
MLX5_INLINE_HSIZE_NONE;
goto exit;
case MLX5_INLINE_MODE_L2:
config->txq_inline_min =
MLX5_INLINE_HSIZE_L2;
goto exit;
case MLX5_INLINE_MODE_IP:
config->txq_inline_min =
MLX5_INLINE_HSIZE_L3;
goto exit;
case MLX5_INLINE_MODE_TCP_UDP:
config->txq_inline_min =
MLX5_INLINE_HSIZE_L4;
goto exit;
case MLX5_INLINE_MODE_INNER_L2:
config->txq_inline_min =
MLX5_INLINE_HSIZE_INNER_L2;
goto exit;
case MLX5_INLINE_MODE_INNER_IP:
config->txq_inline_min =
MLX5_INLINE_HSIZE_INNER_L3;
goto exit;
case MLX5_INLINE_MODE_INNER_TCP_UDP:
config->txq_inline_min =
MLX5_INLINE_HSIZE_INNER_L4;
goto exit;
}
}
}
/*
* We get here if we are unable to deduce
* inline data size with DevX. Try PCI ID
* to determine old NICs.
*/
switch (spawn->pci_dev->id.device_id) {
case PCI_DEVICE_ID_MELLANOX_CONNECTX4:
case PCI_DEVICE_ID_MELLANOX_CONNECTX4VF:
case PCI_DEVICE_ID_MELLANOX_CONNECTX4LX:
case PCI_DEVICE_ID_MELLANOX_CONNECTX4LXVF:
config->txq_inline_min = MLX5_INLINE_HSIZE_L2;
config->hw_vlan_insert = 0;
break;
case PCI_DEVICE_ID_MELLANOX_CONNECTX5:
case PCI_DEVICE_ID_MELLANOX_CONNECTX5VF:
case PCI_DEVICE_ID_MELLANOX_CONNECTX5EX:
case PCI_DEVICE_ID_MELLANOX_CONNECTX5EXVF:
/*
* These NICs support VLAN insertion from WQE and
* report the wqe_vlan_insert flag. But there is the bug
* and PFC control may be broken, so disable feature.
*/
config->hw_vlan_insert = 0;
break;
default:
config->txq_inline_min = MLX5_INLINE_HSIZE_NONE;
break;
}
exit:
DRV_LOG(DEBUG, "min tx inline configured: %d", config->txq_inline_min);
}
/**
* Spawn an Ethernet device from Verbs information.
*
* @param dpdk_dev
* Backing DPDK device.
* @param spawn
* Verbs device parameters (name, port, switch_info) to spawn.
* @param config
* Device configuration parameters.
*
* @return
* A valid Ethernet device object on success, NULL otherwise and rte_errno
* is set. The following errors are defined:
*
* EBUSY: device is not supposed to be spawned.
* EEXIST: device is already spawned
*/
static struct rte_eth_dev *
mlx5_dev_spawn(struct rte_device *dpdk_dev,
struct mlx5_dev_spawn_data *spawn,
struct mlx5_dev_config config)
{
const struct mlx5_switch_info *switch_info = &spawn->info;
struct mlx5_ibv_shared *sh = NULL;
struct ibv_port_attr port_attr;
struct mlx5dv_context dv_attr = { .comp_mask = 0 };
struct rte_eth_dev *eth_dev = NULL;
struct mlx5_priv *priv = NULL;
int err = 0;
unsigned int hw_padding = 0;
unsigned int mps;
unsigned int cqe_comp;
unsigned int cqe_pad = 0;
unsigned int tunnel_en = 0;
unsigned int mpls_en = 0;
unsigned int swp = 0;
unsigned int mprq = 0;
unsigned int mprq_min_stride_size_n = 0;
unsigned int mprq_max_stride_size_n = 0;
unsigned int mprq_min_stride_num_n = 0;
unsigned int mprq_max_stride_num_n = 0;
struct rte_ether_addr mac;
char name[RTE_ETH_NAME_MAX_LEN];
int own_domain_id = 0;
uint16_t port_id;
unsigned int i;
/* Determine if this port representor is supposed to be spawned. */
if (switch_info->representor && dpdk_dev->devargs) {
struct rte_eth_devargs eth_da;
err = rte_eth_devargs_parse(dpdk_dev->devargs->args, &eth_da);
if (err) {
rte_errno = -err;
DRV_LOG(ERR, "failed to process device arguments: %s",
strerror(rte_errno));
return NULL;
}
for (i = 0; i < eth_da.nb_representor_ports; ++i)
if (eth_da.representor_ports[i] ==
(uint16_t)switch_info->port_name)
break;
if (i == eth_da.nb_representor_ports) {
rte_errno = EBUSY;
return NULL;
}
}
/* Build device name. */
if (!switch_info->representor)
strlcpy(name, dpdk_dev->name, sizeof(name));
else
snprintf(name, sizeof(name), "%s_representor_%u",
dpdk_dev->name, switch_info->port_name);
/* check if the device is already spawned */
if (rte_eth_dev_get_port_by_name(name, &port_id) == 0) {
rte_errno = EEXIST;
return NULL;
}
DRV_LOG(DEBUG, "naming Ethernet device \"%s\"", name);
if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
eth_dev = rte_eth_dev_attach_secondary(name);
if (eth_dev == NULL) {
DRV_LOG(ERR, "can not attach rte ethdev");
rte_errno = ENOMEM;
return NULL;
}
eth_dev->device = dpdk_dev;
eth_dev->dev_ops = &mlx5_dev_sec_ops;
err = mlx5_proc_priv_init(eth_dev);
if (err)
return NULL;
/* Receive command fd from primary process */
err = mlx5_mp_req_verbs_cmd_fd(eth_dev);
if (err < 0)
return NULL;
/* Remap UAR for Tx queues. */
err = mlx5_tx_uar_init_secondary(eth_dev, err);
if (err)
return NULL;
/*
* Ethdev pointer is still required as input since
* the primary device is not accessible from the
* secondary process.
