numam-dpdk/examples/ipsec-secgw/sa.c

1292 lines
30 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
/*
* Security Associations
*/
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <rte_memzone.h>
#include <rte_crypto.h>
#include <rte_security.h>
#include <rte_cryptodev.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_ip.h>
#include <rte_random.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include "ipsec.h"
#include "esp.h"
#include "parser.h"
#define IPDEFTTL 64
struct supported_cipher_algo {
const char *keyword;
enum rte_crypto_cipher_algorithm algo;
uint16_t iv_len;
uint16_t block_size;
uint16_t key_len;
};
struct supported_auth_algo {
const char *keyword;
enum rte_crypto_auth_algorithm algo;
uint16_t digest_len;
uint16_t key_len;
uint8_t key_not_req;
};
struct supported_aead_algo {
const char *keyword;
enum rte_crypto_aead_algorithm algo;
uint16_t iv_len;
uint16_t block_size;
uint16_t digest_len;
uint16_t key_len;
uint8_t aad_len;
};
const struct supported_cipher_algo cipher_algos[] = {
{
.keyword = "null",
.algo = RTE_CRYPTO_CIPHER_NULL,
.iv_len = 0,
.block_size = 4,
.key_len = 0
},
{
.keyword = "aes-128-cbc",
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
.iv_len = 16,
.block_size = 16,
.key_len = 16
},
{
.keyword = "aes-256-cbc",
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
.iv_len = 16,
.block_size = 16,
.key_len = 32
},
{
.keyword = "aes-128-ctr",
.algo = RTE_CRYPTO_CIPHER_AES_CTR,
.iv_len = 8,
.block_size = 4,
.key_len = 20
},
{
.keyword = "3des-cbc",
.algo = RTE_CRYPTO_CIPHER_3DES_CBC,
.iv_len = 8,
.block_size = 8,
.key_len = 24
}
};
const struct supported_auth_algo auth_algos[] = {
{
.keyword = "null",
.algo = RTE_CRYPTO_AUTH_NULL,
.digest_len = 0,
.key_len = 0,
.key_not_req = 1
},
{
.keyword = "sha1-hmac",
.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.digest_len = 12,
.key_len = 20
},
{
.keyword = "sha256-hmac",
.algo = RTE_CRYPTO_AUTH_SHA256_HMAC,
.digest_len = 12,
.key_len = 32
}
};
const struct supported_aead_algo aead_algos[] = {
{
.keyword = "aes-128-gcm",
.algo = RTE_CRYPTO_AEAD_AES_GCM,
.iv_len = 8,
.block_size = 4,
.key_len = 20,
.digest_len = 16,
.aad_len = 8,
}
};
struct ipsec_sa sa_out[IPSEC_SA_MAX_ENTRIES];
uint32_t nb_sa_out;
struct ipsec_sa sa_in[IPSEC_SA_MAX_ENTRIES];
uint32_t nb_sa_in;
static const struct supported_cipher_algo *
find_match_cipher_algo(const char *cipher_keyword)
{
size_t i;
for (i = 0; i < RTE_DIM(cipher_algos); i++) {
const struct supported_cipher_algo *algo =
&cipher_algos[i];
if (strcmp(cipher_keyword, algo->keyword) == 0)
return algo;
}
return NULL;
}
static const struct supported_auth_algo *
find_match_auth_algo(const char *auth_keyword)
{
size_t i;
for (i = 0; i < RTE_DIM(auth_algos); i++) {
const struct supported_auth_algo *algo =
&auth_algos[i];
if (strcmp(auth_keyword, algo->keyword) == 0)
return algo;
}
return NULL;
}
static const struct supported_aead_algo *
find_match_aead_algo(const char *aead_keyword)
{
size_t i;
for (i = 0; i < RTE_DIM(aead_algos); i++) {
const struct supported_aead_algo *algo =
&aead_algos[i];
if (strcmp(aead_keyword, algo->keyword) == 0)
return algo;
}
return NULL;
}
/** parse_key_string
* parse x:x:x:x.... hex number key string into uint8_t *key
* return:
* > 0: number of bytes parsed
* 0: failed
*/
static uint32_t
parse_key_string(const char *key_str, uint8_t *key)
{
const char *pt_start = key_str, *pt_end = key_str;
uint32_t nb_bytes = 0;
while (pt_end != NULL) {
char sub_str[3] = {0};
pt_end = strchr(pt_start, ':');
if (pt_end == NULL) {
if (strlen(pt_start) > 2)
return 0;
strncpy(sub_str, pt_start, 2);
} else {
if (pt_end - pt_start > 2)
return 0;
strncpy(sub_str, pt_start, pt_end - pt_start);
pt_start = pt_end + 1;
}
key[nb_bytes++] = strtol(sub_str, NULL, 16);
}
return nb_bytes;
}
void
parse_sa_tokens(char **tokens, uint32_t n_tokens,
struct parse_status *status)
{
struct ipsec_sa *rule = NULL;
uint32_t ti; /*token index*/
uint32_t *ri /*rule index*/;
