numam-dpdk/lib/librte_pipeline/rte_swx_pipeline.c

4521 lines
98 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <sys/queue.h>
#include <arpa/inet.h>
#include <rte_common.h>
#include <rte_prefetch.h>
#include <rte_byteorder.h>
#include "rte_swx_pipeline.h"
#include "rte_swx_ctl.h"
#define CHECK(condition, err_code) \
do { \
if (!(condition)) \
return -(err_code); \
} while (0)
#define CHECK_NAME(name, err_code) \
CHECK((name) && (name)[0], err_code)
#ifndef TRACE_LEVEL
#define TRACE_LEVEL 0
#endif
#if TRACE_LEVEL
#define TRACE(...) printf(__VA_ARGS__)
#else
#define TRACE(...)
#endif
#define ntoh64(x) rte_be_to_cpu_64(x)
#define hton64(x) rte_cpu_to_be_64(x)
/*
* Struct.
*/
struct field {
char name[RTE_SWX_NAME_SIZE];
uint32_t n_bits;
uint32_t offset;
};
struct struct_type {
TAILQ_ENTRY(struct_type) node;
char name[RTE_SWX_NAME_SIZE];
struct field *fields;
uint32_t n_fields;
uint32_t n_bits;
};
TAILQ_HEAD(struct_type_tailq, struct_type);
/*
* Input port.
*/
struct port_in_type {
TAILQ_ENTRY(port_in_type) node;
char name[RTE_SWX_NAME_SIZE];
struct rte_swx_port_in_ops ops;
};
TAILQ_HEAD(port_in_type_tailq, port_in_type);
struct port_in {
TAILQ_ENTRY(port_in) node;
struct port_in_type *type;
void *obj;
uint32_t id;
};
TAILQ_HEAD(port_in_tailq, port_in);
struct port_in_runtime {
rte_swx_port_in_pkt_rx_t pkt_rx;
void *obj;
};
/*
* Output port.
*/
struct port_out_type {
TAILQ_ENTRY(port_out_type) node;
char name[RTE_SWX_NAME_SIZE];
struct rte_swx_port_out_ops ops;
};
TAILQ_HEAD(port_out_type_tailq, port_out_type);
struct port_out {
TAILQ_ENTRY(port_out) node;
struct port_out_type *type;
void *obj;
uint32_t id;
};
TAILQ_HEAD(port_out_tailq, port_out);
struct port_out_runtime {
rte_swx_port_out_pkt_tx_t pkt_tx;
rte_swx_port_out_flush_t flush;
void *obj;
};
/*
* Extern object.
*/
struct extern_type_member_func {
TAILQ_ENTRY(extern_type_member_func) node;
char name[RTE_SWX_NAME_SIZE];
rte_swx_extern_type_member_func_t func;
uint32_t id;
};
TAILQ_HEAD(extern_type_member_func_tailq, extern_type_member_func);
struct extern_type {
TAILQ_ENTRY(extern_type) node;
char name[RTE_SWX_NAME_SIZE];
struct struct_type *mailbox_struct_type;
rte_swx_extern_type_constructor_t constructor;
rte_swx_extern_type_destructor_t destructor;
struct extern_type_member_func_tailq funcs;
uint32_t n_funcs;
};
TAILQ_HEAD(extern_type_tailq, extern_type);
struct extern_obj {
TAILQ_ENTRY(extern_obj) node;
char name[RTE_SWX_NAME_SIZE];
struct extern_type *type;
void *obj;
uint32_t struct_id;
uint32_t id;
};
TAILQ_HEAD(extern_obj_tailq, extern_obj);
#ifndef RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX
#define RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX 8
#endif
struct extern_obj_runtime {
void *obj;
uint8_t *mailbox;
rte_swx_extern_type_member_func_t funcs[RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX];
};
/*
* Extern function.
*/
struct extern_func {
TAILQ_ENTRY(extern_func) node;
char name[RTE_SWX_NAME_SIZE];
struct struct_type *mailbox_struct_type;
rte_swx_extern_func_t func;
uint32_t struct_id;
uint32_t id;
};
TAILQ_HEAD(extern_func_tailq, extern_func);
struct extern_func_runtime {
uint8_t *mailbox;
rte_swx_extern_func_t func;
};
/*
* Header.
*/
struct header {
TAILQ_ENTRY(header) node;
char name[RTE_SWX_NAME_SIZE];
struct struct_type *st;
uint32_t struct_id;
uint32_t id;
};
TAILQ_HEAD(header_tailq, header);
struct header_runtime {
uint8_t *ptr0;
};
struct header_out_runtime {
uint8_t *ptr0;
uint8_t *ptr;
uint32_t n_bytes;
};
/*
* Instruction.
*/
/* Packet headers are always in Network Byte Order (NBO), i.e. big endian.
* Packet meta-data fields are always assumed to be in Host Byte Order (HBO).
* Table entry fields can be in either NBO or HBO; they are assumed to be in HBO
* when transferred to packet meta-data and in NBO when transferred to packet
* headers.
*/
/* Notation conventions:
* -Header field: H = h.header.field (dst/src)
* -Meta-data field: M = m.field (dst/src)
* -Extern object mailbox field: E = e.field (dst/src)
* -Extern function mailbox field: F = f.field (dst/src)
* -Table action data field: T = t.field (src only)
* -Immediate value: I = 32-bit unsigned value (src only)
*/
enum instruction_type {
/* rx m.port_in */
INSTR_RX,
/* tx m.port_out */
INSTR_TX,
/* extract h.header */
INSTR_HDR_EXTRACT,
INSTR_HDR_EXTRACT2,
INSTR_HDR_EXTRACT3,
INSTR_HDR_EXTRACT4,
INSTR_HDR_EXTRACT5,
INSTR_HDR_EXTRACT6,
INSTR_HDR_EXTRACT7,
INSTR_HDR_EXTRACT8,
/* emit h.header */
INSTR_HDR_EMIT,
INSTR_HDR_EMIT_TX,
INSTR_HDR_EMIT2_TX,
INSTR_HDR_EMIT3_TX,
INSTR_HDR_EMIT4_TX,
INSTR_HDR_EMIT5_TX,
INSTR_HDR_EMIT6_TX,
INSTR_HDR_EMIT7_TX,
INSTR_HDR_EMIT8_TX,
/* validate h.header */
INSTR_HDR_VALIDATE,
/* invalidate h.header */
INSTR_HDR_INVALIDATE,
/* mov dst src
* dst = src
* dst = HMEF, src = HMEFTI
*/
INSTR_MOV, /* dst = MEF, src = MEFT */
INSTR_MOV_S, /* (dst, src) = (MEF, H) or (dst, src) = (H, MEFT) */
INSTR_MOV_I, /* dst = HMEF, src = I */
/* dma h.header t.field
* memcpy(h.header, t.field, sizeof(h.header))
*/
INSTR_DMA_HT,
INSTR_DMA_HT2,
INSTR_DMA_HT3,
INSTR_DMA_HT4,
INSTR_DMA_HT5,
INSTR_DMA_HT6,
INSTR_DMA_HT7,
INSTR_DMA_HT8,
/* add dst src
* dst += src
* dst = HMEF, src = HMEFTI
*/
INSTR_ALU_ADD, /* dst = MEF, src = MEF */
INSTR_ALU_ADD_MH, /* dst = MEF, src = H */
INSTR_ALU_ADD_HM, /* dst = H, src = MEF */
INSTR_ALU_ADD_HH, /* dst = H, src = H */
INSTR_ALU_ADD_MI, /* dst = MEF, src = I */
INSTR_ALU_ADD_HI, /* dst = H, src = I */
/* sub dst src
* dst -= src
* dst = HMEF, src = HMEFTI
*/
INSTR_ALU_SUB, /* dst = MEF, src = MEF */
INSTR_ALU_SUB_MH, /* dst = MEF, src = H */
INSTR_ALU_SUB_HM, /* dst = H, src = MEF */
INSTR_ALU_SUB_HH, /* dst = H, src = H */
INSTR_ALU_SUB_MI, /* dst = MEF, src = I */
INSTR_ALU_SUB_HI, /* dst = H, src = I */
/* ckadd dst src
* dst = dst '+ src[0:1] '+ src[2:3] + ...
* dst = H, src = {H, h.header}
*/
INSTR_ALU_CKADD_FIELD, /* src = H */
INSTR_ALU_CKADD_STRUCT20, /* src = h.header, with sizeof(header) = 20 */
INSTR_ALU_CKADD_STRUCT, /* src = h.hdeader, with any sizeof(header) */
};
struct instr_operand {
uint8_t struct_id;
uint8_t n_bits;
uint8_t offset;
uint8_t pad;
};
struct instr_io {
struct {
uint8_t offset;
uint8_t n_bits;
uint8_t pad[2];
} io;
struct {
uint8_t header_id[8];
uint8_t struct_id[8];
uint8_t n_bytes[8];
} hdr;
};
struct instr_hdr_validity {
uint8_t header_id;
};
struct instr_dst_src {
struct instr_operand dst;
union {
struct instr_operand src;
uint32_t src_val;
};
};
struct instr_dma {
struct {
uint8_t header_id[8];
uint8_t struct_id[8];
} dst;
struct {
uint8_t offset[8];
} src;
uint16_t n_bytes[8];
};
struct instruction {
enum instruction_type type;
union {
struct instr_io io;
struct instr_hdr_validity valid;
struct instr_dst_src mov;
struct instr_dma dma;
struct instr_dst_src alu;
};
};
struct instruction_data {
char label[RTE_SWX_NAME_SIZE];
char jmp_label[RTE_SWX_NAME_SIZE];
uint32_t n_users; /* user = jmp instruction to this instruction. */
int invalid;
};
/*
* Action.
*/
struct action {
TAILQ_ENTRY(action) node;
char name[RTE_SWX_NAME_SIZE];
struct struct_type *st;
struct instruction *instructions;
uint32_t n_instructions;
uint32_t id;
};
TAILQ_HEAD(action_tailq, action);
/*
* Table.
*/
struct table_type {
TAILQ_ENTRY(table_type) node;
char name[RTE_SWX_NAME_SIZE];
enum rte_swx_table_match_type match_type;
struct rte_swx_table_ops ops;
};
TAILQ_HEAD(table_type_tailq, table_type);
struct match_field {
enum rte_swx_table_match_type match_type;
struct field *field;
};
struct table {
TAILQ_ENTRY(table) node;
char name[RTE_SWX_NAME_SIZE];
char args[RTE_SWX_NAME_SIZE];
struct table_type *type; /* NULL when n_fields == 0. */
/* Match. */
struct match_field *fields;
uint32_t n_fields;
int is_header; /* Only valid when n_fields > 0. */
struct header *header; /* Only valid when n_fields > 0. */
/* Action. */
struct action **actions;
struct action *default_action;
uint8_t *default_action_data;
uint32_t n_actions;
int default_action_is_const;
uint32_t action_data_size_max;
uint32_t size;
uint32_t id;
};
TAILQ_HEAD(table_tailq, table);
struct table_runtime {
rte_swx_table_lookup_t func;
void *mailbox;
uint8_t **key;
};
/*
* Pipeline.