*/
eth_dev->rx_pkt_burst = mlx5_select_rx_function(eth_dev);
eth_dev->tx_pkt_burst = mlx5_select_tx_function(eth_dev);
return eth_dev;
}
sh = mlx5_alloc_shared_ibctx(spawn);
if (!sh)
return NULL;
config.devx = sh->devx;
#ifdef HAVE_MLX5DV_DR_ACTION_DEST_DEVX_TIR
config.dest_tir = 1;
#endif
#ifdef HAVE_IBV_MLX5_MOD_SWP
dv_attr.comp_mask |= MLX5DV_CONTEXT_MASK_SWP;
#endif
/*
* Multi-packet send is supported by ConnectX-4 Lx PF as well
* as all ConnectX-5 devices.
*/
#ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
dv_attr.comp_mask |= MLX5DV_CONTEXT_MASK_TUNNEL_OFFLOADS;
#endif
#ifdef HAVE_IBV_DEVICE_STRIDING_RQ_SUPPORT
dv_attr.comp_mask |= MLX5DV_CONTEXT_MASK_STRIDING_RQ;
#endif
mlx5_glue->dv_query_device(sh->ctx, &dv_attr);
if (dv_attr.flags & MLX5DV_CONTEXT_FLAGS_MPW_ALLOWED) {
if (dv_attr.flags & MLX5DV_CONTEXT_FLAGS_ENHANCED_MPW) {
DRV_LOG(DEBUG, "enhanced MPW is supported");
mps = MLX5_MPW_ENHANCED;
} else {
DRV_LOG(DEBUG, "MPW is supported");
mps = MLX5_MPW;
}
} else {
DRV_LOG(DEBUG, "MPW isn't supported");
mps = MLX5_MPW_DISABLED;
}
#ifdef HAVE_IBV_MLX5_MOD_SWP
if (dv_attr.comp_mask & MLX5DV_CONTEXT_MASK_SWP)
swp = dv_attr.sw_parsing_caps.sw_parsing_offloads;
DRV_LOG(DEBUG, "SWP support: %u", swp);
#endif
config.swp = !!swp;
#ifdef HAVE_IBV_DEVICE_STRIDING_RQ_SUPPORT
if (dv_attr.comp_mask & MLX5DV_CONTEXT_MASK_STRIDING_RQ) {
struct mlx5dv_striding_rq_caps mprq_caps =
dv_attr.striding_rq_caps;
DRV_LOG(DEBUG, "\tmin_single_stride_log_num_of_bytes: %d",
mprq_caps.min_single_stride_log_num_of_bytes);
DRV_LOG(DEBUG, "\tmax_single_stride_log_num_of_bytes: %d",
mprq_caps.max_single_stride_log_num_of_bytes);
DRV_LOG(DEBUG, "\tmin_single_wqe_log_num_of_strides: %d",
mprq_caps.min_single_wqe_log_num_of_strides);
DRV_LOG(DEBUG, "\tmax_single_wqe_log_num_of_strides: %d",
mprq_caps.max_single_wqe_log_num_of_strides);
DRV_LOG(DEBUG, "\tsupported_qpts: %d",
mprq_caps.supported_qpts);
DRV_LOG(DEBUG, "device supports Multi-Packet RQ");
mprq = 1;
mprq_min_stride_size_n =
mprq_caps.min_single_stride_log_num_of_bytes;
mprq_max_stride_size_n =
mprq_caps.max_single_stride_log_num_of_bytes;
mprq_min_stride_num_n =
mprq_caps.min_single_wqe_log_num_of_strides;
mprq_max_stride_num_n =
mprq_caps.max_single_wqe_log_num_of_strides;
config.mprq.stride_num_n = RTE_MAX(MLX5_MPRQ_STRIDE_NUM_N,
mprq_min_stride_num_n);
}
#endif
if (RTE_CACHE_LINE_SIZE == 128 &&
!(dv_attr.flags & MLX5DV_CONTEXT_FLAGS_CQE_128B_COMP))
cqe_comp = 0;
else
cqe_comp = 1;
config.cqe_comp = cqe_comp;
#ifdef HAVE_IBV_MLX5_MOD_CQE_128B_PAD
/* Whether device supports 128B Rx CQE padding. */
cqe_pad = RTE_CACHE_LINE_SIZE == 128 &&
(dv_attr.flags & MLX5DV_CONTEXT_FLAGS_CQE_128B_PAD);
#endif
#ifdef HAVE_IBV_DEVICE_TUNNEL_SUPPORT
if (dv_attr.comp_mask & MLX5DV_CONTEXT_MASK_TUNNEL_OFFLOADS) {
tunnel_en = ((dv_attr.tunnel_offloads_caps &
MLX5DV_RAW_PACKET_CAP_TUNNELED_OFFLOAD_VXLAN) &&
(dv_attr.tunnel_offloads_caps &
MLX5DV_RAW_PACKET_CAP_TUNNELED_OFFLOAD_GRE));
}
DRV_LOG(DEBUG, "tunnel offloading is %ssupported",
tunnel_en ? "" : "not ");
#else
DRV_LOG(WARNING,
"tunnel offloading disabled due to old OFED/rdma-core version");
#endif
config.tunnel_en = tunnel_en;
#ifdef HAVE_IBV_DEVICE_MPLS_SUPPORT
mpls_en = ((dv_attr.tunnel_offloads_caps &
MLX5DV_RAW_PACKET_CAP_TUNNELED_OFFLOAD_CW_MPLS_OVER_GRE) &&
(dv_attr.tunnel_offloads_caps &
MLX5DV_RAW_PACKET_CAP_TUNNELED_OFFLOAD_CW_MPLS_OVER_UDP));
DRV_LOG(DEBUG, "MPLS over GRE/UDP tunnel offloading is %ssupported",
mpls_en ? "" : "not ");
#else
DRV_LOG(WARNING, "MPLS over GRE/UDP tunnel offloading disabled due to"
" old OFED/rdma-core version or firmware configuration");
#endif
config.mpls_en = mpls_en;
/* Check port status. */
err = mlx5_glue->query_port(sh->ctx, spawn->ibv_port, &port_attr);
if (err) {
DRV_LOG(ERR, "port query failed: %s", strerror(err));
goto error;
}
if (port_attr.link_layer != IBV_LINK_LAYER_ETHERNET) {
DRV_LOG(ERR, "port is not configured in Ethernet mode");
err = EINVAL;
goto error;
}
if (port_attr.state != IBV_PORT_ACTIVE)
