numam-dpdk/lib/librte_ethdev/rte_flow.c

636 lines
17 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2016 6WIND S.A.
* Copyright 2016 Mellanox Technologies, Ltd
*/
#include <errno.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <rte_common.h>
#include <rte_errno.h>
#include <rte_branch_prediction.h>
#include "rte_ethdev.h"
#include "rte_flow_driver.h"
#include "rte_flow.h"
/**
* Flow elements description tables.
*/
struct rte_flow_desc_data {
const char *name;
size_t size;
};
/** Generate flow_item[] entry. */
#define MK_FLOW_ITEM(t, s) \
[RTE_FLOW_ITEM_TYPE_ ## t] = { \
.name = # t, \
.size = s, \
}
/** Information about known flow pattern items. */
static const struct rte_flow_desc_data rte_flow_desc_item[] = {
MK_FLOW_ITEM(END, 0),
MK_FLOW_ITEM(VOID, 0),
MK_FLOW_ITEM(INVERT, 0),
MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
MK_FLOW_ITEM(PF, 0),
MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
};
/** Generate flow_action[] entry. */
#define MK_FLOW_ACTION(t, s) \
[RTE_FLOW_ACTION_TYPE_ ## t] = { \
.name = # t, \
.size = s, \
}
/** Information about known flow actions. */
static const struct rte_flow_desc_data rte_flow_desc_action[] = {
MK_FLOW_ACTION(END, 0),
MK_FLOW_ACTION(VOID, 0),
MK_FLOW_ACTION(PASSTHRU, 0),
MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
MK_FLOW_ACTION(FLAG, 0),
MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
MK_FLOW_ACTION(DROP, 0),
MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
MK_FLOW_ACTION(PF, 0),
MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
MK_FLOW_ACTION(OF_SET_MPLS_TTL,
sizeof(struct rte_flow_action_of_set_mpls_ttl)),
MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
MK_FLOW_ACTION(OF_SET_NW_TTL,
sizeof(struct rte_flow_action_of_set_nw_ttl)),
MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
MK_FLOW_ACTION(OF_POP_VLAN, 0),
MK_FLOW_ACTION(OF_PUSH_VLAN,
sizeof(struct rte_flow_action_of_push_vlan)),
MK_FLOW_ACTION(OF_SET_VLAN_VID,
sizeof(struct rte_flow_action_of_set_vlan_vid)),
MK_FLOW_ACTION(OF_SET_VLAN_PCP,
sizeof(struct rte_flow_action_of_set_vlan_pcp)),
MK_FLOW_ACTION(OF_POP_MPLS,
sizeof(struct rte_flow_action_of_pop_mpls)),
MK_FLOW_ACTION(OF_PUSH_MPLS,
sizeof(struct rte_flow_action_of_push_mpls)),
};
static int
flow_err(uint16_t port_id, int ret, struct rte_flow_error *error)
{
if (ret == 0)
return 0;
if (rte_eth_dev_is_removed(port_id))
return rte_flow_error_set(error, EIO,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(EIO));
return ret;
}
/* Get generic flow operations structure from a port. */
const struct rte_flow_ops *
rte_flow_ops_get(uint16_t port_id, struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops;
int code;
if (unlikely(!rte_eth_dev_is_valid_port(port_id)))
code = ENODEV;
else if (unlikely(!dev->dev_ops->filter_ctrl ||
dev->dev_ops->filter_ctrl(dev,
RTE_ETH_FILTER_GENERIC,
RTE_ETH_FILTER_GET,
&ops) ||
!ops))
code = ENOSYS;
else
return ops;
rte_flow_error_set(error, code, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(code));
return NULL;
}
/* Check whether a flow rule can be created on a given port. */
int
rte_flow_validate(uint16_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->validate))
return flow_err(port_id, ops->validate(dev, attr, pattern,
actions, error), error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Create a flow rule on a given port. */
struct rte_flow *
rte_flow_create(uint16_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
struct rte_flow *flow;
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return NULL;
if (likely(!!ops->create)) {
flow = ops->create(dev, attr, pattern, actions, error);
if (flow == NULL)
flow_err(port_id, -rte_errno, error);
return flow;
}
rte_flow_error_set(error, ENOSYS, RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
return NULL;
}
/* Destroy a flow rule on a given port. */
int
rte_flow_destroy(uint16_t port_id,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->destroy))
return flow_err(port_id, ops->destroy(dev, flow, error),
error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Destroy all flow rules associated with a port. */
int
rte_flow_flush(uint16_t port_id,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (unlikely(!ops))
return -rte_errno;
if (likely(!!ops->flush))
return flow_err(port_id, ops->flush(dev, error), error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Query an existing flow rule. */
int
rte_flow_query(uint16_t port_id,
struct rte_flow *flow,
const struct rte_flow_action *action,
void *data,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (!ops)
return -rte_errno;
if (likely(!!ops->query))
return flow_err(port_id, ops->query(dev, flow, action, data,
error), error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Restrict ingress traffic to the defined flow rules. */
int
rte_flow_isolate(uint16_t port_id,
int set,
struct rte_flow_error *error)