*/
struct thread {
/* Packet. */
struct rte_swx_pkt pkt;
uint8_t *ptr;
/* Structures. */
uint8_t **structs;
/* Packet headers. */
struct header_runtime *headers; /* Extracted or generated headers. */
struct header_out_runtime *headers_out; /* Emitted headers. */
uint8_t *header_storage;
uint8_t *header_out_storage;
uint64_t valid_headers;
uint32_t n_headers_out;
/* Packet meta-data. */
uint8_t *metadata;
/* Tables. */
struct table_runtime *tables;
struct rte_swx_table_state *table_state;
uint64_t action_id;
int hit; /* 0 = Miss, 1 = Hit. */
/* Extern objects and functions. */
struct extern_obj_runtime *extern_objs;
struct extern_func_runtime *extern_funcs;
/* Instructions. */
struct instruction *ip;
struct instruction *ret;
};
#define MASK64_BIT_GET(mask, pos) ((mask) & (1LLU << (pos)))
#define MASK64_BIT_SET(mask, pos) ((mask) | (1LLU << (pos)))
#define MASK64_BIT_CLR(mask, pos) ((mask) & ~(1LLU << (pos)))
#define ALU(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = dst64 & dst64_mask; \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->alu.src.n_bits); \
uint64_t src = src64 & src64_mask; \
\
uint64_t result = dst operator src; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (result & dst64_mask); \
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define ALU_S(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = dst64 & dst64_mask; \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src = ntoh64(src64) >> (64 - (ip)->alu.src.n_bits); \
\
uint64_t result = dst operator src; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (result & dst64_mask); \
}
#define ALU_MH ALU_S
#define ALU_HM(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = ntoh64(dst64) >> (64 - (ip)->alu.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->alu.src.n_bits); \
uint64_t src = src64 & src64_mask; \
\
uint64_t result = dst operator src; \
result = hton64(result << (64 - (ip)->alu.dst.n_bits)); \
\
*dst64_ptr = (dst64 & ~dst64_mask) | result; \
}
#define ALU_HH(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = ntoh64(dst64) >> (64 - (ip)->alu.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->alu.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->alu.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src = ntoh64(src64) >> (64 - (ip)->alu.src.n_bits); \
\
uint64_t result = dst operator src; \
result = hton64(result << (64 - (ip)->alu.dst.n_bits)); \
\
*dst64_ptr = (dst64 & ~dst64_mask) | result; \
}
#else
#define ALU_S ALU
#define ALU_MH ALU
#define ALU_HM ALU
#define ALU_HH ALU
#endif
#define ALU_I(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = dst64 & dst64_mask; \
\
uint64_t src = (ip)->alu.src_val; \
\
uint64_t result = dst operator src; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (result & dst64_mask); \
}
#define ALU_MI ALU_I
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define ALU_HI(thread, ip, operator) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->alu.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->alu.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->alu.dst.n_bits); \
uint64_t dst = ntoh64(dst64) >> (64 - (ip)->alu.dst.n_bits); \
\
uint64_t src = (ip)->alu.src_val; \
\
uint64_t result = dst operator src; \
result = hton64(result << (64 - (ip)->alu.dst.n_bits)); \
\
*dst64_ptr = (dst64 & ~dst64_mask) | result; \
}
#else
#define ALU_HI ALU_I
#endif
#define MOV(thread, ip) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src64_mask = UINT64_MAX >> (64 - (ip)->mov.src.n_bits); \
uint64_t src = src64 & src64_mask; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); \
}
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
#define MOV_S(thread, ip) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \
\
uint8_t *src_struct = (thread)->structs[(ip)->mov.src.struct_id]; \
uint64_t *src64_ptr = (uint64_t *)&src_struct[(ip)->mov.src.offset]; \
uint64_t src64 = *src64_ptr; \
uint64_t src = ntoh64(src64) >> (64 - (ip)->mov.src.n_bits); \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); \
}
#else
#define MOV_S MOV
#endif
#define MOV_I(thread, ip) \
{ \
uint8_t *dst_struct = (thread)->structs[(ip)->mov.dst.struct_id]; \
uint64_t *dst64_ptr = (uint64_t *)&dst_struct[(ip)->mov.dst.offset]; \
uint64_t dst64 = *dst64_ptr; \
uint64_t dst64_mask = UINT64_MAX >> (64 - (ip)->mov.dst.n_bits); \
\
uint64_t src = (ip)->mov.src_val; \
\
*dst64_ptr = (dst64 & ~dst64_mask) | (src & dst64_mask); \
}
#define METADATA_READ(thread, offset, n_bits) \
({ \
uint64_t *m64_ptr = (uint64_t *)&(thread)->metadata[offset]; \
uint64_t m64 = *m64_ptr; \
uint64_t m64_mask = UINT64_MAX >> (64 - (n_bits)); \
(m64 & m64_mask); \
})
#define METADATA_WRITE(thread, offset, n_bits, value) \
{ \
uint64_t *m64_ptr = (uint64_t *)&(thread)->metadata[offset]; \
uint64_t m64 = *m64_ptr; \
uint64_t m64_mask = UINT64_MAX >> (64 - (n_bits)); \
\
uint64_t m_new = value; \
\
*m64_ptr = (m64 & ~m64_mask) | (m_new & m64_mask); \
}
#ifndef RTE_SWX_PIPELINE_THREADS_MAX
#define RTE_SWX_PIPELINE_THREADS_MAX 16
#endif
struct rte_swx_pipeline {
struct struct_type_tailq struct_types;
struct port_in_type_tailq port_in_types;
struct port_in_tailq ports_in;
struct port_out_type_tailq port_out_types;
struct port_out_tailq ports_out;
struct extern_type_tailq extern_types;
struct extern_obj_tailq extern_objs;
struct extern_func_tailq extern_funcs;
struct header_tailq headers;
struct struct_type *metadata_st;
uint32_t metadata_struct_id;
struct action_tailq actions;
struct table_type_tailq table_types;
struct table_tailq tables;
struct port_in_runtime *in;
struct port_out_runtime *out;
struct instruction **action_instructions;
struct rte_swx_table_state *table_state;
struct instruction *instructions;
struct thread threads[RTE_SWX_PIPELINE_THREADS_MAX];
uint32_t n_structs;
uint32_t n_ports_in;
uint32_t n_ports_out;
uint32_t n_extern_objs;
uint32_t n_extern_funcs;
uint32_t n_actions;
uint32_t n_tables;
uint32_t n_headers;
uint32_t thread_id;
uint32_t port_id;
uint32_t n_instructions;
int build_done;
int numa_node;
};
/*
* Struct.
*/
static struct struct_type *
struct_type_find(struct rte_swx_pipeline *p, const char *name)
{
struct struct_type *elem;
TAILQ_FOREACH(elem, &p->struct_types, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
static struct field *
struct_type_field_find(struct struct_type *st, const char *name)
{
uint32_t i;
for (i = 0; i < st->n_fields; i++) {
struct field *f = &st->fields[i];
if (strcmp(f->name, name) == 0)
return f;
}
return NULL;
}
int
rte_swx_pipeline_struct_type_register(struct rte_swx_pipeline *p,
const char *name,
struct rte_swx_field_params *fields,
uint32_t n_fields)
{
struct struct_type *st;
uint32_t i;
CHECK(p, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK(fields, EINVAL);
CHECK(n_fields, EINVAL);
for (i = 0; i < n_fields; i++) {
struct rte_swx_field_params *f = &fields[i];
uint32_t j;
CHECK_NAME(f->name, EINVAL);
CHECK(f->n_bits, EINVAL);
CHECK(f->n_bits <= 64, EINVAL);
CHECK((f->n_bits & 7) == 0, EINVAL);
for (j = 0; j < i; j++) {
struct rte_swx_field_params *f_prev = &fields[j];
CHECK(strcmp(f->name, f_prev->name), EINVAL);
}
}
CHECK(!struct_type_find(p, name), EEXIST);
/* Node allocation. */
st = calloc(1, sizeof(struct struct_type));
CHECK(st, ENOMEM);
st->fields = calloc(n_fields, sizeof(struct field));
if (!st->fields) {
free(st);
CHECK(0, ENOMEM);
}
/* Node initialization. */
strcpy(st->name, name);
for (i = 0; i < n_fields; i++) {
struct field *dst = &st->fields[i];
struct rte_swx_field_params *src = &fields[i];
strcpy(dst->name, src->name);
dst->n_bits = src->n_bits;
dst->offset = st->n_bits;
st->n_bits += src->n_bits;
}
st->n_fields = n_fields;
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->struct_types, st, node);
return 0;
}
static int
struct_build(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
t->structs = calloc(p->n_structs, sizeof(uint8_t *));
CHECK(t->structs, ENOMEM);
}
return 0;
}
static void
struct_build_free(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
free(t->structs);
t->structs = NULL;
}
}
static void
struct_free(struct rte_swx_pipeline *p)
{
struct_build_free(p);
/* Struct types. */
for ( ; ; ) {
struct struct_type *elem;
elem = TAILQ_FIRST(&p->struct_types);
if (!elem)
break;
TAILQ_REMOVE(&p->struct_types, elem, node);
free(elem->fields);
free(elem);
}
}
/*
* Input port.
*/
static struct port_in_type *
port_in_type_find(struct rte_swx_pipeline *p, const char *name)
{
struct port_in_type *elem;
if (!name)
return NULL;
TAILQ_FOREACH(elem, &p->port_in_types, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
int
rte_swx_pipeline_port_in_type_register(struct rte_swx_pipeline *p,
const char *name,
struct rte_swx_port_in_ops *ops)
{
struct port_in_type *elem;
CHECK(p, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK(ops, EINVAL);
CHECK(ops->create, EINVAL);
CHECK(ops->free, EINVAL);
CHECK(ops->pkt_rx, EINVAL);
CHECK(ops->stats_read, EINVAL);
CHECK(!port_in_type_find(p, name), EEXIST);
/* Node allocation. */
elem = calloc(1, sizeof(struct port_in_type));
CHECK(elem, ENOMEM);
/* Node initialization. */
strcpy(elem->name, name);
memcpy(&elem->ops, ops, sizeof(*ops));
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->port_in_types, elem, node);
return 0;
}
static struct port_in *
port_in_find(struct rte_swx_pipeline *p, uint32_t port_id)
{
struct port_in *port;
TAILQ_FOREACH(port, &p->ports_in, node)
if (port->id == port_id)
return port;
return NULL;
}
int
rte_swx_pipeline_port_in_config(struct rte_swx_pipeline *p,
uint32_t port_id,
const char *port_type_name,
void *args)
{
struct port_in_type *type = NULL;
struct port_in *port = NULL;
void *obj = NULL;
CHECK(p, EINVAL);
CHECK(!port_in_find(p, port_id), EINVAL);
CHECK_NAME(port_type_name, EINVAL);
type = port_in_type_find(p, port_type_name);
CHECK(type, EINVAL);
obj = type->ops.create(args);
CHECK(obj, ENODEV);
/* Node allocation. */
port = calloc(1, sizeof(struct port_in));
CHECK(port, ENOMEM);
/* Node initialization. */
port->type = type;
port->obj = obj;
port->id = port_id;
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->ports_in, port, node);
if (p->n_ports_in < port_id + 1)
p->n_ports_in = port_id + 1;
return 0;
}
static int
port_in_build(struct rte_swx_pipeline *p)
{
struct port_in *port;
uint32_t i;
CHECK(p->n_ports_in, EINVAL);
CHECK(rte_is_power_of_2(p->n_ports_in), EINVAL);
for (i = 0; i < p->n_ports_in; i++)
CHECK(port_in_find(p, i), EINVAL);
p->in = calloc(p->n_ports_in, sizeof(struct port_in_runtime));
CHECK(p->in, ENOMEM);
TAILQ_FOREACH(port, &p->ports_in, node) {
struct port_in_runtime *in = &p->in[port->id];
in->pkt_rx = port->type->ops.pkt_rx;
in->obj = port->obj;
}
return 0;
}
static void
port_in_build_free(struct rte_swx_pipeline *p)
{
free(p->in);
p->in = NULL;
}
static void
port_in_free(struct rte_swx_pipeline *p)
{
port_in_build_free(p);
/* Input ports. */
for ( ; ; ) {
struct port_in *port;
port = TAILQ_FIRST(&p->ports_in);
if (!port)
break;
TAILQ_REMOVE(&p->ports_in, port, node);
port->type->ops.free(port->obj);
free(port);
}
/* Input port types. */
for ( ; ; ) {
struct port_in_type *elem;
elem = TAILQ_FIRST(&p->port_in_types);
if (!elem)
break;
TAILQ_REMOVE(&p->port_in_types, elem, node);
free(elem);
}
}
/*
* Output port.