DRV_LOG(DEBUG, "port is not active: \"%s\" (%d)",
mlx5_glue->port_state_str(port_attr.state),
port_attr.state);
/* Allocate private eth device data. */
priv = rte_zmalloc("ethdev private structure",
sizeof(*priv),
RTE_CACHE_LINE_SIZE);
if (priv == NULL) {
DRV_LOG(ERR, "priv allocation failure");
err = ENOMEM;
goto error;
}
priv->sh = sh;
priv->ibv_port = spawn->ibv_port;
net: add rte prefix to ether defines Add 'RTE_' prefix to defines: - rename ETHER_ADDR_LEN as RTE_ETHER_ADDR_LEN. - rename ETHER_TYPE_LEN as RTE_ETHER_TYPE_LEN. - rename ETHER_CRC_LEN as RTE_ETHER_CRC_LEN. - rename ETHER_HDR_LEN as RTE_ETHER_HDR_LEN. - rename ETHER_MIN_LEN as RTE_ETHER_MIN_LEN. - rename ETHER_MAX_LEN as RTE_ETHER_MAX_LEN. - rename ETHER_MTU as RTE_ETHER_MTU. - rename ETHER_MAX_VLAN_FRAME_LEN as RTE_ETHER_MAX_VLAN_FRAME_LEN. - rename ETHER_MAX_VLAN_ID as RTE_ETHER_MAX_VLAN_ID. - rename ETHER_MAX_JUMBO_FRAME_LEN as RTE_ETHER_MAX_JUMBO_FRAME_LEN. - rename ETHER_MIN_MTU as RTE_ETHER_MIN_MTU. - rename ETHER_LOCAL_ADMIN_ADDR as RTE_ETHER_LOCAL_ADMIN_ADDR. - rename ETHER_GROUP_ADDR as RTE_ETHER_GROUP_ADDR. - rename ETHER_TYPE_IPv4 as RTE_ETHER_TYPE_IPv4. - rename ETHER_TYPE_IPv6 as RTE_ETHER_TYPE_IPv6. - rename ETHER_TYPE_ARP as RTE_ETHER_TYPE_ARP. - rename ETHER_TYPE_VLAN as RTE_ETHER_TYPE_VLAN. - rename ETHER_TYPE_RARP as RTE_ETHER_TYPE_RARP. - rename ETHER_TYPE_QINQ as RTE_ETHER_TYPE_QINQ. - rename ETHER_TYPE_ETAG as RTE_ETHER_TYPE_ETAG. - rename ETHER_TYPE_1588 as RTE_ETHER_TYPE_1588. - rename ETHER_TYPE_SLOW as RTE_ETHER_TYPE_SLOW. - rename ETHER_TYPE_TEB as RTE_ETHER_TYPE_TEB. - rename ETHER_TYPE_LLDP as RTE_ETHER_TYPE_LLDP. - rename ETHER_TYPE_MPLS as RTE_ETHER_TYPE_MPLS. - rename ETHER_TYPE_MPLSM as RTE_ETHER_TYPE_MPLSM. - rename ETHER_VXLAN_HLEN as RTE_ETHER_VXLAN_HLEN. - rename ETHER_ADDR_FMT_SIZE as RTE_ETHER_ADDR_FMT_SIZE. - rename VXLAN_GPE_TYPE_IPV4 as RTE_VXLAN_GPE_TYPE_IPV4. - rename VXLAN_GPE_TYPE_IPV6 as RTE_VXLAN_GPE_TYPE_IPV6. - rename VXLAN_GPE_TYPE_ETH as RTE_VXLAN_GPE_TYPE_ETH. - rename VXLAN_GPE_TYPE_NSH as RTE_VXLAN_GPE_TYPE_NSH. - rename VXLAN_GPE_TYPE_MPLS as RTE_VXLAN_GPE_TYPE_MPLS. - rename VXLAN_GPE_TYPE_GBP as RTE_VXLAN_GPE_TYPE_GBP. - rename VXLAN_GPE_TYPE_VBNG as RTE_VXLAN_GPE_TYPE_VBNG. - rename ETHER_VXLAN_GPE_HLEN as RTE_ETHER_VXLAN_GPE_HLEN. Do not update the command line library to avoid adding a dependency to librte_net. Signed-off-by: Olivier Matz <olivier.matz@6wind.com> Reviewed-by: Stephen Hemminger <stephen@networkplumber.org> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com> Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2019-05-21 16:13:05 +00:00
priv->mtu = RTE_ETHER_MTU;
#ifndef RTE_ARCH_64
/* Initialize UAR access locks for 32bit implementations. */
rte_spinlock_init(&priv->uar_lock_cq);
for (i = 0; i < MLX5_UAR_PAGE_NUM_MAX; i++)
rte_spinlock_init(&priv->uar_lock[i]);
#endif
/* Some internal functions rely on Netlink sockets, open them now. */
priv->nl_socket_rdma = mlx5_nl_init(NETLINK_RDMA);
priv->nl_socket_route = mlx5_nl_init(NETLINK_ROUTE);
priv->nl_sn = 0;
priv->representor = !!switch_info->representor;
priv->master = !!switch_info->master;
priv->domain_id = RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID;
/*
* Currently we support single E-Switch per PF configurations
* only and vport_id field contains the vport index for
* associated VF, which is deduced from representor port name.
* For example, let's have the IB device port 10, it has
* attached network device eth0, which has port name attribute
* pf0vf2, we can deduce the VF number as 2, and set vport index
* as 3 (2+1). This assigning schema should be changed if the
* multiple E-Switch instances per PF configurations or/and PCI
* subfunctions are added.
*/
priv->vport_id = switch_info->representor ?
switch_info->port_name + 1 : -1;
/* representor_id field keeps the unmodified port/VF index. */
priv->representor_id = switch_info->representor ?
switch_info->port_name : -1;
/*
* Look for sibling devices in order to reuse their switch domain
* if any, otherwise allocate one.