uint32_t cipher_algo_p = 0;
uint32_t auth_algo_p = 0;
uint32_t aead_algo_p = 0;
uint32_t src_p = 0;
uint32_t dst_p = 0;
uint32_t mode_p = 0;
uint32_t type_p = 0;
uint32_t portid_p = 0;
if (strcmp(tokens[0], "in") == 0) {
ri = &nb_sa_in;
APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
"too many sa rules, abort insertion\n");
if (status->status < 0)
return;
rule = &sa_in[*ri];
} else {
ri = &nb_sa_out;
APP_CHECK(*ri <= IPSEC_SA_MAX_ENTRIES - 1, status,
"too many sa rules, abort insertion\n");
if (status->status < 0)
return;
rule = &sa_out[*ri];
}
/* spi number */
APP_CHECK_TOKEN_IS_NUM(tokens, 1, status);
if (status->status < 0)
return;
if (atoi(tokens[1]) == INVALID_SPI)
return;
rule->spi = atoi(tokens[1]);
for (ti = 2; ti < n_tokens; ti++) {
if (strcmp(tokens[ti], "mode") == 0) {
APP_CHECK_PRESENCE(mode_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
if (strcmp(tokens[ti], "ipv4-tunnel") == 0)
rule->flags = IP4_TUNNEL;
else if (strcmp(tokens[ti], "ipv6-tunnel") == 0)
rule->flags = IP6_TUNNEL;
else if (strcmp(tokens[ti], "transport") == 0)
rule->flags = TRANSPORT;
else {
APP_CHECK(0, status, "unrecognized "
"input \"%s\"", tokens[ti]);
return;
}
mode_p = 1;
continue;
}
if (strcmp(tokens[ti], "cipher_algo") == 0) {
const struct supported_cipher_algo *algo;
uint32_t key_len;
APP_CHECK_PRESENCE(cipher_algo_p, tokens[ti],
status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
algo = find_match_cipher_algo(tokens[ti]);
APP_CHECK(algo != NULL, status, "unrecognized "
"input \"%s\"", tokens[ti]);
rule->cipher_algo = algo->algo;
rule->block_size = algo->block_size;
rule->iv_len = algo->iv_len;
rule->cipher_key_len = algo->key_len;
/* for NULL algorithm, no cipher key required */
if (rule->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
cipher_algo_p = 1;
continue;
}
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK(strcmp(tokens[ti], "cipher_key") == 0,
status, "unrecognized input \"%s\", "
"expect \"cipher_key\"", tokens[ti]);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
key_len = parse_key_string(tokens[ti],
rule->cipher_key);
APP_CHECK(key_len == rule->cipher_key_len, status,
"unrecognized input \"%s\"", tokens[ti]);
if (status->status < 0)
return;
if (algo->algo == RTE_CRYPTO_CIPHER_AES_CBC ||
algo->algo == RTE_CRYPTO_CIPHER_3DES_CBC)
rule->salt = (uint32_t)rte_rand();
if (algo->algo == RTE_CRYPTO_CIPHER_AES_CTR) {
key_len -= 4;
rule->cipher_key_len = key_len;
memcpy(&rule->salt,
&rule->cipher_key[key_len], 4);
}
cipher_algo_p = 1;
continue;
}
if (strcmp(tokens[ti], "auth_algo") == 0) {
const struct supported_auth_algo *algo;
uint32_t key_len;
APP_CHECK_PRESENCE(auth_algo_p, tokens[ti],
status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
algo = find_match_auth_algo(tokens[ti]);
APP_CHECK(algo != NULL, status, "unrecognized "
"input \"%s\"", tokens[ti]);
rule->auth_algo = algo->algo;
rule->auth_key_len = algo->key_len;
rule->digest_len = algo->digest_len;
/* NULL algorithm and combined algos do not
* require auth key
*/
if (algo->key_not_req) {
auth_algo_p = 1;
continue;
}
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK(strcmp(tokens[ti], "auth_key") == 0,
status, "unrecognized input \"%s\", "
"expect \"auth_key\"", tokens[ti]);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
key_len = parse_key_string(tokens[ti],
rule->auth_key);
APP_CHECK(key_len == rule->auth_key_len, status,
"unrecognized input \"%s\"", tokens[ti]);
if (status->status < 0)
return;
auth_algo_p = 1;
continue;
}
if (strcmp(tokens[ti], "aead_algo") == 0) {
const struct supported_aead_algo *algo;
uint32_t key_len;
APP_CHECK_PRESENCE(aead_algo_p, tokens[ti],
status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
algo = find_match_aead_algo(tokens[ti]);
APP_CHECK(algo != NULL, status, "unrecognized "
"input \"%s\"", tokens[ti]);
rule->aead_algo = algo->algo;
rule->cipher_key_len = algo->key_len;
rule->digest_len = algo->digest_len;
rule->aad_len = algo->aad_len;