*/
static struct port_out_type *
port_out_type_find(struct rte_swx_pipeline *p, const char *name)
{
struct port_out_type *elem;
if (!name)
return NULL;
TAILQ_FOREACH(elem, &p->port_out_types, node)
if (!strcmp(elem->name, name))
return elem;
return NULL;
}
int
rte_swx_pipeline_port_out_type_register(struct rte_swx_pipeline *p,
const char *name,
struct rte_swx_port_out_ops *ops)
{
struct port_out_type *elem;
CHECK(p, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK(ops, EINVAL);
CHECK(ops->create, EINVAL);
CHECK(ops->free, EINVAL);
CHECK(ops->pkt_tx, EINVAL);
CHECK(ops->stats_read, EINVAL);
CHECK(!port_out_type_find(p, name), EEXIST);
/* Node allocation. */
elem = calloc(1, sizeof(struct port_out_type));
CHECK(elem, ENOMEM);
/* Node initialization. */
strcpy(elem->name, name);
memcpy(&elem->ops, ops, sizeof(*ops));
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->port_out_types, elem, node);
return 0;
}
static struct port_out *
port_out_find(struct rte_swx_pipeline *p, uint32_t port_id)
{
struct port_out *port;
TAILQ_FOREACH(port, &p->ports_out, node)
if (port->id == port_id)
return port;
return NULL;
}
int
rte_swx_pipeline_port_out_config(struct rte_swx_pipeline *p,
uint32_t port_id,
const char *port_type_name,
void *args)
{
struct port_out_type *type = NULL;
struct port_out *port = NULL;
void *obj = NULL;
CHECK(p, EINVAL);
CHECK(!port_out_find(p, port_id), EINVAL);
CHECK_NAME(port_type_name, EINVAL);
type = port_out_type_find(p, port_type_name);
CHECK(type, EINVAL);
obj = type->ops.create(args);
CHECK(obj, ENODEV);
/* Node allocation. */
port = calloc(1, sizeof(struct port_out));
CHECK(port, ENOMEM);
/* Node initialization. */
port->type = type;
port->obj = obj;
port->id = port_id;
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->ports_out, port, node);
if (p->n_ports_out < port_id + 1)
p->n_ports_out = port_id + 1;
return 0;
}
static int
port_out_build(struct rte_swx_pipeline *p)
{
struct port_out *port;
uint32_t i;
CHECK(p->n_ports_out, EINVAL);
for (i = 0; i < p->n_ports_out; i++)
CHECK(port_out_find(p, i), EINVAL);
p->out = calloc(p->n_ports_out, sizeof(struct port_out_runtime));
CHECK(p->out, ENOMEM);
TAILQ_FOREACH(port, &p->ports_out, node) {
struct port_out_runtime *out = &p->out[port->id];
out->pkt_tx = port->type->ops.pkt_tx;
out->flush = port->type->ops.flush;
out->obj = port->obj;
}
return 0;
}
static void
port_out_build_free(struct rte_swx_pipeline *p)
{
free(p->out);
p->out = NULL;
}
static void
port_out_free(struct rte_swx_pipeline *p)
{
port_out_build_free(p);
/* Output ports. */
for ( ; ; ) {
struct port_out *port;
port = TAILQ_FIRST(&p->ports_out);
if (!port)
break;
TAILQ_REMOVE(&p->ports_out, port, node);
port->type->ops.free(port->obj);
free(port);
}
/* Output port types. */
for ( ; ; ) {
struct port_out_type *elem;
elem = TAILQ_FIRST(&p->port_out_types);
if (!elem)
break;
TAILQ_REMOVE(&p->port_out_types, elem, node);
free(elem);
}
}
/*
* Extern object.
*/
static struct extern_type *
extern_type_find(struct rte_swx_pipeline *p, const char *name)
{
struct extern_type *elem;
TAILQ_FOREACH(elem, &p->extern_types, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
static struct extern_type_member_func *
extern_type_member_func_find(struct extern_type *type, const char *name)
{
struct extern_type_member_func *elem;
TAILQ_FOREACH(elem, &type->funcs, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
static struct extern_obj *
extern_obj_find(struct rte_swx_pipeline *p, const char *name)
{
struct extern_obj *elem;
TAILQ_FOREACH(elem, &p->extern_objs, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
static struct field *
extern_obj_mailbox_field_parse(struct rte_swx_pipeline *p,
const char *name,
struct extern_obj **object)
{
struct extern_obj *obj;
struct field *f;
char *obj_name, *field_name;
if ((name[0] != 'e') || (name[1] != '.'))
return NULL;
obj_name = strdup(&name[2]);
if (!obj_name)
return NULL;
field_name = strchr(obj_name, '.');
if (!field_name) {
free(obj_name);
return NULL;
}
*field_name = 0;
field_name++;
obj = extern_obj_find(p, obj_name);
if (!obj) {
free(obj_name);
return NULL;
}
f = struct_type_field_find(obj->type->mailbox_struct_type, field_name);
if (!f) {
free(obj_name);
return NULL;
}
if (object)
*object = obj;
free(obj_name);
return f;
}
int
rte_swx_pipeline_extern_type_register(struct rte_swx_pipeline *p,
const char *name,
const char *mailbox_struct_type_name,
rte_swx_extern_type_constructor_t constructor,
rte_swx_extern_type_destructor_t destructor)
{
struct extern_type *elem;
struct struct_type *mailbox_struct_type;
CHECK(p, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK(!extern_type_find(p, name), EEXIST);
CHECK_NAME(mailbox_struct_type_name, EINVAL);
mailbox_struct_type = struct_type_find(p, mailbox_struct_type_name);
CHECK(mailbox_struct_type, EINVAL);
CHECK(constructor, EINVAL);
CHECK(destructor, EINVAL);
/* Node allocation. */
elem = calloc(1, sizeof(struct extern_type));
CHECK(elem, ENOMEM);
/* Node initialization. */
strcpy(elem->name, name);
elem->mailbox_struct_type = mailbox_struct_type;
elem->constructor = constructor;
elem->destructor = destructor;
TAILQ_INIT(&elem->funcs);
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->extern_types, elem, node);
return 0;
}
int
rte_swx_pipeline_extern_type_member_func_register(struct rte_swx_pipeline *p,
const char *extern_type_name,
const char *name,
rte_swx_extern_type_member_func_t member_func)
{
struct extern_type *type;
struct extern_type_member_func *type_member;
CHECK(p, EINVAL);
CHECK(extern_type_name, EINVAL);
type = extern_type_find(p, extern_type_name);
CHECK(type, EINVAL);
CHECK(type->n_funcs < RTE_SWX_EXTERN_TYPE_MEMBER_FUNCS_MAX, ENOSPC);
CHECK(name, EINVAL);
CHECK(!extern_type_member_func_find(type, name), EEXIST);
CHECK(member_func, EINVAL);
/* Node allocation. */
type_member = calloc(1, sizeof(struct extern_type_member_func));
CHECK(type_member, ENOMEM);
/* Node initialization. */
strcpy(type_member->name, name);
type_member->func = member_func;
type_member->id = type->n_funcs;
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&type->funcs, type_member, node);
type->n_funcs++;
return 0;
}
int
rte_swx_pipeline_extern_object_config(struct rte_swx_pipeline *p,
const char *extern_type_name,
const char *name,
const char *args)
{
struct extern_type *type;
struct extern_obj *obj;
void *obj_handle;
CHECK(p, EINVAL);
CHECK_NAME(extern_type_name, EINVAL);
type = extern_type_find(p, extern_type_name);
CHECK(type, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK(!extern_obj_find(p, name), EEXIST);
/* Node allocation. */
obj = calloc(1, sizeof(struct extern_obj));
CHECK(obj, ENOMEM);
/* Object construction. */
obj_handle = type->constructor(args);
if (!obj_handle) {
free(obj);
CHECK(0, ENODEV);
}
/* Node initialization. */
strcpy(obj->name, name);
obj->type = type;
obj->obj = obj_handle;
obj->struct_id = p->n_structs;
obj->id = p->n_extern_objs;
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->extern_objs, obj, node);
p->n_extern_objs++;
p->n_structs++;
return 0;
}
static int
extern_obj_build(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
struct extern_obj *obj;
t->extern_objs = calloc(p->n_extern_objs,
sizeof(struct extern_obj_runtime));
CHECK(t->extern_objs, ENOMEM);
TAILQ_FOREACH(obj, &p->extern_objs, node) {
struct extern_obj_runtime *r =
&t->extern_objs[obj->id];
struct extern_type_member_func *func;
uint32_t mailbox_size =
obj->type->mailbox_struct_type->n_bits / 8;
r->obj = obj->obj;
r->mailbox = calloc(1, mailbox_size);
CHECK(r->mailbox, ENOMEM);
TAILQ_FOREACH(func, &obj->type->funcs, node)
r->funcs[func->id] = func->func;
t->structs[obj->struct_id] = r->mailbox;
}
}
return 0;
}
static void
extern_obj_build_free(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
uint32_t j;
if (!t->extern_objs)
continue;
for (j = 0; j < p->n_extern_objs; j++) {
struct extern_obj_runtime *r = &t->extern_objs[j];
free(r->mailbox);
}
free(t->extern_objs);
t->extern_objs = NULL;
}
}
static void
extern_obj_free(struct rte_swx_pipeline *p)
{
extern_obj_build_free(p);
/* Extern objects. */
for ( ; ; ) {
struct extern_obj *elem;
elem = TAILQ_FIRST(&p->extern_objs);
if (!elem)
break;
TAILQ_REMOVE(&p->extern_objs, elem, node);
if (elem->obj)
elem->type->destructor(elem->obj);
free(elem);
}
/* Extern types. */
for ( ; ; ) {
struct extern_type *elem;
elem = TAILQ_FIRST(&p->extern_types);
if (!elem)
break;
TAILQ_REMOVE(&p->extern_types, elem, node);
for ( ; ; ) {
struct extern_type_member_func *func;
func = TAILQ_FIRST(&elem->funcs);
if (!func)
break;
TAILQ_REMOVE(&elem->funcs, func, node);
free(func);
}
free(elem);
}
}
/*
* Extern function.
*/
static struct extern_func *
extern_func_find(struct rte_swx_pipeline *p, const char *name)
{
struct extern_func *elem;
TAILQ_FOREACH(elem, &p->extern_funcs, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
static struct field *
extern_func_mailbox_field_parse(struct rte_swx_pipeline *p,
const char *name,
struct extern_func **function)
{
struct extern_func *func;
struct field *f;
char *func_name, *field_name;
if ((name[0] != 'f') || (name[1] != '.'))
return NULL;
func_name = strdup(&name[2]);
if (!func_name)
return NULL;
field_name = strchr(func_name, '.');
if (!field_name) {
free(func_name);
return NULL;
}
*field_name = 0;
field_name++;
func = extern_func_find(p, func_name);
if (!func) {
free(func_name);
return NULL;
}
f = struct_type_field_find(func->mailbox_struct_type, field_name);
if (!f) {
free(func_name);
return NULL;
}
if (function)
*function = func;
free(func_name);
return f;
}
int
rte_swx_pipeline_extern_func_register(struct rte_swx_pipeline *p,
const char *name,
const char *mailbox_struct_type_name,
rte_swx_extern_func_t func)
{
struct extern_func *f;
struct struct_type *mailbox_struct_type;
CHECK(p, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK(!extern_func_find(p, name), EEXIST);
CHECK_NAME(mailbox_struct_type_name, EINVAL);
mailbox_struct_type = struct_type_find(p, mailbox_struct_type_name);
CHECK(mailbox_struct_type, EINVAL);
CHECK(func, EINVAL);
/* Node allocation. */
f = calloc(1, sizeof(struct extern_func));
CHECK(func, ENOMEM);
/* Node initialization. */
strcpy(f->name, name);
f->mailbox_struct_type = mailbox_struct_type;
f->func = func;
f->struct_id = p->n_structs;
f->id = p->n_extern_funcs;
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->extern_funcs, f, node);
p->n_extern_funcs++;
p->n_structs++;
return 0;
}
static int
extern_func_build(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
struct extern_func *func;
/* Memory allocation. */
t->extern_funcs = calloc(p->n_extern_funcs,
sizeof(struct extern_func_runtime));
CHECK(t->extern_funcs, ENOMEM);
/* Extern function. */
TAILQ_FOREACH(func, &p->extern_funcs, node) {
struct extern_func_runtime *r =
&t->extern_funcs[func->id];
uint32_t mailbox_size =
func->mailbox_struct_type->n_bits / 8;
r->func = func->func;
r->mailbox = calloc(1, mailbox_size);
CHECK(r->mailbox, ENOMEM);
t->structs[func->struct_id] = r->mailbox;
}
}
return 0;
}
static void
extern_func_build_free(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
uint32_t j;
if (!t->extern_funcs)
continue;
for (j = 0; j < p->n_extern_funcs; j++) {
struct extern_func_runtime *r = &t->extern_funcs[j];
free(r->mailbox);
}
free(t->extern_funcs);
t->extern_funcs = NULL;
}
}
static void
extern_func_free(struct rte_swx_pipeline *p)
{
extern_func_build_free(p);
for ( ; ; ) {
struct extern_func *elem;
elem = TAILQ_FIRST(&p->extern_funcs);
if (!elem)
break;
TAILQ_REMOVE(&p->extern_funcs, elem, node);
free(elem);
}
}
/*
* Header.