*/
RTE_ETH_FOREACH_DEV_OF(port_id, dpdk_dev) {
const struct mlx5_priv *opriv =
rte_eth_devices[port_id].data->dev_private;
if (!opriv ||
opriv->domain_id ==
RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID)
continue;
priv->domain_id = opriv->domain_id;
break;
}
if (priv->domain_id == RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
err = rte_eth_switch_domain_alloc(&priv->domain_id);
if (err) {
err = rte_errno;
DRV_LOG(ERR, "unable to allocate switch domain: %s",
strerror(rte_errno));
goto error;
}
own_domain_id = 1;
}
err = mlx5_args(&config, dpdk_dev->devargs);
if (err) {
err = rte_errno;
DRV_LOG(ERR, "failed to process device arguments: %s",
strerror(rte_errno));
goto error;
}
config.hw_csum = !!(sh->device_attr.device_cap_flags_ex &
IBV_DEVICE_RAW_IP_CSUM);
DRV_LOG(DEBUG, "checksum offloading is %ssupported",
(config.hw_csum ? "" : "not "));
#if !defined(HAVE_IBV_DEVICE_COUNTERS_SET_V42) && \
!defined(HAVE_IBV_DEVICE_COUNTERS_SET_V45)
DRV_LOG(DEBUG, "counters are not supported");
#endif
#ifndef HAVE_IBV_FLOW_DV_SUPPORT
if (config.dv_flow_en) {
DRV_LOG(WARNING, "DV flow is not supported");
config.dv_flow_en = 0;
}
#endif
config.ind_table_max_size =
sh->device_attr.rss_caps.max_rwq_indirection_table_size;
/*
* Remove this check once DPDK supports larger/variable
* indirection tables.
*/
if (config.ind_table_max_size > (unsigned int)ETH_RSS_RETA_SIZE_512)
config.ind_table_max_size = ETH_RSS_RETA_SIZE_512;
DRV_LOG(DEBUG, "maximum Rx indirection table size is %u",
config.ind_table_max_size);
config.hw_vlan_strip = !!(sh->device_attr.raw_packet_caps &
IBV_RAW_PACKET_CAP_CVLAN_STRIPPING);
DRV_LOG(DEBUG, "VLAN stripping is %ssupported",
(config.hw_vlan_strip ? "" : "not "));
config.hw_fcs_strip = !!(sh->device_attr.raw_packet_caps &
IBV_RAW_PACKET_CAP_SCATTER_FCS);
DRV_LOG(DEBUG, "FCS stripping configuration is %ssupported",
(config.hw_fcs_strip ? "" : "not "));
#if defined(HAVE_IBV_WQ_FLAG_RX_END_PADDING)
hw_padding = !!sh->device_attr.rx_pad_end_addr_align;
#elif defined(HAVE_IBV_WQ_FLAGS_PCI_WRITE_END_PADDING)
hw_padding = !!(sh->device_attr.device_cap_flags_ex &
IBV_DEVICE_PCI_WRITE_END_PADDING);
#endif
if (config.hw_padding && !hw_padding) {
DRV_LOG(DEBUG, "Rx end alignment padding isn't supported");
config.hw_padding = 0;
} else if (config.hw_padding) {
DRV_LOG(DEBUG, "Rx end alignment padding is enabled");
}
config.tso = (sh->device_attr.tso_caps.max_tso > 0 &&
(sh->device_attr.tso_caps.supported_qpts &
(1 << IBV_QPT_RAW_PACKET)));
if (config.tso)
config.tso_max_payload_sz = sh->device_attr.tso_caps.max_tso;
/*
* MPW is disabled by default, while the Enhanced MPW is enabled
* by default.
*/
if (config.mps == MLX5_ARG_UNSET)
config.mps = (mps == MLX5_MPW_ENHANCED) ? MLX5_MPW_ENHANCED :
MLX5_MPW_DISABLED;
else
config.mps = config.mps ? mps : MLX5_MPW_DISABLED;
DRV_LOG(INFO, "%sMPS is %s",
config.mps == MLX5_MPW_ENHANCED ? "enhanced " : "",
config.mps != MLX5_MPW_DISABLED ? "enabled" : "disabled");
if (config.cqe_comp && !cqe_comp) {
DRV_LOG(WARNING, "Rx CQE compression isn't supported");
config.cqe_comp = 0;
}
if (config.cqe_pad && !cqe_pad) {
DRV_LOG(WARNING, "Rx CQE padding isn't supported");
config.cqe_pad = 0;
} else if (config.cqe_pad) {
DRV_LOG(INFO, "Rx CQE padding is enabled");
}
if (config.devx) {
priv->counter_fallback = 0;
err = mlx5_devx_cmd_query_hca_attr(sh->ctx, &config.hca_attr);
if (err) {
err = -err;
goto error;
}
if (!config.hca_attr.flow_counters_dump)
priv->counter_fallback = 1;
#ifndef HAVE_IBV_DEVX_ASYNC
priv->counter_fallback = 1;
#endif
if (priv->counter_fallback)
DRV_LOG(INFO, "Use fall-back DV counter management\n");
/* Check for LRO support. */
if (config.dest_tir && mprq && config.hca_attr.lro_cap) {
/* TBD check tunnel lro caps. */
config.lro.supported = config.hca_attr.lro_cap;
DRV_LOG(DEBUG, "Device supports LRO");
/*
* If LRO timeout is not configured by application,
* use the minimal supported value.
*/
if (!config.lro.timeout)
config.lro.timeout =
config.hca_attr.lro_timer_supported_periods[0];
DRV_LOG(DEBUG, "LRO session timeout set to %d usec",
config.lro.timeout);
config.mprq.enabled = 1;
DRV_LOG(DEBUG, "Enable MPRQ for LRO use");
}
}
if (config.mprq.enabled && mprq) {
if (config.mprq.stride_num_n > mprq_max_stride_num_n ||
config.mprq.stride_num_n < mprq_min_stride_num_n) {
config.mprq.stride_num_n =
RTE_MAX(MLX5_MPRQ_STRIDE_NUM_N,
mprq_min_stride_num_n);
DRV_LOG(WARNING,
"the number of strides"
" for Multi-Packet RQ is out of range,"
" setting default value (%u)",
1 << config.mprq.stride_num_n);
}
config.mprq.min_stride_size_n = mprq_min_stride_size_n;
config.mprq.max_stride_size_n = mprq_max_stride_size_n;
} else if (config.mprq.enabled && !mprq) {
DRV_LOG(WARNING, "Multi-Packet RQ isn't supported");
config.mprq.enabled = 0;
}
if (config.max_dump_files_num == 0)
config.max_dump_files_num = 128;
eth_dev = rte_eth_dev_allocate(name);
if (eth_dev == NULL) {
DRV_LOG(ERR, "can not allocate rte ethdev");
err = ENOMEM;
goto error;
}
/* Flag to call rte_eth_dev_release_port() in rte_eth_dev_close(). */
eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
if (priv->representor) {
eth_dev->data->dev_flags |= RTE_ETH_DEV_REPRESENTOR;
eth_dev->data->representor_id = priv->representor_id;
}
/*
* Store associated network device interface index. This index
* is permanent throughout the lifetime of device. So, we may store
* the ifindex here and use the cached value further.