rule->block_size = algo->block_size;
rule->iv_len = algo->iv_len;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
APP_CHECK(strcmp(tokens[ti], "aead_key") == 0,
status, "unrecognized input \"%s\", "
"expect \"aead_key\"", tokens[ti]);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
key_len = parse_key_string(tokens[ti],
rule->cipher_key);
APP_CHECK(key_len == rule->cipher_key_len, status,
"unrecognized input \"%s\"", tokens[ti]);
if (status->status < 0)
return;
key_len -= 4;
rule->cipher_key_len = key_len;
memcpy(&rule->salt,
&rule->cipher_key[key_len], 4);
aead_algo_p = 1;
continue;
}
if (strcmp(tokens[ti], "src") == 0) {
APP_CHECK_PRESENCE(src_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
if (rule->flags == IP4_TUNNEL) {
struct in_addr ip;
APP_CHECK(parse_ipv4_addr(tokens[ti],
&ip, NULL) == 0, status,
"unrecognized input \"%s\", "
"expect valid ipv4 addr",
tokens[ti]);
if (status->status < 0)
return;
rule->src.ip.ip4 = rte_bswap32(
(uint32_t)ip.s_addr);
} else if (rule->flags == IP6_TUNNEL) {
struct in6_addr ip;
APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
NULL) == 0, status,
"unrecognized input \"%s\", "
"expect valid ipv6 addr",
tokens[ti]);
if (status->status < 0)
return;
memcpy(rule->src.ip.ip6.ip6_b,
ip.s6_addr, 16);
} else if (rule->flags == TRANSPORT) {
APP_CHECK(0, status, "unrecognized input "
"\"%s\"", tokens[ti]);
return;
}
src_p = 1;
continue;
}
if (strcmp(tokens[ti], "dst") == 0) {
APP_CHECK_PRESENCE(dst_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
if (rule->flags == IP4_TUNNEL) {
struct in_addr ip;
APP_CHECK(parse_ipv4_addr(tokens[ti],
&ip, NULL) == 0, status,
"unrecognized input \"%s\", "
"expect valid ipv4 addr",
tokens[ti]);
if (status->status < 0)
return;
rule->dst.ip.ip4 = rte_bswap32(
(uint32_t)ip.s_addr);
} else if (rule->flags == IP6_TUNNEL) {
struct in6_addr ip;
APP_CHECK(parse_ipv6_addr(tokens[ti], &ip,
NULL) == 0, status,
"unrecognized input \"%s\", "
"expect valid ipv6 addr",
tokens[ti]);
if (status->status < 0)
return;
memcpy(rule->dst.ip.ip6.ip6_b, ip.s6_addr, 16);
} else if (rule->flags == TRANSPORT) {
APP_CHECK(0, status, "unrecognized "
"input \"%s\"", tokens[ti]);
return;
}
dst_p = 1;
continue;
}
if (strcmp(tokens[ti], "type") == 0) {
APP_CHECK_PRESENCE(type_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
if (strcmp(tokens[ti], "inline-crypto-offload") == 0)
rule->type =
RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO;
else if (strcmp(tokens[ti],
"inline-protocol-offload") == 0)
rule->type =
RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL;
else if (strcmp(tokens[ti],
"lookaside-protocol-offload") == 0)
rule->type =
RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL;
else if (strcmp(tokens[ti], "no-offload") == 0)
rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
else {
APP_CHECK(0, status, "Invalid input \"%s\"",
tokens[ti]);
return;
}
type_p = 1;
continue;
}
if (strcmp(tokens[ti], "port_id") == 0) {
APP_CHECK_PRESENCE(portid_p, tokens[ti], status);
if (status->status < 0)
return;
INCREMENT_TOKEN_INDEX(ti, n_tokens, status);
if (status->status < 0)
return;
rule->portid = atoi(tokens[ti]);
if (status->status < 0)
return;
portid_p = 1;
continue;
}
/* unrecognizeable input */
APP_CHECK(0, status, "unrecognized input \"%s\"",
tokens[ti]);
return;
}
if (aead_algo_p) {
APP_CHECK(cipher_algo_p == 0, status,
"AEAD used, no need for cipher options");
if (status->status < 0)
return;
APP_CHECK(auth_algo_p == 0, status,
"AEAD used, no need for auth options");
if (status->status < 0)
return;
} else {
APP_CHECK(cipher_algo_p == 1, status, "missing cipher or AEAD options");
if (status->status < 0)
return;
APP_CHECK(auth_algo_p == 1, status, "missing auth or AEAD options");
if (status->status < 0)
return;
}
APP_CHECK(mode_p == 1, status, "missing mode option");
if (status->status < 0)
return;
if ((rule->type != RTE_SECURITY_ACTION_TYPE_NONE) && (portid_p == 0))
printf("Missing portid option, falling back to non-offload\n");