*/
static struct header *
header_find(struct rte_swx_pipeline *p, const char *name)
{
struct header *elem;
TAILQ_FOREACH(elem, &p->headers, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
static struct header *
header_parse(struct rte_swx_pipeline *p,
const char *name)
{
if (name[0] != 'h' || name[1] != '.')
return NULL;
return header_find(p, &name[2]);
}
static struct field *
header_field_parse(struct rte_swx_pipeline *p,
const char *name,
struct header **header)
{
struct header *h;
struct field *f;
char *header_name, *field_name;
if ((name[0] != 'h') || (name[1] != '.'))
return NULL;
header_name = strdup(&name[2]);
if (!header_name)
return NULL;
field_name = strchr(header_name, '.');
if (!field_name) {
free(header_name);
return NULL;
}
*field_name = 0;
field_name++;
h = header_find(p, header_name);
if (!h) {
free(header_name);
return NULL;
}
f = struct_type_field_find(h->st, field_name);
if (!f) {
free(header_name);
return NULL;
}
if (header)
*header = h;
free(header_name);
return f;
}
int
rte_swx_pipeline_packet_header_register(struct rte_swx_pipeline *p,
const char *name,
const char *struct_type_name)
{
struct struct_type *st;
struct header *h;
size_t n_headers_max;
CHECK(p, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK_NAME(struct_type_name, EINVAL);
CHECK(!header_find(p, name), EEXIST);
st = struct_type_find(p, struct_type_name);
CHECK(st, EINVAL);
n_headers_max = RTE_SIZEOF_FIELD(struct thread, valid_headers) * 8;
CHECK(p->n_headers < n_headers_max, ENOSPC);
/* Node allocation. */
h = calloc(1, sizeof(struct header));
CHECK(h, ENOMEM);
/* Node initialization. */
strcpy(h->name, name);
h->st = st;
h->struct_id = p->n_structs;
h->id = p->n_headers;
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->headers, h, node);
p->n_headers++;
p->n_structs++;
return 0;
}
static int
header_build(struct rte_swx_pipeline *p)
{
struct header *h;
uint32_t n_bytes = 0, i;
TAILQ_FOREACH(h, &p->headers, node) {
n_bytes += h->st->n_bits / 8;
}
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
uint32_t offset = 0;
t->headers = calloc(p->n_headers,
sizeof(struct header_runtime));
CHECK(t->headers, ENOMEM);
t->headers_out = calloc(p->n_headers,
sizeof(struct header_out_runtime));
CHECK(t->headers_out, ENOMEM);
t->header_storage = calloc(1, n_bytes);
CHECK(t->header_storage, ENOMEM);
t->header_out_storage = calloc(1, n_bytes);
CHECK(t->header_out_storage, ENOMEM);
TAILQ_FOREACH(h, &p->headers, node) {
uint8_t *header_storage;
header_storage = &t->header_storage[offset];
offset += h->st->n_bits / 8;
t->headers[h->id].ptr0 = header_storage;
t->structs[h->struct_id] = header_storage;
}
}
return 0;
}
static void
header_build_free(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
free(t->headers_out);
t->headers_out = NULL;
free(t->headers);
t->headers = NULL;
free(t->header_out_storage);
t->header_out_storage = NULL;
free(t->header_storage);
t->header_storage = NULL;
}
}
static void
header_free(struct rte_swx_pipeline *p)
{
header_build_free(p);
for ( ; ; ) {
struct header *elem;
elem = TAILQ_FIRST(&p->headers);
if (!elem)
break;
TAILQ_REMOVE(&p->headers, elem, node);
free(elem);
}
}
/*
* Meta-data.
*/
static struct field *
metadata_field_parse(struct rte_swx_pipeline *p, const char *name)
{
if (!p->metadata_st)
return NULL;
if (name[0] != 'm' || name[1] != '.')
return NULL;
return struct_type_field_find(p->metadata_st, &name[2]);
}
int
rte_swx_pipeline_packet_metadata_register(struct rte_swx_pipeline *p,
const char *struct_type_name)
{
struct struct_type *st = NULL;
CHECK(p, EINVAL);
CHECK_NAME(struct_type_name, EINVAL);
st = struct_type_find(p, struct_type_name);
CHECK(st, EINVAL);
CHECK(!p->metadata_st, EINVAL);
p->metadata_st = st;
p->metadata_struct_id = p->n_structs;
p->n_structs++;
return 0;
}
static int
metadata_build(struct rte_swx_pipeline *p)
{
uint32_t n_bytes = p->metadata_st->n_bits / 8;
uint32_t i;
/* Thread-level initialization. */
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
uint8_t *metadata;
metadata = calloc(1, n_bytes);
CHECK(metadata, ENOMEM);
t->metadata = metadata;
t->structs[p->metadata_struct_id] = metadata;
}
return 0;
}
static void
metadata_build_free(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
free(t->metadata);
t->metadata = NULL;
}
}
static void
metadata_free(struct rte_swx_pipeline *p)
{
metadata_build_free(p);
}
/*
* Instruction.
*/
static struct field *
action_field_parse(struct action *action, const char *name);
static struct field *
struct_field_parse(struct rte_swx_pipeline *p,
struct action *action,
const char *name,
uint32_t *struct_id)
{
struct field *f;
switch (name[0]) {
case 'h':
{
struct header *header;
f = header_field_parse(p, name, &header);
if (!f)
return NULL;
*struct_id = header->struct_id;
return f;
}
case 'm':
{
f = metadata_field_parse(p, name);
if (!f)
return NULL;
*struct_id = p->metadata_struct_id;
return f;
}
case 't':
{
if (!action)
return NULL;
f = action_field_parse(action, name);
if (!f)
return NULL;
*struct_id = 0;
return f;
}
case 'e':
{
struct extern_obj *obj;
f = extern_obj_mailbox_field_parse(p, name, &obj);
if (!f)
return NULL;
*struct_id = obj->struct_id;
return f;
}
case 'f':
{
struct extern_func *func;
f = extern_func_mailbox_field_parse(p, name, &func);
if (!f)
return NULL;
*struct_id = func->struct_id;
return f;
}
default:
return NULL;
}
}
static inline void
pipeline_port_inc(struct rte_swx_pipeline *p)
{
p->port_id = (p->port_id + 1) & (p->n_ports_in - 1);
}
static inline void
thread_ip_reset(struct rte_swx_pipeline *p, struct thread *t)
{
t->ip = p->instructions;
}
static inline void
thread_ip_inc(struct rte_swx_pipeline *p);
static inline void
thread_ip_inc(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
t->ip++;
}
static inline void
thread_ip_inc_cond(struct thread *t, int cond)
{
t->ip += cond;
}
static inline void
thread_yield(struct rte_swx_pipeline *p)
{
p->thread_id = (p->thread_id + 1) & (RTE_SWX_PIPELINE_THREADS_MAX - 1);
}
/*
* rx.
*/
static int
instr_rx_translate(struct rte_swx_pipeline *p,
struct action *action,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
struct field *f;
CHECK(!action, EINVAL);
CHECK(n_tokens == 2, EINVAL);
f = metadata_field_parse(p, tokens[1]);
CHECK(f, EINVAL);
instr->type = INSTR_RX;
instr->io.io.offset = f->offset / 8;
instr->io.io.n_bits = f->n_bits;
return 0;
}
static inline void
instr_rx_exec(struct rte_swx_pipeline *p);
static inline void
instr_rx_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
struct port_in_runtime *port = &p->in[p->port_id];
struct rte_swx_pkt *pkt = &t->pkt;
int pkt_received;
/* Packet. */
pkt_received = port->pkt_rx(port->obj, pkt);
t->ptr = &pkt->pkt[pkt->offset];
rte_prefetch0(t->ptr);
TRACE("[Thread %2u] rx %s from port %u\n",
p->thread_id,
pkt_received ? "1 pkt" : "0 pkts",
p->port_id);
/* Headers. */
t->valid_headers = 0;
t->n_headers_out = 0;
/* Meta-data. */
METADATA_WRITE(t, ip->io.io.offset, ip->io.io.n_bits, p->port_id);
/* Tables. */
t->table_state = p->table_state;
/* Thread. */
pipeline_port_inc(p);
thread_ip_inc_cond(t, pkt_received);
thread_yield(p);
}
/*
* tx.
*/
static int
instr_tx_translate(struct rte_swx_pipeline *p,
struct action *action __rte_unused,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
struct field *f;
CHECK(n_tokens == 2, EINVAL);
f = metadata_field_parse(p, tokens[1]);
CHECK(f, EINVAL);
instr->type = INSTR_TX;
instr->io.io.offset = f->offset / 8;
instr->io.io.n_bits = f->n_bits;
return 0;
}
static inline void
emit_handler(struct thread *t)
{
struct header_out_runtime *h0 = &t->headers_out[0];
struct header_out_runtime *h1 = &t->headers_out[1];
uint32_t offset = 0, i;
/* No header change or header decapsulation. */
if ((t->n_headers_out == 1) &&
(h0->ptr + h0->n_bytes == t->ptr)) {
TRACE("Emit handler: no header change or header decap.\n");
t->pkt.offset -= h0->n_bytes;
t->pkt.length += h0->n_bytes;
return;
}
/* Header encapsulation (optionally, with prior header decasulation). */
if ((t->n_headers_out == 2) &&
(h1->ptr + h1->n_bytes == t->ptr) &&
(h0->ptr == h0->ptr0)) {
uint32_t offset;
TRACE("Emit handler: header encapsulation.\n");
offset = h0->n_bytes + h1->n_bytes;
memcpy(t->ptr - offset, h0->ptr, h0->n_bytes);
t->pkt.offset -= offset;
t->pkt.length += offset;
return;
}
/* Header insertion. */
/* TBD */
/* Header extraction. */
/* TBD */
/* For any other case. */
TRACE("Emit handler: complex case.\n");
for (i = 0; i < t->n_headers_out; i++) {
struct header_out_runtime *h = &t->headers_out[i];
memcpy(&t->header_out_storage[offset], h->ptr, h->n_bytes);
offset += h->n_bytes;
}
if (offset) {
memcpy(t->ptr - offset, t->header_out_storage, offset);
t->pkt.offset -= offset;
t->pkt.length += offset;
}
}
static inline void
instr_tx_exec(struct rte_swx_pipeline *p);
static inline void
instr_tx_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
uint64_t port_id = METADATA_READ(t, ip->io.io.offset, ip->io.io.n_bits);
struct port_out_runtime *port = &p->out[port_id];
struct rte_swx_pkt *pkt = &t->pkt;
TRACE("[Thread %2u]: tx 1 pkt to port %u\n",
p->thread_id,
(uint32_t)port_id);
/* Headers. */
emit_handler(t);
/* Packet. */
port->pkt_tx(port->obj, pkt);
/* Thread. */
thread_ip_reset(p, t);
instr_rx_exec(p);
}
/*
* extract.
*/
static int
instr_hdr_extract_translate(struct rte_swx_pipeline *p,
struct action *action,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
struct header *h;
CHECK(!action, EINVAL);
CHECK(n_tokens == 2, EINVAL);
h = header_parse(p, tokens[1]);
CHECK(h, EINVAL);
instr->type = INSTR_HDR_EXTRACT;
instr->io.hdr.header_id[0] = h->id;
instr->io.hdr.struct_id[0] = h->struct_id;
instr->io.hdr.n_bytes[0] = h->st->n_bits / 8;
return 0;
}
static inline void
__instr_hdr_extract_exec(struct rte_swx_pipeline *p, uint32_t n_extract);
static inline void
__instr_hdr_extract_exec(struct rte_swx_pipeline *p, uint32_t n_extract)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
uint64_t valid_headers = t->valid_headers;
uint8_t *ptr = t->ptr;
uint32_t offset = t->pkt.offset;
uint32_t length = t->pkt.length;
uint32_t i;
for (i = 0; i < n_extract; i++) {
uint32_t header_id = ip->io.hdr.header_id[i];
uint32_t struct_id = ip->io.hdr.struct_id[i];
uint32_t n_bytes = ip->io.hdr.n_bytes[i];
TRACE("[Thread %2u]: extract header %u (%u bytes)\n",
p->thread_id,
header_id,
n_bytes);
/* Headers. */
t->structs[struct_id] = ptr;
valid_headers = MASK64_BIT_SET(valid_headers, header_id);
/* Packet. */
offset += n_bytes;
length -= n_bytes;
ptr += n_bytes;
}
/* Headers. */
t->valid_headers = valid_headers;
/* Packet. */
t->pkt.offset = offset;
t->pkt.length = length;
t->ptr = ptr;
}
static inline void
instr_hdr_extract_exec(struct rte_swx_pipeline *p)
{
__instr_hdr_extract_exec(p, 1);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_hdr_extract2_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 2 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_extract_exec(p, 2);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_hdr_extract3_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 3 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_extract_exec(p, 3);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_hdr_extract4_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 4 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_extract_exec(p, 4);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_hdr_extract5_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 5 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_extract_exec(p, 5);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_hdr_extract6_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 6 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_extract_exec(p, 6);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_hdr_extract7_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 7 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_extract_exec(p, 7);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_hdr_extract8_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 8 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_extract_exec(p, 8);
/* Thread. */
thread_ip_inc(p);
}
/*
* emit.