*/
assert(spawn->ifindex);
priv->if_index = spawn->ifindex;
eth_dev->data->dev_private = priv;
priv->dev_data = eth_dev->data;
eth_dev->data->mac_addrs = priv->mac;
eth_dev->device = dpdk_dev;
/* Configure the first MAC address by default. */
if (mlx5_get_mac(eth_dev, &mac.addr_bytes)) {
DRV_LOG(ERR,
"port %u cannot get MAC address, is mlx5_en"
" loaded? (errno: %s)",
eth_dev->data->port_id, strerror(rte_errno));
err = ENODEV;
goto error;
}
DRV_LOG(INFO,
"port %u MAC address is %02x:%02x:%02x:%02x:%02x:%02x",
eth_dev->data->port_id,
mac.addr_bytes[0], mac.addr_bytes[1],
mac.addr_bytes[2], mac.addr_bytes[3],
mac.addr_bytes[4], mac.addr_bytes[5]);
#ifndef NDEBUG
{
char ifname[IF_NAMESIZE];
if (mlx5_get_ifname(eth_dev, &ifname) == 0)
DRV_LOG(DEBUG, "port %u ifname is \"%s\"",
eth_dev->data->port_id, ifname);
else
DRV_LOG(DEBUG, "port %u ifname is unknown",
eth_dev->data->port_id);
}
#endif
/* Get actual MTU if possible. */
err = mlx5_get_mtu(eth_dev, &priv->mtu);
if (err) {
err = rte_errno;
goto error;
}
DRV_LOG(DEBUG, "port %u MTU is %u", eth_dev->data->port_id,
priv->mtu);
/* Initialize burst functions to prevent crashes before link-up. */
eth_dev->rx_pkt_burst = removed_rx_burst;
eth_dev->tx_pkt_burst = removed_tx_burst;
eth_dev->dev_ops = &mlx5_dev_ops;
/* Register MAC address. */
claim_zero(mlx5_mac_addr_add(eth_dev, &mac, 0, 0));
if (config.vf && config.vf_nl_en)
mlx5_nl_mac_addr_sync(eth_dev);
TAILQ_INIT(&priv->flows);
TAILQ_INIT(&priv->ctrl_flows);
/* Hint libmlx5 to use PMD allocator for data plane resources */
struct mlx5dv_ctx_allocators alctr = {
.alloc = &mlx5_alloc_verbs_buf,
.free = &mlx5_free_verbs_buf,
.data = priv,
};
mlx5_glue->dv_set_context_attr(sh->ctx,
MLX5DV_CTX_ATTR_BUF_ALLOCATORS,
(void *)((uintptr_t)&alctr));
/* Bring Ethernet device up. */
DRV_LOG(DEBUG, "port %u forcing Ethernet interface up",
eth_dev->data->port_id);
mlx5_set_link_up(eth_dev);
/*
* Even though the interrupt handler is not installed yet,
* interrupts will still trigger on the async_fd from
* Verbs context returned by ibv_open_device().
*/
mlx5_link_update(eth_dev, 0);
#ifdef HAVE_MLX5DV_DR_ESWITCH
if (!(config.hca_attr.eswitch_manager && config.dv_flow_en &&
(switch_info->representor || switch_info->master)))
config.dv_esw_en = 0;
#else
config.dv_esw_en = 0;
#endif
/* Detect minimal data bytes to inline. */
mlx5_set_min_inline(spawn, &config);
/* Store device configuration on private structure. */
priv->config = config;
if (config.dv_flow_en) {
err = mlx5_alloc_shared_dr(priv);
if (err)
goto error;
}
/* Supported Verbs flow priority number detection. */
err = mlx5_flow_discover_priorities(eth_dev);
if (err < 0) {
err = -err;
goto error;
}
priv->config.flow_prio = err;
/* Add device to memory callback list. */
rte_rwlock_write_lock(&mlx5_shared_data->mem_event_rwlock);
LIST_INSERT_HEAD(&mlx5_shared_data->mem_event_cb_list,
sh, mem_event_cb);
rte_rwlock_write_unlock(&mlx5_shared_data->mem_event_rwlock);
return eth_dev;
error:
if (priv) {
if (priv->sh)
mlx5_free_shared_dr(priv);
if (priv->nl_socket_route >= 0)
close(priv->nl_socket_route);
if (priv->nl_socket_rdma >= 0)
close(priv->nl_socket_rdma);
if (own_domain_id)
claim_zero(rte_eth_switch_domain_free(priv->domain_id));
rte_free(priv);
if (eth_dev != NULL)
eth_dev->data->dev_private = NULL;
}
if (eth_dev != NULL) {
/* mac_addrs must not be freed alone because part of dev_private */
eth_dev->data->mac_addrs = NULL;
rte_eth_dev_release_port(eth_dev);
}
if (sh)
mlx5_free_shared_ibctx(sh);
assert(err > 0);
rte_errno = err;
return NULL;
}
/**
* Comparison callback to sort device data.
*
* This is meant to be used with qsort().
*
* @param a[in]
* Pointer to pointer to first data object.
* @param b[in]
* Pointer to pointer to second data object.
*
* @return
* 0 if both objects are equal, less than 0 if the first argument is less
* than the second, greater than 0 otherwise.
*/
static int
mlx5_dev_spawn_data_cmp(const void *a, const void *b)
{
const struct mlx5_switch_info *si_a =
&((const struct mlx5_dev_spawn_data *)a)->info;
const struct mlx5_switch_info *si_b =
&((const struct mlx5_dev_spawn_data *)b)->info;
int ret;
/* Master device first. */
ret = si_b->master - si_a->master;
if (ret)
return ret;
/* Then representor devices. */
ret = si_b->representor - si_a->representor;
if (ret)
return ret;
/* Unidentified devices come last in no specific order. */
if (!si_a->representor)
return 0;
/* Order representors by name. */
return si_a->port_name - si_b->port_name;
}
/**
* DPDK callback to register a PCI device.