if (!type_p || !portid_p) {
rule->type = RTE_SECURITY_ACTION_TYPE_NONE;
rule->portid = -1;
}
*ri = *ri + 1;
}
static inline void
print_one_sa_rule(const struct ipsec_sa *sa, int inbound)
{
uint32_t i;
uint8_t a, b, c, d;
printf("\tspi_%s(%3u):", inbound?"in":"out", sa->spi);
for (i = 0; i < RTE_DIM(cipher_algos); i++) {
if (cipher_algos[i].algo == sa->cipher_algo &&
cipher_algos[i].key_len == sa->cipher_key_len) {
printf("%s ", cipher_algos[i].keyword);
break;
}
}
for (i = 0; i < RTE_DIM(auth_algos); i++) {
if (auth_algos[i].algo == sa->auth_algo) {
printf("%s ", auth_algos[i].keyword);
break;
}
}
for (i = 0; i < RTE_DIM(aead_algos); i++) {
if (aead_algos[i].algo == sa->aead_algo) {
printf("%s ", aead_algos[i].keyword);
break;
}
}
printf("mode:");
switch (sa->flags) {
case IP4_TUNNEL:
printf("IP4Tunnel ");
uint32_t_to_char(sa->src.ip.ip4, &a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu ", d, c, b, a);
uint32_t_to_char(sa->dst.ip.ip4, &a, &b, &c, &d);
printf("%hhu.%hhu.%hhu.%hhu", d, c, b, a);
break;
case IP6_TUNNEL:
printf("IP6Tunnel ");
for (i = 0; i < 16; i++) {
if (i % 2 && i != 15)
printf("%.2x:", sa->src.ip.ip6.ip6_b[i]);
else
printf("%.2x", sa->src.ip.ip6.ip6_b[i]);
}
printf(" ");
for (i = 0; i < 16; i++) {
if (i % 2 && i != 15)
printf("%.2x:", sa->dst.ip.ip6.ip6_b[i]);
else
printf("%.2x", sa->dst.ip.ip6.ip6_b[i]);
}
break;
case TRANSPORT:
printf("Transport ");
break;
}
printf(" type:");
switch (sa->type) {
case RTE_SECURITY_ACTION_TYPE_NONE:
printf("no-offload ");
break;
case RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO:
printf("inline-crypto-offload ");
break;
case RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL:
printf("inline-protocol-offload ");
break;
case RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL:
printf("lookaside-protocol-offload ");
break;
}
printf("\n");
}
struct sa_ctx {
void *satbl; /* pointer to array of rte_ipsec_sa objects*/
struct ipsec_sa sa[IPSEC_SA_MAX_ENTRIES];
union {
struct {
struct rte_crypto_sym_xform a;
struct rte_crypto_sym_xform b;
};
} xf[IPSEC_SA_MAX_ENTRIES];
};
static struct sa_ctx *
sa_create(const char *name, int32_t socket_id)
{
char s[PATH_MAX];
struct sa_ctx *sa_ctx;
uint32_t mz_size;
const struct rte_memzone *mz;
snprintf(s, sizeof(s), "%s_%u", name, socket_id);
/* Create SA array table */
printf("Creating SA context with %u maximum entries on socket %d\n",
IPSEC_SA_MAX_ENTRIES, socket_id);
mz_size = sizeof(struct sa_ctx);
mz = rte_memzone_reserve(s, mz_size, socket_id,
RTE_MEMZONE_1GB | RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("Failed to allocate SA DB memory\n");
rte_errno = -ENOMEM;
return NULL;
}
sa_ctx = (struct sa_ctx *)mz->addr;
return sa_ctx;
}
static int
check_eth_dev_caps(uint16_t portid, uint32_t inbound)
{
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(portid, &dev_info);
if (inbound) {
if ((dev_info.rx_offload_capa &
DEV_RX_OFFLOAD_SECURITY) == 0) {
RTE_LOG(WARNING, PORT,
"hardware RX IPSec offload is not supported\n");
return -EINVAL;
}
} else { /* outbound */
if ((dev_info.tx_offload_capa &
DEV_TX_OFFLOAD_SECURITY) == 0) {
RTE_LOG(WARNING, PORT,
"hardware TX IPSec offload is not supported\n");
return -EINVAL;
}
}
return 0;
}
static int
sa_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
uint32_t nb_entries, uint32_t inbound)
{
struct ipsec_sa *sa;
uint32_t i, idx;
uint16_t iv_length, aad_length;
/* for ESN upper 32 bits of SQN also need to be part of AAD */
aad_length = (app_sa_prm.enable_esn != 0) ? sizeof(uint32_t) : 0;
for (i = 0; i < nb_entries; i++) {
idx = SPI2IDX(entries[i].spi);
sa = &sa_ctx->sa[idx];
if (sa->spi != 0) {
printf("Index %u already in use by SPI %u\n",
idx, sa->spi);
return -EINVAL;
}
*sa = entries[i];
sa->seq = 0;
if (sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL ||
sa->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO) {
if (check_eth_dev_caps(sa->portid, inbound))
return -EINVAL;
}
sa->direction = (inbound == 1) ?