*/
static int
instr_hdr_emit_translate(struct rte_swx_pipeline *p,
struct action *action __rte_unused,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
struct header *h;
CHECK(n_tokens == 2, EINVAL);
h = header_parse(p, tokens[1]);
CHECK(h, EINVAL);
instr->type = INSTR_HDR_EMIT;
instr->io.hdr.header_id[0] = h->id;
instr->io.hdr.struct_id[0] = h->struct_id;
instr->io.hdr.n_bytes[0] = h->st->n_bits / 8;
return 0;
}
static inline void
__instr_hdr_emit_exec(struct rte_swx_pipeline *p, uint32_t n_emit);
static inline void
__instr_hdr_emit_exec(struct rte_swx_pipeline *p, uint32_t n_emit)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
uint32_t n_headers_out = t->n_headers_out;
struct header_out_runtime *ho = &t->headers_out[n_headers_out - 1];
uint8_t *ho_ptr = NULL;
uint32_t ho_nbytes = 0, i;
for (i = 0; i < n_emit; i++) {
uint32_t header_id = ip->io.hdr.header_id[i];
uint32_t struct_id = ip->io.hdr.struct_id[i];
uint32_t n_bytes = ip->io.hdr.n_bytes[i];
struct header_runtime *hi = &t->headers[header_id];
uint8_t *hi_ptr = t->structs[struct_id];
TRACE("[Thread %2u]: emit header %u\n",
p->thread_id,
header_id);
/* Headers. */
if (!i) {
if (!t->n_headers_out) {
ho = &t->headers_out[0];
ho->ptr0 = hi->ptr0;
ho->ptr = hi_ptr;
ho_ptr = hi_ptr;
ho_nbytes = n_bytes;
n_headers_out = 1;
continue;
} else {
ho_ptr = ho->ptr;
ho_nbytes = ho->n_bytes;
}
}
if (ho_ptr + ho_nbytes == hi_ptr) {
ho_nbytes += n_bytes;
} else {
ho->n_bytes = ho_nbytes;
ho++;
ho->ptr0 = hi->ptr0;
ho->ptr = hi_ptr;
ho_ptr = hi_ptr;
ho_nbytes = n_bytes;
n_headers_out++;
}
}
ho->n_bytes = ho_nbytes;
t->n_headers_out = n_headers_out;
}
static inline void
instr_hdr_emit_exec(struct rte_swx_pipeline *p)
{
__instr_hdr_emit_exec(p, 1);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_hdr_emit_tx_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 2 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_emit_exec(p, 1);
instr_tx_exec(p);
}
static inline void
instr_hdr_emit2_tx_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 3 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_emit_exec(p, 2);
instr_tx_exec(p);
}
static inline void
instr_hdr_emit3_tx_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 4 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_emit_exec(p, 3);
instr_tx_exec(p);
}
static inline void
instr_hdr_emit4_tx_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 5 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_emit_exec(p, 4);
instr_tx_exec(p);
}
static inline void
instr_hdr_emit5_tx_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 6 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_emit_exec(p, 5);
instr_tx_exec(p);
}
static inline void
instr_hdr_emit6_tx_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 7 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_emit_exec(p, 6);
instr_tx_exec(p);
}
static inline void
instr_hdr_emit7_tx_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 8 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_emit_exec(p, 7);
instr_tx_exec(p);
}
static inline void
instr_hdr_emit8_tx_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 9 instructions are fused. ***\n",
p->thread_id);
__instr_hdr_emit_exec(p, 8);
instr_tx_exec(p);
}
/*
* validate.
*/
static int
instr_hdr_validate_translate(struct rte_swx_pipeline *p,
struct action *action __rte_unused,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
struct header *h;
CHECK(n_tokens == 2, EINVAL);
h = header_parse(p, tokens[1]);
CHECK(h, EINVAL);
instr->type = INSTR_HDR_VALIDATE;
instr->valid.header_id = h->id;
return 0;
}
static inline void
instr_hdr_validate_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
uint32_t header_id = ip->valid.header_id;
TRACE("[Thread %2u] validate header %u\n", p->thread_id, header_id);
/* Headers. */
t->valid_headers = MASK64_BIT_SET(t->valid_headers, header_id);
/* Thread. */
thread_ip_inc(p);
}
/*
* invalidate.
*/
static int
instr_hdr_invalidate_translate(struct rte_swx_pipeline *p,
struct action *action __rte_unused,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
struct header *h;
CHECK(n_tokens == 2, EINVAL);
h = header_parse(p, tokens[1]);
CHECK(h, EINVAL);
instr->type = INSTR_HDR_INVALIDATE;
instr->valid.header_id = h->id;
return 0;
}
static inline void
instr_hdr_invalidate_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
uint32_t header_id = ip->valid.header_id;
TRACE("[Thread %2u] invalidate header %u\n", p->thread_id, header_id);
/* Headers. */
t->valid_headers = MASK64_BIT_CLR(t->valid_headers, header_id);
/* Thread. */
thread_ip_inc(p);
}
/*
* mov.
*/
static int
instr_mov_translate(struct rte_swx_pipeline *p,
struct action *action,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
char *dst = tokens[1], *src = tokens[2];
struct field *fdst, *fsrc;
uint32_t dst_struct_id, src_struct_id, src_val;
CHECK(n_tokens == 3, EINVAL);
fdst = struct_field_parse(p, NULL, dst, &dst_struct_id);
CHECK(fdst, EINVAL);
/* MOV or MOV_S. */
fsrc = struct_field_parse(p, action, src, &src_struct_id);
if (fsrc) {
instr->type = INSTR_MOV;
if ((dst[0] == 'h' && src[0] != 'h') ||
(dst[0] != 'h' && src[0] == 'h'))
instr->type = INSTR_MOV_S;
instr->mov.dst.struct_id = (uint8_t)dst_struct_id;
instr->mov.dst.n_bits = fdst->n_bits;
instr->mov.dst.offset = fdst->offset / 8;
instr->mov.src.struct_id = (uint8_t)src_struct_id;
instr->mov.src.n_bits = fsrc->n_bits;
instr->mov.src.offset = fsrc->offset / 8;
return 0;
}
/* MOV_I. */
src_val = strtoul(src, &src, 0);
CHECK(!src[0], EINVAL);
if (dst[0] == 'h')
src_val = htonl(src_val);
instr->type = INSTR_MOV_I;
instr->mov.dst.struct_id = (uint8_t)dst_struct_id;
instr->mov.dst.n_bits = fdst->n_bits;
instr->mov.dst.offset = fdst->offset / 8;
instr->mov.src_val = (uint32_t)src_val;
return 0;
}
static inline void
instr_mov_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] mov\n",
p->thread_id);
MOV(t, ip);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_mov_s_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] mov (s)\n",
p->thread_id);
MOV_S(t, ip);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_mov_i_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] mov m.f %x\n",
p->thread_id,
ip->mov.src_val);
MOV_I(t, ip);
/* Thread. */
thread_ip_inc(p);
}
/*
* dma.
*/
static int
instr_dma_translate(struct rte_swx_pipeline *p,
struct action *action,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
char *dst = tokens[1];
char *src = tokens[2];
struct header *h;
struct field *tf;
CHECK(action, EINVAL);
CHECK(n_tokens == 3, EINVAL);
h = header_parse(p, dst);
CHECK(h, EINVAL);
tf = action_field_parse(action, src);
CHECK(tf, EINVAL);
instr->type = INSTR_DMA_HT;
instr->dma.dst.header_id[0] = h->id;
instr->dma.dst.struct_id[0] = h->struct_id;
instr->dma.n_bytes[0] = h->st->n_bits / 8;
instr->dma.src.offset[0] = tf->offset / 8;
return 0;
}
static inline void
__instr_dma_ht_exec(struct rte_swx_pipeline *p, uint32_t n_dma);
static inline void
__instr_dma_ht_exec(struct rte_swx_pipeline *p, uint32_t n_dma)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
uint8_t *action_data = t->structs[0];
uint64_t valid_headers = t->valid_headers;
uint32_t i;
for (i = 0; i < n_dma; i++) {
uint32_t header_id = ip->dma.dst.header_id[i];
uint32_t struct_id = ip->dma.dst.struct_id[i];
uint32_t offset = ip->dma.src.offset[i];
uint32_t n_bytes = ip->dma.n_bytes[i];
struct header_runtime *h = &t->headers[header_id];
uint8_t *h_ptr0 = h->ptr0;
uint8_t *h_ptr = t->structs[struct_id];
void *dst = MASK64_BIT_GET(valid_headers, header_id) ?
h_ptr : h_ptr0;
void *src = &action_data[offset];
TRACE("[Thread %2u] dma h.s t.f\n", p->thread_id);
/* Headers. */
memcpy(dst, src, n_bytes);
t->structs[struct_id] = dst;
valid_headers = MASK64_BIT_SET(valid_headers, header_id);
}
t->valid_headers = valid_headers;
}
static inline void
instr_dma_ht_exec(struct rte_swx_pipeline *p)
{
__instr_dma_ht_exec(p, 1);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_dma_ht2_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 2 instructions are fused. ***\n",
p->thread_id);
__instr_dma_ht_exec(p, 2);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_dma_ht3_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 3 instructions are fused. ***\n",
p->thread_id);
__instr_dma_ht_exec(p, 3);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_dma_ht4_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 4 instructions are fused. ***\n",
p->thread_id);
__instr_dma_ht_exec(p, 4);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_dma_ht5_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 5 instructions are fused. ***\n",
p->thread_id);
__instr_dma_ht_exec(p, 5);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_dma_ht6_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 6 instructions are fused. ***\n",
p->thread_id);
__instr_dma_ht_exec(p, 6);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_dma_ht7_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 7 instructions are fused. ***\n",
p->thread_id);
__instr_dma_ht_exec(p, 7);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_dma_ht8_exec(struct rte_swx_pipeline *p)
{
TRACE("[Thread %2u] *** The next 8 instructions are fused. ***\n",
p->thread_id);
__instr_dma_ht_exec(p, 8);
/* Thread. */
thread_ip_inc(p);
}
/*
* alu.