*
* This function spawns Ethernet devices out of a given PCI device.
*
* @param[in] pci_drv
* PCI driver structure (mlx5_driver).
* @param[in] pci_dev
* PCI device information.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
mlx5_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
struct ibv_device **ibv_list;
/*
* Number of found IB Devices matching with requested PCI BDF.
* nd != 1 means there are multiple IB devices over the same
* PCI device and we have representors and master.
*/
unsigned int nd = 0;
/*
* Number of found IB device Ports. nd = 1 and np = 1..n means
* we have the single multiport IB device, and there may be
* representors attached to some of found ports.
*/
unsigned int np = 0;
/*
* Number of DPDK ethernet devices to Spawn - either over
* multiple IB devices or multiple ports of single IB device.
* Actually this is the number of iterations to spawn.
*/
unsigned int ns = 0;
struct mlx5_dev_config dev_config;
int ret;
ret = mlx5_init_once();
if (ret) {
DRV_LOG(ERR, "unable to init PMD global data: %s",
strerror(rte_errno));
return -rte_errno;
}
assert(pci_drv == &mlx5_driver);
errno = 0;
ibv_list = mlx5_glue->get_device_list(&ret);
if (!ibv_list) {
rte_errno = errno ? errno : ENOSYS;
DRV_LOG(ERR, "cannot list devices, is ib_uverbs loaded?");
return -rte_errno;
}
/*
* First scan the list of all Infiniband devices to find
* matching ones, gathering into the list.
*/
struct ibv_device *ibv_match[ret + 1];
int nl_route = -1;
int nl_rdma = -1;
unsigned int i;
while (ret-- > 0) {
struct rte_pci_addr pci_addr;
DRV_LOG(DEBUG, "checking device \"%s\"", ibv_list[ret]->name);
if (mlx5_ibv_device_to_pci_addr(ibv_list[ret], &pci_addr))
continue;
if (pci_dev->addr.domain != pci_addr.domain ||
pci_dev->addr.bus != pci_addr.bus ||
pci_dev->addr.devid != pci_addr.devid ||
pci_dev->addr.function != pci_addr.function)
continue;
DRV_LOG(INFO, "PCI information matches for device \"%s\"",
ibv_list[ret]->name);
ibv_match[nd++] = ibv_list[ret];
}
ibv_match[nd] = NULL;
if (!nd) {
/* No device matches, just complain and bail out. */
mlx5_glue->free_device_list(ibv_list);
DRV_LOG(WARNING,
"no Verbs device matches PCI device " PCI_PRI_FMT ","
" are kernel drivers loaded?",
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function);
rte_errno = ENOENT;
ret = -rte_errno;
return ret;
}
nl_route = mlx5_nl_init(NETLINK_ROUTE);
nl_rdma = mlx5_nl_init(NETLINK_RDMA);
if (nd == 1) {
/*
* Found single matching device may have multiple ports.
* Each port may be representor, we have to check the port
* number and check the representors existence.
*/
if (nl_rdma >= 0)
np = mlx5_nl_portnum(nl_rdma, ibv_match[0]->name);
if (!np)
DRV_LOG(WARNING, "can not get IB device \"%s\""
" ports number", ibv_match[0]->name);
}
/*
* Now we can determine the maximal
* amount of devices to be spawned.
*/
struct mlx5_dev_spawn_data list[np ? np : nd];
if (np > 1) {
/*
* Single IB device with multiple ports found,
* it may be E-Switch master device and representors.
* We have to perform identification trough the ports.
*/
assert(nl_rdma >= 0);
assert(ns == 0);
assert(nd == 1);
for (i = 1; i <= np; ++i) {
list[ns].max_port = np;
list[ns].ibv_port = i;
list[ns].ibv_dev = ibv_match[0];
list[ns].eth_dev = NULL;
list[ns].pci_dev = pci_dev;
list[ns].ifindex = mlx5_nl_ifindex
(nl_rdma, list[ns].ibv_dev->name, i);
if (!list[ns].ifindex) {
/*
* No network interface index found for the
* specified port, it means there is no
* representor on this port. It's OK,
* there can be disabled ports, for example
* if sriov_numvfs < sriov_totalvfs.
*/
continue;
}
ret = -1;
if (nl_route >= 0)
ret = mlx5_nl_switch_info
(nl_route,
list[ns].ifindex,
&list[ns].info);
if (ret || (!list[ns].info.representor &&
!list[ns].info.master)) {
/*
* We failed to recognize representors with
* Netlink, let's try to perform the task
* with sysfs.
*/
ret = mlx5_sysfs_switch_info
(list[ns].ifindex,
&list[ns].info);
}
if (!ret && (list[ns].info.representor ^
list[ns].info.master))
ns++;
}
if (!ns) {
DRV_LOG(ERR,
"unable to recognize master/representors"
" on the IB device with multiple ports");
rte_errno = ENOENT;
ret = -rte_errno;
goto exit;
}
} else {
/*
* The existence of several matching entries (nd > 1) means
* port representors have been instantiated. No existing Verbs
* call nor sysfs entries can tell them apart, this can only
* be done through Netlink calls assuming kernel drivers are
* recent enough to support them.
*
* In the event of identification failure through Netlink,
* try again through sysfs, then:
*
* 1. A single IB device matches (nd == 1) with single
* port (np=0/1) and is not a representor, assume
* no switch support.
*
* 2. Otherwise no safe assumptions can be made;
* complain louder and bail out.
*/
np = 1;
for (i = 0; i != nd; ++i) {
memset(&list[ns].info, 0, sizeof(list[ns].info));
list[ns].max_port = 1;
list[ns].ibv_port = 1;
list[ns].ibv_dev = ibv_match[i];
list[ns].eth_dev = NULL;
list[ns].pci_dev = pci_dev;
list[ns].ifindex = 0;
if (nl_rdma >= 0)
list[ns].ifindex = mlx5_nl_ifindex
(nl_rdma, list[ns].ibv_dev->name, 1);
if (!list[ns].ifindex) {
char ifname[IF_NAMESIZE];
/*
* Netlink failed, it may happen with old
* ib_core kernel driver (before 4.16).