RTE_SECURITY_IPSEC_SA_DIR_INGRESS :
RTE_SECURITY_IPSEC_SA_DIR_EGRESS;
switch (sa->flags) {
case IP4_TUNNEL:
sa->src.ip.ip4 = rte_cpu_to_be_32(sa->src.ip.ip4);
sa->dst.ip.ip4 = rte_cpu_to_be_32(sa->dst.ip.ip4);
}
if (sa->aead_algo == RTE_CRYPTO_AEAD_AES_GCM) {
iv_length = 16;
sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AEAD;
sa_ctx->xf[idx].a.aead.algo = sa->aead_algo;
sa_ctx->xf[idx].a.aead.key.data = sa->cipher_key;
sa_ctx->xf[idx].a.aead.key.length =
sa->cipher_key_len;
sa_ctx->xf[idx].a.aead.op = (inbound == 1) ?
RTE_CRYPTO_AEAD_OP_DECRYPT :
RTE_CRYPTO_AEAD_OP_ENCRYPT;
sa_ctx->xf[idx].a.next = NULL;
sa_ctx->xf[idx].a.aead.iv.offset = IV_OFFSET;
sa_ctx->xf[idx].a.aead.iv.length = iv_length;
sa_ctx->xf[idx].a.aead.aad_length =
sa->aad_len + aad_length;
sa_ctx->xf[idx].a.aead.digest_length =
sa->digest_len;
sa->xforms = &sa_ctx->xf[idx].a;
print_one_sa_rule(sa, inbound);
} else {
switch (sa->cipher_algo) {
case RTE_CRYPTO_CIPHER_NULL:
case RTE_CRYPTO_CIPHER_3DES_CBC:
case RTE_CRYPTO_CIPHER_AES_CBC:
iv_length = sa->iv_len;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
iv_length = 16;
break;
default:
RTE_LOG(ERR, IPSEC_ESP,
"unsupported cipher algorithm %u\n",
sa->cipher_algo);
return -EINVAL;
}
if (inbound) {
sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
sa_ctx->xf[idx].b.cipher.algo = sa->cipher_algo;
sa_ctx->xf[idx].b.cipher.key.data = sa->cipher_key;
sa_ctx->xf[idx].b.cipher.key.length =
sa->cipher_key_len;
sa_ctx->xf[idx].b.cipher.op =
RTE_CRYPTO_CIPHER_OP_DECRYPT;
sa_ctx->xf[idx].b.next = NULL;
sa_ctx->xf[idx].b.cipher.iv.offset = IV_OFFSET;
sa_ctx->xf[idx].b.cipher.iv.length = iv_length;
sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_AUTH;
sa_ctx->xf[idx].a.auth.algo = sa->auth_algo;
sa_ctx->xf[idx].a.auth.key.data = sa->auth_key;
sa_ctx->xf[idx].a.auth.key.length =
sa->auth_key_len;
sa_ctx->xf[idx].a.auth.digest_length =
sa->digest_len;
sa_ctx->xf[idx].a.auth.op =
RTE_CRYPTO_AUTH_OP_VERIFY;
} else { /* outbound */
sa_ctx->xf[idx].a.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
sa_ctx->xf[idx].a.cipher.algo = sa->cipher_algo;
sa_ctx->xf[idx].a.cipher.key.data = sa->cipher_key;
sa_ctx->xf[idx].a.cipher.key.length =
sa->cipher_key_len;
sa_ctx->xf[idx].a.cipher.op =
RTE_CRYPTO_CIPHER_OP_ENCRYPT;
sa_ctx->xf[idx].a.next = NULL;
sa_ctx->xf[idx].a.cipher.iv.offset = IV_OFFSET;
sa_ctx->xf[idx].a.cipher.iv.length = iv_length;
sa_ctx->xf[idx].b.type = RTE_CRYPTO_SYM_XFORM_AUTH;
sa_ctx->xf[idx].b.auth.algo = sa->auth_algo;
sa_ctx->xf[idx].b.auth.key.data = sa->auth_key;
sa_ctx->xf[idx].b.auth.key.length =
sa->auth_key_len;
sa_ctx->xf[idx].b.auth.digest_length =
sa->digest_len;
sa_ctx->xf[idx].b.auth.op =
RTE_CRYPTO_AUTH_OP_GENERATE;
}
sa_ctx->xf[idx].a.next = &sa_ctx->xf[idx].b;
sa_ctx->xf[idx].b.next = NULL;
sa->xforms = &sa_ctx->xf[idx].a;
print_one_sa_rule(sa, inbound);
}
}
return 0;
}
static inline int
sa_out_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