*/
static int
instr_alu_add_translate(struct rte_swx_pipeline *p,
struct action *action,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
char *dst = tokens[1], *src = tokens[2];
struct field *fdst, *fsrc;
uint32_t dst_struct_id, src_struct_id, src_val;
CHECK(n_tokens == 3, EINVAL);
fdst = struct_field_parse(p, NULL, dst, &dst_struct_id);
CHECK(fdst, EINVAL);
/* ADD, ADD_HM, ADD_MH, ADD_HH. */
fsrc = struct_field_parse(p, action, src, &src_struct_id);
if (fsrc) {
instr->type = INSTR_ALU_ADD;
if (dst[0] == 'h' && src[0] == 'm')
instr->type = INSTR_ALU_ADD_HM;
if (dst[0] == 'm' && src[0] == 'h')
instr->type = INSTR_ALU_ADD_MH;
if (dst[0] == 'h' && src[0] == 'h')
instr->type = INSTR_ALU_ADD_HH;
instr->alu.dst.struct_id = (uint8_t)dst_struct_id;
instr->alu.dst.n_bits = fdst->n_bits;
instr->alu.dst.offset = fdst->offset / 8;
instr->alu.src.struct_id = (uint8_t)src_struct_id;
instr->alu.src.n_bits = fsrc->n_bits;
instr->alu.src.offset = fsrc->offset / 8;
return 0;
}
/* ADD_MI, ADD_HI. */
src_val = strtoul(src, &src, 0);
CHECK(!src[0], EINVAL);
instr->type = INSTR_ALU_ADD_MI;
if (dst[0] == 'h')
instr->type = INSTR_ALU_ADD_HI;
instr->alu.dst.struct_id = (uint8_t)dst_struct_id;
instr->alu.dst.n_bits = fdst->n_bits;
instr->alu.dst.offset = fdst->offset / 8;
instr->alu.src_val = (uint32_t)src_val;
return 0;
}
static int
instr_alu_sub_translate(struct rte_swx_pipeline *p,
struct action *action,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
char *dst = tokens[1], *src = tokens[2];
struct field *fdst, *fsrc;
uint32_t dst_struct_id, src_struct_id, src_val;
CHECK(n_tokens == 3, EINVAL);
fdst = struct_field_parse(p, NULL, dst, &dst_struct_id);
CHECK(fdst, EINVAL);
/* SUB, SUB_HM, SUB_MH, SUB_HH. */
fsrc = struct_field_parse(p, action, src, &src_struct_id);
if (fsrc) {
instr->type = INSTR_ALU_SUB;
if (dst[0] == 'h' && src[0] == 'm')
instr->type = INSTR_ALU_SUB_HM;
if (dst[0] == 'm' && src[0] == 'h')
instr->type = INSTR_ALU_SUB_MH;
if (dst[0] == 'h' && src[0] == 'h')
instr->type = INSTR_ALU_SUB_HH;
instr->alu.dst.struct_id = (uint8_t)dst_struct_id;
instr->alu.dst.n_bits = fdst->n_bits;
instr->alu.dst.offset = fdst->offset / 8;
instr->alu.src.struct_id = (uint8_t)src_struct_id;
instr->alu.src.n_bits = fsrc->n_bits;
instr->alu.src.offset = fsrc->offset / 8;
return 0;
}
/* SUB_MI, SUB_HI. */
src_val = strtoul(src, &src, 0);
CHECK(!src[0], EINVAL);
instr->type = INSTR_ALU_SUB_MI;
if (dst[0] == 'h')
instr->type = INSTR_ALU_SUB_HI;
instr->alu.dst.struct_id = (uint8_t)dst_struct_id;
instr->alu.dst.n_bits = fdst->n_bits;
instr->alu.dst.offset = fdst->offset / 8;
instr->alu.src_val = (uint32_t)src_val;
return 0;
}
static int
instr_alu_ckadd_translate(struct rte_swx_pipeline *p,
struct action *action __rte_unused,
char **tokens,
int n_tokens,
struct instruction *instr,
struct instruction_data *data __rte_unused)
{
char *dst = tokens[1], *src = tokens[2];
struct header *hdst, *hsrc;
struct field *fdst, *fsrc;
CHECK(n_tokens == 3, EINVAL);
fdst = header_field_parse(p, dst, &hdst);
CHECK(fdst && (fdst->n_bits == 16), EINVAL);
/* CKADD_FIELD. */
fsrc = header_field_parse(p, src, &hsrc);
if (fsrc) {
instr->type = INSTR_ALU_CKADD_FIELD;
instr->alu.dst.struct_id = (uint8_t)hdst->struct_id;
instr->alu.dst.n_bits = fdst->n_bits;
instr->alu.dst.offset = fdst->offset / 8;
instr->alu.src.struct_id = (uint8_t)hsrc->struct_id;
instr->alu.src.n_bits = fsrc->n_bits;
instr->alu.src.offset = fsrc->offset / 8;
return 0;
}
/* CKADD_STRUCT, CKADD_STRUCT20. */
hsrc = header_parse(p, src);
CHECK(hsrc, EINVAL);
instr->type = INSTR_ALU_CKADD_STRUCT;
if ((hsrc->st->n_bits / 8) == 20)
instr->type = INSTR_ALU_CKADD_STRUCT20;
instr->alu.dst.struct_id = (uint8_t)hdst->struct_id;
instr->alu.dst.n_bits = fdst->n_bits;
instr->alu.dst.offset = fdst->offset / 8;
instr->alu.src.struct_id = (uint8_t)hsrc->struct_id;
instr->alu.src.n_bits = hsrc->st->n_bits;
instr->alu.src.offset = 0; /* Unused. */
return 0;
}
static inline void
instr_alu_add_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] add\n", p->thread_id);
/* Structs. */
ALU(t, ip, +);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_add_mh_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] add (mh)\n", p->thread_id);
/* Structs. */
ALU_MH(t, ip, +);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_add_hm_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] add (hm)\n", p->thread_id);
/* Structs. */
ALU_HM(t, ip, +);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_add_hh_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] add (hh)\n", p->thread_id);
/* Structs. */
ALU_HH(t, ip, +);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_add_mi_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] add (mi)\n", p->thread_id);
/* Structs. */
ALU_MI(t, ip, +);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_add_hi_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] add (hi)\n", p->thread_id);
/* Structs. */
ALU_HI(t, ip, +);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_sub_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] sub\n", p->thread_id);
/* Structs. */
ALU(t, ip, -);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_sub_mh_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] sub (mh)\n", p->thread_id);
/* Structs. */
ALU_MH(t, ip, -);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_sub_hm_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] sub (hm)\n", p->thread_id);
/* Structs. */
ALU_HM(t, ip, -);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_sub_hh_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] sub (hh)\n", p->thread_id);
/* Structs. */
ALU_HH(t, ip, -);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_sub_mi_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] sub (mi)\n", p->thread_id);
/* Structs. */
ALU_MI(t, ip, -);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_sub_hi_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
TRACE("[Thread %2u] sub (hi)\n", p->thread_id);
/* Structs. */
ALU_HI(t, ip, -);
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_ckadd_field_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
uint8_t *dst_struct, *src_struct;
uint16_t *dst16_ptr, dst;
uint64_t *src64_ptr, src64, src64_mask, src;
uint64_t r;
TRACE("[Thread %2u] ckadd (field)\n", p->thread_id);
/* Structs. */
dst_struct = t->structs[ip->alu.dst.struct_id];
dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset];
dst = *dst16_ptr;
src_struct = t->structs[ip->alu.src.struct_id];
src64_ptr = (uint64_t *)&src_struct[ip->alu.src.offset];
src64 = *src64_ptr;
src64_mask = UINT64_MAX >> (64 - ip->alu.src.n_bits);
src = src64 & src64_mask;
r = dst;
r = ~r & 0xFFFF;
/* The first input (r) is a 16-bit number. The second and the third
* inputs are 32-bit numbers. In the worst case scenario, the sum of the
* three numbers (output r) is a 34-bit number.
*/
r += (src >> 32) + (src & 0xFFFFFFFF);
/* The first input is a 16-bit number. The second input is an 18-bit
* number. In the worst case scenario, the sum of the two numbers is a
* 19-bit number.
*/
r = (r & 0xFFFF) + (r >> 16);
/* The first input is a 16-bit number (0 .. 0xFFFF). The second input is
* a 3-bit number (0 .. 7). Their sum is a 17-bit number (0 .. 0x10006).
*/
r = (r & 0xFFFF) + (r >> 16);
/* When the input r is (0 .. 0xFFFF), the output r is equal to the input
* r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 ..
* 0x10006), the output r is (0 .. 7). So no carry bit can be generated,
* therefore the output r is always a 16-bit number.
*/
r = (r & 0xFFFF) + (r >> 16);
r = ~r & 0xFFFF;
r = r ? r : 0xFFFF;
*dst16_ptr = (uint16_t)r;
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_ckadd_struct20_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
uint8_t *dst_struct, *src_struct;
uint16_t *dst16_ptr;
uint32_t *src32_ptr;
uint64_t r0, r1;
TRACE("[Thread %2u] ckadd (struct of 20 bytes)\n", p->thread_id);
/* Structs. */
dst_struct = t->structs[ip->alu.dst.struct_id];
dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset];
src_struct = t->structs[ip->alu.src.struct_id];
src32_ptr = (uint32_t *)&src_struct[0];
r0 = src32_ptr[0]; /* r0 is a 32-bit number. */
r1 = src32_ptr[1]; /* r1 is a 32-bit number. */
r0 += src32_ptr[2]; /* The output r0 is a 33-bit number. */
r1 += src32_ptr[3]; /* The output r1 is a 33-bit number. */
r0 += r1 + src32_ptr[4]; /* The output r0 is a 35-bit number. */
/* The first input is a 16-bit number. The second input is a 19-bit
* number. Their sum is a 20-bit number.
*/
r0 = (r0 & 0xFFFF) + (r0 >> 16);
/* The first input is a 16-bit number (0 .. 0xFFFF). The second input is
* a 4-bit number (0 .. 15). The sum is a 17-bit number (0 .. 0x1000E).
*/
r0 = (r0 & 0xFFFF) + (r0 >> 16);
/* When the input r is (0 .. 0xFFFF), the output r is equal to the input
* r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 ..
* 0x1000E), the output r is (0 .. 15). So no carry bit can be
* generated, therefore the output r is always a 16-bit number.
*/
r0 = (r0 & 0xFFFF) + (r0 >> 16);
r0 = ~r0 & 0xFFFF;
r0 = r0 ? r0 : 0xFFFF;
*dst16_ptr = (uint16_t)r0;
/* Thread. */
thread_ip_inc(p);
}
static inline void
instr_alu_ckadd_struct_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
uint8_t *dst_struct, *src_struct;
uint16_t *dst16_ptr;
uint32_t *src32_ptr;
uint64_t r = 0;
uint32_t i;
TRACE("[Thread %2u] ckadd (struct)\n", p->thread_id);
/* Structs. */
dst_struct = t->structs[ip->alu.dst.struct_id];
dst16_ptr = (uint16_t *)&dst_struct[ip->alu.dst.offset];
src_struct = t->structs[ip->alu.src.struct_id];
src32_ptr = (uint32_t *)&src_struct[0];
/* The max number of 32-bit words in a 256-byte header is 8 = 2^3.
* Therefore, in the worst case scenario, a 35-bit number is added to a
* 16-bit number (the input r), so the output r is 36-bit number.
*/
for (i = 0; i < ip->alu.src.n_bits / 32; i++, src32_ptr++)
r += *src32_ptr;
/* The first input is a 16-bit number. The second input is a 20-bit
* number. Their sum is a 21-bit number.
*/
r = (r & 0xFFFF) + (r >> 16);
/* The first input is a 16-bit number (0 .. 0xFFFF). The second input is
* a 5-bit number (0 .. 31). The sum is a 17-bit number (0 .. 0x1000E).
*/
r = (r & 0xFFFF) + (r >> 16);
/* When the input r is (0 .. 0xFFFF), the output r is equal to the input
* r, so the output is (0 .. 0xFFFF). When the input r is (0x10000 ..
* 0x1001E), the output r is (0 .. 31). So no carry bit can be
* generated, therefore the output r is always a 16-bit number.