* We can assume there is old driver because
* here we are processing single ports IB
* devices. Let's try sysfs to retrieve
* the ifindex. The method works for
* master device only.
*/
if (nd > 1) {
/*
* Multiple devices found, assume
* representors, can not distinguish
* master/representor and retrieve
* ifindex via sysfs.
*/
continue;
}
ret = mlx5_get_master_ifname
(ibv_match[i]->ibdev_path, &ifname);
if (!ret)
list[ns].ifindex =
if_nametoindex(ifname);
if (!list[ns].ifindex) {
/*
* No network interface index found
* for the specified device, it means
* there it is neither representor
* nor master.
*/
continue;
}
}
ret = -1;
if (nl_route >= 0)
ret = mlx5_nl_switch_info
(nl_route,
list[ns].ifindex,
&list[ns].info);
if (ret || (!list[ns].info.representor &&
!list[ns].info.master)) {
/*
* We failed to recognize representors with
* Netlink, let's try to perform the task
* with sysfs.
*/
ret = mlx5_sysfs_switch_info
(list[ns].ifindex,
&list[ns].info);
}
if (!ret && (list[ns].info.representor ^
list[ns].info.master)) {
ns++;
} else if ((nd == 1) &&
!list[ns].info.representor &&
!list[ns].info.master) {
/*
* Single IB device with
* one physical port and
* attached network device.
* May be SRIOV is not enabled
* or there is no representors.
*/
DRV_LOG(INFO, "no E-Switch support detected");
ns++;
break;
}
}
if (!ns) {
DRV_LOG(ERR,
"unable to recognize master/representors"
" on the multiple IB devices");
rte_errno = ENOENT;
ret = -rte_errno;
goto exit;
}
}
assert(ns);
/*
* Sort list to probe devices in natural order for users convenience
* (i.e. master first, then representors from lowest to highest ID).
*/
qsort(list, ns, sizeof(*list), mlx5_dev_spawn_data_cmp);
/* Default configuration. */
dev_config = (struct mlx5_dev_config){
.hw_padding = 0,
.mps = MLX5_ARG_UNSET,
.rx_vec_en = 1,
.txq_inline_max = MLX5_ARG_UNSET,
.txq_inline_min = MLX5_ARG_UNSET,
.txq_inline_mpw = MLX5_ARG_UNSET,
.txqs_inline = MLX5_ARG_UNSET,
.vf_nl_en = 1,
.mr_ext_memseg_en = 1,
.mprq = {
.enabled = 0, /* Disabled by default. */
.stride_num_n = MLX5_MPRQ_STRIDE_NUM_N,
.max_memcpy_len = MLX5_MPRQ_MEMCPY_DEFAULT_LEN,
.min_rxqs_num = MLX5_MPRQ_MIN_RXQS,
},
.dv_esw_en = 1,
};
/* Device specific configuration. */
switch (pci_dev->id.device_id) {
case PCI_DEVICE_ID_MELLANOX_CONNECTX4VF:
case PCI_DEVICE_ID_MELLANOX_CONNECTX4LXVF:
case PCI_DEVICE_ID_MELLANOX_CONNECTX5VF:
case PCI_DEVICE_ID_MELLANOX_CONNECTX5EXVF:
dev_config.vf = 1;
break;
default:
break;
}
for (i = 0; i != ns; ++i) {
uint32_t restore;
list[i].eth_dev = mlx5_dev_spawn(&pci_dev->device,
&list[i],
dev_config);
if (!list[i].eth_dev) {
if (rte_errno != EBUSY && rte_errno != EEXIST)
break;
/* Device is disabled or already spawned. Ignore it. */
continue;
}
restore = list[i].eth_dev->data->dev_flags;
rte_eth_copy_pci_info(list[i].eth_dev, pci_dev);
/* Restore non-PCI flags cleared by the above call. */
list[i].eth_dev->data->dev_flags |= restore;
rte_eth_dev_probing_finish(list[i].eth_dev);
}
if (i != ns) {
DRV_LOG(ERR,
"probe of PCI device " PCI_PRI_FMT " aborted after"
" encountering an error: %s",
pci_dev->addr.domain, pci_dev->addr.bus,
pci_dev->addr.devid, pci_dev->addr.function,
strerror(rte_errno));
ret = -rte_errno;
/* Roll back. */
while (i--) {
if (!list[i].eth_dev)
continue;
mlx5_dev_close(list[i].eth_dev);
/* mac_addrs must not be freed because in dev_private */
list[i].eth_dev->data->mac_addrs = NULL;
claim_zero(rte_eth_dev_release_port(list[i].eth_dev));
}
/* Restore original error. */
rte_errno = -ret;
} else {
ret = 0;
}
exit:
/*
* Do the routine cleanup:
* - close opened Netlink sockets
* - free the Infiniband device list
*/
if (nl_rdma >= 0)
close(nl_rdma);
if (nl_route >= 0)
close(nl_route);
assert(ibv_list);
mlx5_glue->free_device_list(ibv_list);
return ret;
}
/**
* DPDK callback to remove a PCI device.
*
* This function removes all Ethernet devices belong to a given PCI device.
*
* @param[in] pci_dev
* Pointer to the PCI device.
*
* @return
* 0 on success, the function cannot fail.
*/
static int
mlx5_pci_remove(struct rte_pci_device *pci_dev)
{
uint16_t port_id;
RTE_ETH_FOREACH_DEV_OF(port_id, &pci_dev->device)
rte_eth_dev_close(port_id);
return 0;
}
static const struct rte_pci_id mlx5_pci_id_map[] = {
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX4)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX4VF)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX4LX)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX4LXVF)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX5)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX5VF)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX5EX)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX5EXVF)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX5BF)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX5BFVF)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX6)
},
{
RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
PCI_DEVICE_ID_MELLANOX_CONNECTX6VF)
},
{
.vendor_id = 0
}
};
static struct rte_pci_driver mlx5_driver = {
.driver = {
.name = MLX5_DRIVER_NAME
},
.id_table = mlx5_pci_id_map,
.probe = mlx5_pci_probe,
.remove = mlx5_pci_remove,
.dma_map = mlx5_dma_map,
.dma_unmap = mlx5_dma_unmap,
.drv_flags = RTE_PCI_DRV_INTR_LSC | RTE_PCI_DRV_INTR_RMV |
RTE_PCI_DRV_PROBE_AGAIN,
};
#ifdef RTE_IBVERBS_LINK_DLOPEN
/**
* Suffix RTE_EAL_PMD_PATH with "-glue".