uint32_t nb_entries)
{
return sa_add_rules(sa_ctx, entries, nb_entries, 0);
}
static inline int
sa_in_add_rules(struct sa_ctx *sa_ctx, const struct ipsec_sa entries[],
uint32_t nb_entries)
{
return sa_add_rules(sa_ctx, entries, nb_entries, 1);
}
/*
* helper function, fills parameters that are identical for all SAs
*/
static void
fill_ipsec_app_sa_prm(struct rte_ipsec_sa_prm *prm,
const struct app_sa_prm *app_prm)
{
memset(prm, 0, sizeof(*prm));
prm->flags = app_prm->flags;
prm->ipsec_xform.options.esn = app_prm->enable_esn;
prm->replay_win_sz = app_prm->window_size;
}
/*
* Helper function, tries to determine next_proto for SPI
* by searching though SP rules.
*/
static int
get_spi_proto(uint32_t spi, enum rte_security_ipsec_sa_direction dir)
{
int32_t rc4, rc6;
rc4 = sp4_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS);
rc6 = sp6_spi_present(spi, dir == RTE_SECURITY_IPSEC_SA_DIR_INGRESS);
if (rc4 >= 0) {
if (rc6 >= 0) {
RTE_LOG(ERR, IPSEC,
"%s: SPI %u used simultaeously by "
"IPv4(%d) and IPv6 (%d) SP rules\n",
__func__, spi, rc4, rc6);
return -EINVAL;
} else
return IPPROTO_IPIP;
} else if (rc6 < 0) {
RTE_LOG(ERR, IPSEC,
"%s: SPI %u is not used by any SP rule\n",
__func__, spi);
return -EINVAL;
} else
return IPPROTO_IPV6;
}
static int
fill_ipsec_sa_prm(struct rte_ipsec_sa_prm *prm, const struct ipsec_sa *ss,
const struct ipv4_hdr *v4, struct ipv6_hdr *v6)
{
int32_t rc;
/*
* Try to get SPI next proto by searching that SPI in SPD.
* probably not the optimal way, but there seems nothing
* better right now.
*/
rc = get_spi_proto(ss->spi, ss->direction);
if (rc < 0)
return rc;
fill_ipsec_app_sa_prm(prm, &app_sa_prm);
prm->userdata = (uintptr_t)ss;
/* setup ipsec xform */
prm->ipsec_xform.spi = ss->spi;
prm->ipsec_xform.salt = ss->salt;
prm->ipsec_xform.direction = ss->direction;
prm->ipsec_xform.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP;
prm->ipsec_xform.mode = (ss->flags == TRANSPORT) ?
RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT :
RTE_SECURITY_IPSEC_SA_MODE_TUNNEL;
if (ss->flags == IP4_TUNNEL) {
prm->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV4;
prm->tun.hdr_len = sizeof(*v4);
prm->tun.next_proto = rc;
prm->tun.hdr = v4;
} else if (ss->flags == IP6_TUNNEL) {
prm->ipsec_xform.tunnel.type = RTE_SECURITY_IPSEC_TUNNEL_IPV6;
prm->tun.hdr_len = sizeof(*v6);
prm->tun.next_proto = rc;
prm->tun.hdr = v6;
} else {
/* transport mode */
prm->trs.proto = rc;
}
/* setup crypto section */
prm->crypto_xform = ss->xforms;
return 0;
}
static void
fill_ipsec_session(struct rte_ipsec_session *ss, struct rte_ipsec_sa *sa,
const struct ipsec_sa *lsa)
{
ss->sa = sa;
ss->type = lsa->type;
/* setup crypto section */
if (ss->type == RTE_SECURITY_ACTION_TYPE_NONE) {
ss->crypto.ses = lsa->crypto_session;
/* setup session action type */
} else {
ss->security.ses = lsa->sec_session;
ss->security.ctx = lsa->security_ctx;
ss->security.ol_flags = lsa->ol_flags;
}
}
/*
* Initialise related rte_ipsec_sa object.