*/
r = (r & 0xFFFF) + (r >> 16);
r = ~r & 0xFFFF;
r = r ? r : 0xFFFF;
*dst16_ptr = (uint16_t)r;
/* Thread. */
thread_ip_inc(p);
}
#define RTE_SWX_INSTRUCTION_TOKENS_MAX 16
static int
instr_translate(struct rte_swx_pipeline *p,
struct action *action,
char *string,
struct instruction *instr,
struct instruction_data *data)
{
char *tokens[RTE_SWX_INSTRUCTION_TOKENS_MAX];
int n_tokens = 0, tpos = 0;
/* Parse the instruction string into tokens. */
for ( ; ; ) {
char *token;
token = strtok_r(string, " \t\v", &string);
if (!token)
break;
CHECK(n_tokens < RTE_SWX_INSTRUCTION_TOKENS_MAX, EINVAL);
tokens[n_tokens] = token;
n_tokens++;
}
CHECK(n_tokens, EINVAL);
/* Handle the optional instruction label. */
if ((n_tokens >= 2) && !strcmp(tokens[1], ":")) {
strcpy(data->label, tokens[0]);
tpos += 2;
CHECK(n_tokens - tpos, EINVAL);
}
/* Identify the instruction type. */
if (!strcmp(tokens[tpos], "rx"))
return instr_rx_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "tx"))
return instr_tx_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "extract"))
return instr_hdr_extract_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "emit"))
return instr_hdr_emit_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "validate"))
return instr_hdr_validate_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "invalidate"))
return instr_hdr_invalidate_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "mov"))
return instr_mov_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "dma"))
return instr_dma_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "add"))
return instr_alu_add_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "sub"))
return instr_alu_sub_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
if (!strcmp(tokens[tpos], "ckadd"))
return instr_alu_ckadd_translate(p,
action,
&tokens[tpos],
n_tokens - tpos,
instr,
data);
CHECK(0, EINVAL);
}
static uint32_t
label_is_used(struct instruction_data *data, uint32_t n, const char *label)
{
uint32_t count = 0, i;
if (!label[0])
return 0;
for (i = 0; i < n; i++)
if (!strcmp(label, data[i].jmp_label))
count++;
return count;
}
static int
instr_label_check(struct instruction_data *instruction_data,
uint32_t n_instructions)
{
uint32_t i;
/* Check that all instruction labels are unique. */
for (i = 0; i < n_instructions; i++) {
struct instruction_data *data = &instruction_data[i];
char *label = data->label;
uint32_t j;
if (!label[0])
continue;
for (j = i + 1; j < n_instructions; j++)
CHECK(strcmp(label, data[j].label), EINVAL);
}
/* Get users for each instruction label. */
for (i = 0; i < n_instructions; i++) {
struct instruction_data *data = &instruction_data[i];
char *label = data->label;
data->n_users = label_is_used(instruction_data,
n_instructions,
label);
}
return 0;
}
static int
instruction_config(struct rte_swx_pipeline *p,
struct action *a,
const char **instructions,
uint32_t n_instructions)
{
struct instruction *instr = NULL;
struct instruction_data *data = NULL;
char *string = NULL;
int err = 0;
uint32_t i;
CHECK(n_instructions, EINVAL);
CHECK(instructions, EINVAL);
for (i = 0; i < n_instructions; i++)
CHECK(instructions[i], EINVAL);
/* Memory allocation. */
instr = calloc(n_instructions, sizeof(struct instruction));
if (!instr) {
err = ENOMEM;
goto error;
}
data = calloc(n_instructions, sizeof(struct instruction_data));
if (!data) {
err = ENOMEM;
goto error;
}
for (i = 0; i < n_instructions; i++) {
string = strdup(instructions[i]);
if (!string) {
err = ENOMEM;
goto error;
}
err = instr_translate(p, a, string, &instr[i], &data[i]);
if (err)
goto error;
free(string);
}
err = instr_label_check(data, n_instructions);
if (err)
goto error;
free(data);
if (a) {
a->instructions = instr;
a->n_instructions = n_instructions;
} else {
p->instructions = instr;
p->n_instructions = n_instructions;
}
return 0;
error:
free(string);
free(data);
free(instr);
return err;
}
typedef void (*instr_exec_t)(struct rte_swx_pipeline *);
static instr_exec_t instruction_table[] = {
[INSTR_RX] = instr_rx_exec,
[INSTR_TX] = instr_tx_exec,
[INSTR_HDR_EXTRACT] = instr_hdr_extract_exec,
[INSTR_HDR_EXTRACT2] = instr_hdr_extract2_exec,
[INSTR_HDR_EXTRACT3] = instr_hdr_extract3_exec,
[INSTR_HDR_EXTRACT4] = instr_hdr_extract4_exec,
[INSTR_HDR_EXTRACT5] = instr_hdr_extract5_exec,
[INSTR_HDR_EXTRACT6] = instr_hdr_extract6_exec,
[INSTR_HDR_EXTRACT7] = instr_hdr_extract7_exec,
[INSTR_HDR_EXTRACT8] = instr_hdr_extract8_exec,
[INSTR_HDR_EMIT] = instr_hdr_emit_exec,
[INSTR_HDR_EMIT_TX] = instr_hdr_emit_tx_exec,
[INSTR_HDR_EMIT2_TX] = instr_hdr_emit2_tx_exec,
[INSTR_HDR_EMIT3_TX] = instr_hdr_emit3_tx_exec,
[INSTR_HDR_EMIT4_TX] = instr_hdr_emit4_tx_exec,
[INSTR_HDR_EMIT5_TX] = instr_hdr_emit5_tx_exec,
[INSTR_HDR_EMIT6_TX] = instr_hdr_emit6_tx_exec,
[INSTR_HDR_EMIT7_TX] = instr_hdr_emit7_tx_exec,
[INSTR_HDR_EMIT8_TX] = instr_hdr_emit8_tx_exec,
[INSTR_HDR_VALIDATE] = instr_hdr_validate_exec,
[INSTR_HDR_INVALIDATE] = instr_hdr_invalidate_exec,
[INSTR_MOV] = instr_mov_exec,
[INSTR_MOV_S] = instr_mov_s_exec,
[INSTR_MOV_I] = instr_mov_i_exec,
[INSTR_DMA_HT] = instr_dma_ht_exec,
[INSTR_DMA_HT2] = instr_dma_ht2_exec,
[INSTR_DMA_HT3] = instr_dma_ht3_exec,
[INSTR_DMA_HT4] = instr_dma_ht4_exec,
[INSTR_DMA_HT5] = instr_dma_ht5_exec,
[INSTR_DMA_HT6] = instr_dma_ht6_exec,
[INSTR_DMA_HT7] = instr_dma_ht7_exec,
[INSTR_DMA_HT8] = instr_dma_ht8_exec,
[INSTR_ALU_ADD] = instr_alu_add_exec,
[INSTR_ALU_ADD_MH] = instr_alu_add_mh_exec,
[INSTR_ALU_ADD_HM] = instr_alu_add_hm_exec,
[INSTR_ALU_ADD_HH] = instr_alu_add_hh_exec,
[INSTR_ALU_ADD_MI] = instr_alu_add_mi_exec,
[INSTR_ALU_ADD_HI] = instr_alu_add_hi_exec,
[INSTR_ALU_SUB] = instr_alu_sub_exec,
[INSTR_ALU_SUB_MH] = instr_alu_sub_mh_exec,
[INSTR_ALU_SUB_HM] = instr_alu_sub_hm_exec,
[INSTR_ALU_SUB_HH] = instr_alu_sub_hh_exec,
[INSTR_ALU_SUB_MI] = instr_alu_sub_mi_exec,
[INSTR_ALU_SUB_HI] = instr_alu_sub_hi_exec,
[INSTR_ALU_CKADD_FIELD] = instr_alu_ckadd_field_exec,
[INSTR_ALU_CKADD_STRUCT] = instr_alu_ckadd_struct_exec,
[INSTR_ALU_CKADD_STRUCT20] = instr_alu_ckadd_struct20_exec,
};
static inline void
instr_exec(struct rte_swx_pipeline *p)
{
struct thread *t = &p->threads[p->thread_id];
struct instruction *ip = t->ip;
instr_exec_t instr = instruction_table[ip->type];
instr(p);
}
/*
* Action.
*/
static struct action *
action_find(struct rte_swx_pipeline *p, const char *name)
{
struct action *elem;
if (!name)
return NULL;
TAILQ_FOREACH(elem, &p->actions, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
static struct field *
action_field_find(struct action *a, const char *name)
{
return a->st ? struct_type_field_find(a->st, name) : NULL;
}
static struct field *
action_field_parse(struct action *action, const char *name)
{
if (name[0] != 't' || name[1] != '.')
return NULL;
return action_field_find(action, &name[2]);
}
int
rte_swx_pipeline_action_config(struct rte_swx_pipeline *p,
const char *name,
const char *args_struct_type_name,
const char **instructions,
uint32_t n_instructions)
{
struct struct_type *args_struct_type;
struct action *a;
int err;
CHECK(p, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK(!action_find(p, name), EEXIST);
if (args_struct_type_name) {
CHECK_NAME(args_struct_type_name, EINVAL);
args_struct_type = struct_type_find(p, args_struct_type_name);
CHECK(args_struct_type, EINVAL);
} else {
args_struct_type = NULL;
}
/* Node allocation. */
a = calloc(1, sizeof(struct action));
CHECK(a, ENOMEM);
/* Node initialization. */
strcpy(a->name, name);
a->st = args_struct_type;
a->id = p->n_actions;
/* Instruction translation. */
err = instruction_config(p, a, instructions, n_instructions);
if (err) {
free(a);
return err;
}
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->actions, a, node);
p->n_actions++;
return 0;
}
static int
action_build(struct rte_swx_pipeline *p)
{
struct action *action;
p->action_instructions = calloc(p->n_actions,
sizeof(struct instruction *));
CHECK(p->action_instructions, ENOMEM);
TAILQ_FOREACH(action, &p->actions, node)
p->action_instructions[action->id] = action->instructions;
return 0;
}
static void
action_build_free(struct rte_swx_pipeline *p)
{
free(p->action_instructions);
p->action_instructions = NULL;
}
static void
action_free(struct rte_swx_pipeline *p)
{
action_build_free(p);
for ( ; ; ) {
struct action *action;
action = TAILQ_FIRST(&p->actions);
if (!action)
break;
TAILQ_REMOVE(&p->actions, action, node);
free(action->instructions);
free(action);
}
}
/*
* Table.
*/
static struct table_type *
table_type_find(struct rte_swx_pipeline *p, const char *name)
{
struct table_type *elem;
TAILQ_FOREACH(elem, &p->table_types, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
static struct table_type *
table_type_resolve(struct rte_swx_pipeline *p,
const char *recommended_type_name,
enum rte_swx_table_match_type match_type)
{
struct table_type *elem;
/* Only consider the recommended type if the match type is correct. */
if (recommended_type_name)
TAILQ_FOREACH(elem, &p->table_types, node)
if (!strcmp(elem->name, recommended_type_name) &&
(elem->match_type == match_type))
return elem;
/* Ignore the recommended type and get the first element with this match
* type.
*/
TAILQ_FOREACH(elem, &p->table_types, node)
if (elem->match_type == match_type)
return elem;
return NULL;
}
static struct table *
table_find(struct rte_swx_pipeline *p, const char *name)
{
struct table *elem;
TAILQ_FOREACH(elem, &p->tables, node)
if (strcmp(elem->name, name) == 0)
return elem;
return NULL;
}
static struct table *
table_find_by_id(struct rte_swx_pipeline *p, uint32_t id)
{
struct table *table = NULL;
TAILQ_FOREACH(table, &p->tables, node)
if (table->id == id)
return table;
return NULL;
}
int
rte_swx_pipeline_table_type_register(struct rte_swx_pipeline *p,
const char *name,
enum rte_swx_table_match_type match_type,
struct rte_swx_table_ops *ops)
{
struct table_type *elem;
CHECK(p, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK(!table_type_find(p, name), EEXIST);
CHECK(ops, EINVAL);
CHECK(ops->create, EINVAL);
CHECK(ops->lkp, EINVAL);
CHECK(ops->free, EINVAL);
/* Node allocation. */
elem = calloc(1, sizeof(struct table_type));
CHECK(elem, ENOMEM);
/* Node initialization. */
strcpy(elem->name, name);
elem->match_type = match_type;
memcpy(&elem->ops, ops, sizeof(*ops));
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->table_types, elem, node);
return 0;
}
static enum rte_swx_table_match_type
table_match_type_resolve(struct rte_swx_match_field_params *fields,
uint32_t n_fields)
{
uint32_t i;
for (i = 0; i < n_fields; i++)
if (fields[i].match_type != RTE_SWX_TABLE_MATCH_EXACT)
break;
if (i == n_fields)
return RTE_SWX_TABLE_MATCH_EXACT;
if ((i == n_fields - 1) &&
(fields[i].match_type == RTE_SWX_TABLE_MATCH_LPM))
return RTE_SWX_TABLE_MATCH_LPM;
return RTE_SWX_TABLE_MATCH_WILDCARD;
}
int
rte_swx_pipeline_table_config(struct rte_swx_pipeline *p,
const char *name,
struct rte_swx_pipeline_table_params *params,
const char *recommended_table_type_name,
const char *args,
uint32_t size)
{
struct table_type *type;
struct table *t;
struct action *default_action;
struct header *header = NULL;
int is_header = 0;
uint32_t offset_prev = 0, action_data_size_max = 0, i;
CHECK(p, EINVAL);
CHECK_NAME(name, EINVAL);
CHECK(!table_find(p, name), EEXIST);
CHECK(params, EINVAL);
/* Match checks. */
CHECK(!params->n_fields || params->fields, EINVAL);
for (i = 0; i < params->n_fields; i++) {
struct rte_swx_match_field_params *field = &params->fields[i];
struct header *h;
struct field *hf, *mf;
uint32_t offset;
CHECK_NAME(field->name, EINVAL);
hf = header_field_parse(p, field->name, &h);
mf = metadata_field_parse(p, field->name);
CHECK(hf || mf, EINVAL);
offset = hf ? hf->offset : mf->offset;
if (i == 0) {
is_header = hf ? 1 : 0;
header = hf ? h : NULL;
offset_prev = offset;
continue;
}
CHECK((is_header && hf && (h->id == header->id)) ||
(!is_header && mf), EINVAL);
CHECK(offset > offset_prev, EINVAL);
offset_prev = offset;
}
/* Action checks. */
CHECK(params->n_actions, EINVAL);
CHECK(params->action_names, EINVAL);
for (i = 0; i < params->n_actions; i++) {
const char *action_name = params->action_names[i];
struct action *a;
uint32_t action_data_size;
CHECK(action_name, EINVAL);
a = action_find(p, action_name);
CHECK(a, EINVAL);
action_data_size = a->st ? a->st->n_bits / 8 : 0;
if (action_data_size > action_data_size_max)
action_data_size_max = action_data_size;
}
CHECK(params->default_action_name, EINVAL);
for (i = 0; i < p->n_actions; i++)
if (!strcmp(params->action_names[i],
params->default_action_name))
break;
CHECK(i < params->n_actions, EINVAL);
default_action = action_find(p, params->default_action_name);
CHECK((default_action->st && params->default_action_data) ||
!params->default_action_data, EINVAL);
/* Table type checks. */
if (params->n_fields) {
enum rte_swx_table_match_type match_type;
match_type = table_match_type_resolve(params->fields,
params->n_fields);
type = table_type_resolve(p,
recommended_table_type_name,
match_type);
CHECK(type, EINVAL);
} else {
type = NULL;
}
/* Memory allocation. */
t = calloc(1, sizeof(struct table));
CHECK(t, ENOMEM);
t->fields = calloc(params->n_fields, sizeof(struct match_field));
if (!t->fields) {
free(t);
CHECK(0, ENOMEM);
}
t->actions = calloc(params->n_actions, sizeof(struct action *));
if (!t->actions) {
free(t->fields);
free(t);
CHECK(0, ENOMEM);
}
if (action_data_size_max) {
t->default_action_data = calloc(1, action_data_size_max);
if (!t->default_action_data) {
free(t->actions);
free(t->fields);
free(t);
CHECK(0, ENOMEM);
}
}
/* Node initialization. */
strcpy(t->name, name);
if (args && args[0])
strcpy(t->args, args);
t->type = type;
for (i = 0; i < params->n_fields; i++) {
struct rte_swx_match_field_params *field = &params->fields[i];
struct match_field *f = &t->fields[i];
f->match_type = field->match_type;
f->field = is_header ?