*
* This function performs a sanity check on RTE_EAL_PMD_PATH before
* suffixing its last component.
*
* @param buf[out]
* Output buffer, should be large enough otherwise NULL is returned.
* @param size
* Size of @p out.
*
* @return
* Pointer to @p buf or @p NULL in case suffix cannot be appended.
*/
static char *
mlx5_glue_path(char *buf, size_t size)
{
static const char *const bad[] = { "/", ".", "..", NULL };
const char *path = RTE_EAL_PMD_PATH;
size_t len = strlen(path);
size_t off;
int i;
while (len && path[len - 1] == '/')
--len;
for (off = len; off && path[off - 1] != '/'; --off)
;
for (i = 0; bad[i]; ++i)
if (!strncmp(path + off, bad[i], (int)(len - off)))
goto error;
i = snprintf(buf, size, "%.*s-glue", (int)len, path);
if (i == -1 || (size_t)i >= size)
goto error;
return buf;
error:
DRV_LOG(ERR,
"unable to append \"-glue\" to last component of"
" RTE_EAL_PMD_PATH (\"" RTE_EAL_PMD_PATH "\"),"
" please re-configure DPDK");
return NULL;
}
/**
* Initialization routine for run-time dependency on rdma-core.
*/
static int
mlx5_glue_init(void)
{
char glue_path[sizeof(RTE_EAL_PMD_PATH) - 1 + sizeof("-glue")];
const char *path[] = {
/*
* A basic security check is necessary before trusting
* MLX5_GLUE_PATH, which may override RTE_EAL_PMD_PATH.
*/
(geteuid() == getuid() && getegid() == getgid() ?
getenv("MLX5_GLUE_PATH") : NULL),
/*
* When RTE_EAL_PMD_PATH is set, use its glue-suffixed
* variant, otherwise let dlopen() look up libraries on its
* own.
*/
(*RTE_EAL_PMD_PATH ?
mlx5_glue_path(glue_path, sizeof(glue_path)) : ""),
};
unsigned int i = 0;
void *handle = NULL;
void **sym;
const char *dlmsg;
while (!handle && i != RTE_DIM(path)) {
const char *end;
size_t len;
int ret;
if (!path[i]) {
++i;
continue;
}
end = strpbrk(path[i], ":;");
if (!end)
end = path[i] + strlen(path[i]);
len = end - path[i];
ret = 0;
do {
char name[ret + 1];
ret = snprintf(name, sizeof(name), "%.*s%s" MLX5_GLUE,
(int)len, path[i],
(!len || *(end - 1) == '/') ? "" : "/");
if (ret == -1)
break;
if (sizeof(name) != (size_t)ret + 1)
continue;
DRV_LOG(DEBUG, "looking for rdma-core glue as \"%s\"",
name);
handle = dlopen(name, RTLD_LAZY);
break;
} while (1);
path[i] = end + 1;
if (!*end)
++i;
}
if (!handle) {
rte_errno = EINVAL;
dlmsg = dlerror();
if (dlmsg)
DRV_LOG(WARNING, "cannot load glue library: %s", dlmsg);
goto glue_error;
}
sym = dlsym(handle, "mlx5_glue");
if (!sym || !*sym) {
rte_errno = EINVAL;
dlmsg = dlerror();
if (dlmsg)
DRV_LOG(ERR, "cannot resolve glue symbol: %s", dlmsg);
goto glue_error;
}
mlx5_glue = *sym;
return 0;
glue_error:
if (handle)
dlclose(handle);
DRV_LOG(WARNING,
"cannot initialize PMD due to missing run-time dependency on"
" rdma-core libraries (libibverbs, libmlx5)");
return -rte_errno;
}
#endif
/**
* Driver initialization routine.
*/
RTE_INIT(rte_mlx5_pmd_init)
{
/* Initialize driver log type. */
mlx5_logtype = rte_log_register("pmd.net.mlx5");
if (mlx5_logtype >= 0)
rte_log_set_level(mlx5_logtype, RTE_LOG_NOTICE);
/* Build the static tables for Verbs conversion. */
mlx5_set_ptype_table();
mlx5_set_cksum_table();
mlx5_set_swp_types_table();
/*
* RDMAV_HUGEPAGES_SAFE tells ibv_fork_init() we intend to use
* huge pages. Calling ibv_fork_init() during init allows
* applications to use fork() safely for purposes other than
* using this PMD, which is not supported in forked processes.
*/
setenv("RDMAV_HUGEPAGES_SAFE", "1", 1);
/* Match the size of Rx completion entry to the size of a cacheline. */
if (RTE_CACHE_LINE_SIZE == 128)
setenv("MLX5_CQE_SIZE", "128", 0);
/*
* MLX5_DEVICE_FATAL_CLEANUP tells ibv_destroy functions to
* cleanup all the Verbs resources even when the device was removed.
*/
setenv("MLX5_DEVICE_FATAL_CLEANUP", "1", 1);
#ifdef RTE_IBVERBS_LINK_DLOPEN
if (mlx5_glue_init())
return;
assert(mlx5_glue);
#endif
#ifndef NDEBUG
/* Glue structure must not contain any NULL pointers. */
{
unsigned int i;
for (i = 0; i != sizeof(*mlx5_glue) / sizeof(void *); ++i)
assert(((const void *const *)mlx5_glue)[i]);
}
#endif
if (strcmp(mlx5_glue->version, MLX5_GLUE_VERSION)) {
DRV_LOG(ERR,
"rdma-core glue \"%s\" mismatch: \"%s\" is required",
mlx5_glue->version, MLX5_GLUE_VERSION);
return;
}
mlx5_glue->fork_init();
rte_pci_register(&mlx5_driver);
}
RTE_PMD_EXPORT_NAME(net_mlx5, __COUNTER__);
RTE_PMD_REGISTER_PCI_TABLE(net_mlx5, mlx5_pci_id_map);
RTE_PMD_REGISTER_KMOD_DEP(net_mlx5, "* ib_uverbs & mlx5_core & mlx5_ib");