*/
static int
ipsec_sa_init(struct ipsec_sa *lsa, struct rte_ipsec_sa *sa, uint32_t sa_size)
{
int rc;
struct rte_ipsec_sa_prm prm;
struct ipv4_hdr v4 = {
.version_ihl = IPVERSION << 4 |
sizeof(v4) / IPV4_IHL_MULTIPLIER,
.time_to_live = IPDEFTTL,
.next_proto_id = IPPROTO_ESP,
.src_addr = lsa->src.ip.ip4,
.dst_addr = lsa->dst.ip.ip4,
};
struct ipv6_hdr v6 = {
.vtc_flow = htonl(IP6_VERSION << 28),
.proto = IPPROTO_ESP,
};
if (lsa->flags == IP6_TUNNEL) {
memcpy(v6.src_addr, lsa->src.ip.ip6.ip6_b, sizeof(v6.src_addr));
memcpy(v6.dst_addr, lsa->dst.ip.ip6.ip6_b, sizeof(v6.dst_addr));
}
rc = fill_ipsec_sa_prm(&prm, lsa, &v4, &v6);
if (rc == 0)
rc = rte_ipsec_sa_init(sa, &prm, sa_size);
if (rc < 0)
return rc;
fill_ipsec_session(&lsa->ips, sa, lsa);
return 0;
}
/*
* Allocate space and init rte_ipsec_sa strcutures,
* one per session.
*/
static int
ipsec_satbl_init(struct sa_ctx *ctx, const struct ipsec_sa *ent,
uint32_t nb_ent, int32_t socket)
{
int32_t rc, sz;
uint32_t i, idx;
size_t tsz;
struct rte_ipsec_sa *sa;
struct ipsec_sa *lsa;
struct rte_ipsec_sa_prm prm;
/* determine SA size */
idx = SPI2IDX(ent[0].spi);
fill_ipsec_sa_prm(&prm, ctx->sa + idx, NULL, NULL);
sz = rte_ipsec_sa_size(&prm);
if (sz < 0) {
RTE_LOG(ERR, IPSEC, "%s(%p, %u, %d): "
"failed to determine SA size, error code: %d\n",
__func__, ctx, nb_ent, socket, sz);
return sz;
}
tsz = sz * nb_ent;
ctx->satbl = rte_zmalloc_socket(NULL, tsz, RTE_CACHE_LINE_SIZE, socket);
if (ctx->satbl == NULL) {
RTE_LOG(ERR, IPSEC,
"%s(%p, %u, %d): failed to allocate %zu bytes\n",
__func__, ctx, nb_ent, socket, tsz);
return -ENOMEM;
}
rc = 0;
for (i = 0; i != nb_ent && rc == 0; i++) {
idx = SPI2IDX(ent[i].spi);
sa = (struct rte_ipsec_sa *)((uintptr_t)ctx->satbl + sz * i);
lsa = ctx->sa + idx;
rc = ipsec_sa_init(lsa, sa, sz);
}
return rc;
}
void
sa_init(struct socket_ctx *ctx, int32_t socket_id)
{
int32_t rc;
const char *name;
if (ctx == NULL)
rte_exit(EXIT_FAILURE, "NULL context.\n");
if (ctx->sa_in != NULL)
rte_exit(EXIT_FAILURE, "Inbound SA DB for socket %u already "
"initialized\n", socket_id);
if (ctx->sa_out != NULL)
rte_exit(EXIT_FAILURE, "Outbound SA DB for socket %u already "
"initialized\n", socket_id);
if (nb_sa_in > 0) {
name = "sa_in";
ctx->sa_in = sa_create(name, socket_id);
if (ctx->sa_in == NULL)
rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
"context %s in socket %d\n", rte_errno,
name, socket_id);
sa_in_add_rules(ctx->sa_in, sa_in, nb_sa_in);
if (app_sa_prm.enable != 0) {
rc = ipsec_satbl_init(ctx->sa_in, sa_in, nb_sa_in,
socket_id);
if (rc != 0)
rte_exit(EXIT_FAILURE,
"failed to init inbound SAs\n");
}
} else
RTE_LOG(WARNING, IPSEC, "No SA Inbound rule specified\n");
if (nb_sa_out > 0) {
name = "sa_out";
ctx->sa_out = sa_create(name, socket_id);
if (ctx->sa_out == NULL)
rte_exit(EXIT_FAILURE, "Error [%d] creating SA "
"context %s in socket %d\n", rte_errno,
name, socket_id);