header_field_parse(p, field->name, NULL) :
metadata_field_parse(p, field->name);
}
t->n_fields = params->n_fields;
t->is_header = is_header;
t->header = header;
for (i = 0; i < params->n_actions; i++)
t->actions[i] = action_find(p, params->action_names[i]);
t->default_action = default_action;
if (default_action->st)
memcpy(t->default_action_data,
params->default_action_data,
default_action->st->n_bits / 8);
t->n_actions = params->n_actions;
t->default_action_is_const = params->default_action_is_const;
t->action_data_size_max = action_data_size_max;
t->size = size;
t->id = p->n_tables;
/* Node add to tailq. */
TAILQ_INSERT_TAIL(&p->tables, t, node);
p->n_tables++;
return 0;
}
static struct rte_swx_table_params *
table_params_get(struct table *table)
{
struct rte_swx_table_params *params;
struct field *first, *last;
uint8_t *key_mask;
uint32_t key_size, key_offset, action_data_size, i;
/* Memory allocation. */
params = calloc(1, sizeof(struct rte_swx_table_params));
if (!params)
return NULL;
/* Key offset and size. */
first = table->fields[0].field;
last = table->fields[table->n_fields - 1].field;
key_offset = first->offset / 8;
key_size = (last->offset + last->n_bits - first->offset) / 8;
/* Memory allocation. */
key_mask = calloc(1, key_size);
if (!key_mask) {
free(params);
return NULL;
}
/* Key mask. */
for (i = 0; i < table->n_fields; i++) {
struct field *f = table->fields[i].field;
uint32_t start = (f->offset - first->offset) / 8;
size_t size = f->n_bits / 8;
memset(&key_mask[start], 0xFF, size);
}
/* Action data size. */
action_data_size = 0;
for (i = 0; i < table->n_actions; i++) {
struct action *action = table->actions[i];
uint32_t ads = action->st ? action->st->n_bits / 8 : 0;
if (ads > action_data_size)
action_data_size = ads;
}
/* Fill in. */
params->match_type = table->type->match_type;
params->key_size = key_size;
params->key_offset = key_offset;
params->key_mask0 = key_mask;
params->action_data_size = action_data_size;
params->n_keys_max = table->size;
return params;
}
static void
table_params_free(struct rte_swx_table_params *params)
{
if (!params)
return;
free(params->key_mask0);
free(params);
}
static int
table_state_build(struct rte_swx_pipeline *p)
{
struct table *table;
p->table_state = calloc(p->n_tables,
sizeof(struct rte_swx_table_state));
CHECK(p->table_state, ENOMEM);
TAILQ_FOREACH(table, &p->tables, node) {
struct rte_swx_table_state *ts = &p->table_state[table->id];
if (table->type) {
struct rte_swx_table_params *params;
/* ts->obj. */
params = table_params_get(table);
CHECK(params, ENOMEM);
ts->obj = table->type->ops.create(params,
NULL,
table->args,
p->numa_node);
table_params_free(params);
CHECK(ts->obj, ENODEV);
}
/* ts->default_action_data. */
if (table->action_data_size_max) {
ts->default_action_data =
malloc(table->action_data_size_max);
CHECK(ts->default_action_data, ENOMEM);
memcpy(ts->default_action_data,
table->default_action_data,
table->action_data_size_max);
}
/* ts->default_action_id. */
ts->default_action_id = table->default_action->id;
}
return 0;
}
static void
table_state_build_free(struct rte_swx_pipeline *p)
{
uint32_t i;
if (!p->table_state)
return;
for (i = 0; i < p->n_tables; i++) {
struct rte_swx_table_state *ts = &p->table_state[i];
struct table *table = table_find_by_id(p, i);
/* ts->obj. */
if (table->type && ts->obj)
table->type->ops.free(ts->obj);
/* ts->default_action_data. */
free(ts->default_action_data);
}
free(p->table_state);
p->table_state = NULL;
}
static void
table_state_free(struct rte_swx_pipeline *p)
{
table_state_build_free(p);
}
static int
table_stub_lkp(void *table __rte_unused,
void *mailbox __rte_unused,
uint8_t **key __rte_unused,
uint64_t *action_id __rte_unused,
uint8_t **action_data __rte_unused,
int *hit)
{
*hit = 0;
return 1; /* DONE. */
}
static int
table_build(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
struct table *table;
t->tables = calloc(p->n_tables, sizeof(struct table_runtime));
CHECK(t->tables, ENOMEM);
TAILQ_FOREACH(table, &p->tables, node) {
struct table_runtime *r = &t->tables[table->id];
if (table->type) {
uint64_t size;
size = table->type->ops.mailbox_size_get();
/* r->func. */
r->func = table->type->ops.lkp;
/* r->mailbox. */
if (size) {
r->mailbox = calloc(1, size);
CHECK(r->mailbox, ENOMEM);
}
/* r->key. */
r->key = table->is_header ?
&t->structs[table->header->struct_id] :
&t->structs[p->metadata_struct_id];
} else {
r->func = table_stub_lkp;
}
}
}
return 0;
}
static void
table_build_free(struct rte_swx_pipeline *p)
{
uint32_t i;
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
uint32_t j;
if (!t->tables)
continue;
for (j = 0; j < p->n_tables; j++) {
struct table_runtime *r = &t->tables[j];
free(r->mailbox);
}
free(t->tables);
t->tables = NULL;
}
}
static void
table_free(struct rte_swx_pipeline *p)
{
table_build_free(p);
/* Tables. */
for ( ; ; ) {
struct table *elem;
elem = TAILQ_FIRST(&p->tables);
if (!elem)
break;
TAILQ_REMOVE(&p->tables, elem, node);
free(elem->fields);
free(elem->actions);
free(elem->default_action_data);
free(elem);
}
/* Table types. */
for ( ; ; ) {
struct table_type *elem;
elem = TAILQ_FIRST(&p->table_types);
if (!elem)
break;
TAILQ_REMOVE(&p->table_types, elem, node);
free(elem);
}
}
/*
* Pipeline.
*/
int
rte_swx_pipeline_config(struct rte_swx_pipeline **p, int numa_node)
{
struct rte_swx_pipeline *pipeline;
/* Check input parameters. */
CHECK(p, EINVAL);
/* Memory allocation. */
pipeline = calloc(1, sizeof(struct rte_swx_pipeline));
CHECK(pipeline, ENOMEM);
/* Initialization. */
TAILQ_INIT(&pipeline->struct_types);
TAILQ_INIT(&pipeline->port_in_types);
TAILQ_INIT(&pipeline->ports_in);
TAILQ_INIT(&pipeline->port_out_types);
TAILQ_INIT(&pipeline->ports_out);
TAILQ_INIT(&pipeline->extern_types);
TAILQ_INIT(&pipeline->extern_objs);
TAILQ_INIT(&pipeline->extern_funcs);
TAILQ_INIT(&pipeline->headers);
TAILQ_INIT(&pipeline->actions);
TAILQ_INIT(&pipeline->table_types);
TAILQ_INIT(&pipeline->tables);
pipeline->n_structs = 1; /* Struct 0 is reserved for action_data. */
pipeline->numa_node = numa_node;
*p = pipeline;
return 0;
}
void
rte_swx_pipeline_free(struct rte_swx_pipeline *p)
{
if (!p)
return;
free(p->instructions);
table_state_free(p);
table_free(p);
action_free(p);
metadata_free(p);
header_free(p);
extern_func_free(p);
extern_obj_free(p);
port_out_free(p);
port_in_free(p);
struct_free(p);
free(p);
}
int
rte_swx_pipeline_instructions_config(struct rte_swx_pipeline *p,
const char **instructions,
uint32_t n_instructions)
{
int err;
uint32_t i;
err = instruction_config(p, NULL, instructions, n_instructions);
if (err)
return err;
/* Thread instruction pointer reset. */
for (i = 0; i < RTE_SWX_PIPELINE_THREADS_MAX; i++) {
struct thread *t = &p->threads[i];
thread_ip_reset(p, t);
}
return 0;
}
int
rte_swx_pipeline_build(struct rte_swx_pipeline *p)
{
int status;
CHECK(p, EINVAL);
CHECK(p->build_done == 0, EEXIST);
status = port_in_build(p);
if (status)
goto error;
status = port_out_build(p);
if (status)
goto error;
status = struct_build(p);
if (status)
goto error;
status = extern_obj_build(p);
if (status)
goto error;
status = extern_func_build(p);
if (status)
goto error;
status = header_build(p);
if (status)
goto error;
status = metadata_build(p);
if (status)
goto error;
status = action_build(p);
if (status)
goto error;
status = table_build(p);
if (status)
goto error;
status = table_state_build(p);
if (status)
goto error;
p->build_done = 1;
return 0;
error:
table_state_build_free(p);
table_build_free(p);
action_build_free(p);
metadata_build_free(p);
header_build_free(p);
extern_func_build_free(p);
extern_obj_build_free(p);
port_out_build_free(p);
port_in_build_free(p);
struct_build_free(p);
return status;
}
void
rte_swx_pipeline_run(struct rte_swx_pipeline *p, uint32_t n_instructions)
{
uint32_t i;
for (i = 0; i < n_instructions; i++)
instr_exec(p);
}
/*
* Control.
*/
int
rte_swx_pipeline_table_state_get(struct rte_swx_pipeline *p,
struct rte_swx_table_state **table_state)
{
if (!p || !table_state || !p->build_done)
return -EINVAL;
*table_state = p->table_state;
return 0;
}
int
rte_swx_pipeline_table_state_set(struct rte_swx_pipeline *p,
struct rte_swx_table_state *table_state)
{
if (!p || !table_state || !p->build_done)
return -EINVAL;
p->table_state = table_state;
return 0;
}