sa_out_add_rules(ctx->sa_out, sa_out, nb_sa_out);
if (app_sa_prm.enable != 0) {
rc = ipsec_satbl_init(ctx->sa_out, sa_out, nb_sa_out,
socket_id);
if (rc != 0)
rte_exit(EXIT_FAILURE,
"failed to init outbound SAs\n");
}
} else
RTE_LOG(WARNING, IPSEC, "No SA Outbound rule "
"specified\n");
}
int
inbound_sa_check(struct sa_ctx *sa_ctx, struct rte_mbuf *m, uint32_t sa_idx)
{
struct ipsec_mbuf_metadata *priv;
struct ipsec_sa *sa;
priv = get_priv(m);
sa = priv->sa;
if (sa != NULL)
return (sa_ctx->sa[sa_idx].spi == sa->spi);
RTE_LOG(ERR, IPSEC, "SA not saved in private data\n");
return 0;
}
static inline void
single_inbound_lookup(struct ipsec_sa *sadb, struct rte_mbuf *pkt,
struct ipsec_sa **sa_ret)
{
struct esp_hdr *esp;
struct ip *ip;
uint32_t *src4_addr;
uint8_t *src6_addr;
struct ipsec_sa *sa;
*sa_ret = NULL;
ip = rte_pktmbuf_mtod(pkt, struct ip *);
if (ip->ip_v == IPVERSION)
esp = (struct esp_hdr *)(ip + 1);
else
esp = (struct esp_hdr *)(((struct ip6_hdr *)ip) + 1);
if (esp->spi == INVALID_SPI)
return;
sa = &sadb[SPI2IDX(rte_be_to_cpu_32(esp->spi))];
if (rte_be_to_cpu_32(esp->spi) != sa->spi)
return;
switch (sa->flags) {
case IP4_TUNNEL:
src4_addr = RTE_PTR_ADD(ip, offsetof(struct ip, ip_src));
if ((ip->ip_v == IPVERSION) &&
(sa->src.ip.ip4 == *src4_addr) &&
(sa->dst.ip.ip4 == *(src4_addr + 1)))
*sa_ret = sa;
break;
case IP6_TUNNEL:
src6_addr = RTE_PTR_ADD(ip, offsetof(struct ip6_hdr, ip6_src));
if ((ip->ip_v == IP6_VERSION) &&
!memcmp(&sa->src.ip.ip6.ip6, src6_addr, 16) &&
!memcmp(&sa->dst.ip.ip6.ip6, src6_addr + 16, 16))
*sa_ret = sa;
break;
case TRANSPORT:
*sa_ret = sa;
}
}
void
inbound_sa_lookup(struct sa_ctx *sa_ctx, struct rte_mbuf *pkts[],
struct ipsec_sa *sa[], uint16_t nb_pkts)
{
uint32_t i;
for (i = 0; i < nb_pkts; i++)
single_inbound_lookup(sa_ctx->sa, pkts[i], &sa[i]);
}
void
outbound_sa_lookup(struct sa_ctx *sa_ctx, uint32_t sa_idx[],
struct ipsec_sa *sa[], uint16_t nb_pkts)
{
uint32_t i;
for (i = 0; i < nb_pkts; i++)
sa[i] = &sa_ctx->sa[sa_idx[i]];
}
/*
* Select HW offloads to be used.
*/
int
sa_check_offloads(uint16_t port_id, uint64_t *rx_offloads,
uint64_t *tx_offloads)
{
struct ipsec_sa *rule;
uint32_t idx_sa;
*rx_offloads = 0;
*tx_offloads = 0;
/* Check for inbound rules that use offloads and use this port */
for (idx_sa = 0; idx_sa < nb_sa_in; idx_sa++) {
rule = &sa_in[idx_sa];
if ((rule->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
rule->type ==
RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
&& rule->portid == port_id)
*rx_offloads |= DEV_RX_OFFLOAD_SECURITY;
}
/* Check for outbound rules that use offloads and use this port */
for (idx_sa = 0; idx_sa < nb_sa_out; idx_sa++) {
rule = &sa_out[idx_sa];
if ((rule->type == RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO ||
rule->type ==
RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL)
&& rule->portid == port_id)
*tx_offloads |= DEV_TX_OFFLOAD_SECURITY;
}
return 0;
}