{
struct rte_eth_dev *dev = &rte_eth_devices[port_id];
const struct rte_flow_ops *ops = rte_flow_ops_get(port_id, error);
if (!ops)
return -rte_errno;
if (likely(!!ops->isolate))
return flow_err(port_id, ops->isolate(dev, set, error), error);
return rte_flow_error_set(error, ENOSYS,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, rte_strerror(ENOSYS));
}
/* Initialize flow error structure. */
int
rte_flow_error_set(struct rte_flow_error *error,
int code,
enum rte_flow_error_type type,
const void *cause,
const char *message)
{
if (error) {
*error = (struct rte_flow_error){
.type = type,
.cause = cause,
.message = message,
};
}
rte_errno = code;
return -code;
}
/** Pattern item specification types. */
enum item_spec_type {
ITEM_SPEC,
ITEM_LAST,
ITEM_MASK,
};
/** Compute storage space needed by item specification and copy it. */
static size_t
flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
enum item_spec_type type)
{
size_t size = 0;
const void *data =
type == ITEM_SPEC ? item->spec :
type == ITEM_LAST ? item->last :
type == ITEM_MASK ? item->mask :
NULL;
if (!item->spec || !data)
goto empty;
switch (item->type) {
union {
const struct rte_flow_item_raw *raw;
} spec;
union {
const struct rte_flow_item_raw *raw;
} last;
union {
const struct rte_flow_item_raw *raw;
} mask;
union {
const struct rte_flow_item_raw *raw;
} src;
union {
struct rte_flow_item_raw *raw;
} dst;
size_t off;
case RTE_FLOW_ITEM_TYPE_RAW:
spec.raw = item->spec;
last.raw = item->last ? item->last : item->spec;
mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask;
src.raw = data;
dst.raw = buf;
off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
sizeof(*src.raw->pattern));
if (type == ITEM_SPEC ||
(type == ITEM_MASK &&
((spec.raw->length & mask.raw->length) >=
(last.raw->length & mask.raw->length))))
size = spec.raw->length & mask.raw->length;
else
size = last.raw->length & mask.raw->length;
size = off + size * sizeof(*src.raw->pattern);
if (dst.raw) {
memcpy(dst.raw, src.raw, sizeof(*src.raw));
dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
src.raw->pattern,
size - off);
}
break;
default:
size = rte_flow_desc_item[item->type].size;
if (buf)
memcpy(buf, data, size);
break;
}
empty:
return RTE_ALIGN_CEIL(size, sizeof(double));
}
/** Compute storage space needed by action configuration and copy it. */
static size_t
flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
{
size_t size = 0;
if (!action->conf)
goto empty;
switch (action->type) {
union {
const struct rte_flow_action_rss *rss;
} src;
union {
struct rte_flow_action_rss *rss;
} dst;
size_t off;
case RTE_FLOW_ACTION_TYPE_RSS:
src.rss = action->conf;
dst.rss = buf;
off = 0;
if (dst.rss)
*dst.rss = (struct rte_flow_action_rss){
.func = src.rss->func,
.level = src.rss->level,
.types = src.rss->types,
.key_len = src.rss->key_len,
.queue_num = src.rss->queue_num,
};
off += sizeof(*src.rss);
if (src.rss->key_len) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
size = sizeof(*src.rss->key) * src.rss->key_len;
if (dst.rss)
dst.rss->key = memcpy
((void *)((uintptr_t)dst.rss + off),
src.rss->key, size);
off += size;
}
if (src.rss->queue_num) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
size = sizeof(*src.rss->queue) * src.rss->queue_num;
if (dst.rss)
dst.rss->queue = memcpy
((void *)((uintptr_t)dst.rss + off),
src.rss->queue, size);
off += size;
}
size = off;
break;
default:
size = rte_flow_desc_action[action->type].size;
if (buf)
memcpy(buf, action->conf, size);
break;
}
empty:
return RTE_ALIGN_CEIL(size, sizeof(double));
}
/** Store a full rte_flow description. */
size_t
rte_flow_copy(struct rte_flow_desc *desc, size_t len,
const struct rte_flow_attr *attr,
const struct rte_flow_item *items,
const struct rte_flow_action *actions)
{
struct rte_flow_desc *fd = NULL;
size_t tmp;
size_t off1 = 0;
size_t off2 = 0;
size_t size = 0;
store:
if (items) {
const struct rte_flow_item *item;
item = items;
if (fd)
fd->items = (void *)&fd->data[off1];
do {
struct rte_flow_item *dst = NULL;
if ((size_t)item->type >=
RTE_DIM(rte_flow_desc_item) ||
!rte_flow_desc_item[item->type].name) {
rte_errno = ENOTSUP;
return 0;
}
if (fd)
dst = memcpy(fd->data + off1, item,
sizeof(*item));
off1 += sizeof(*item);
if (item->spec) {
if (fd)
dst->spec = fd->data + off2;
off2 += flow_item_spec_copy
(fd ? fd->data + off2 : NULL, item,
ITEM_SPEC);
}
if (item->last) {
if (fd)
dst->last = fd->data + off2;
off2 += flow_item_spec_copy
(fd ? fd->data + off2 : NULL, item,
ITEM_LAST);
}
if (item->mask) {
if (fd)
dst->mask = fd->data + off2;
off2 += flow_item_spec_copy
(fd ? fd->data + off2 : NULL, item,
ITEM_MASK);
}
off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
}
if (actions) {
const struct rte_flow_action *action;
action = actions;
if (fd)
fd->actions = (void *)&fd->data[off1];
do {
struct rte_flow_action *dst = NULL;
if ((size_t)action->type >=
RTE_DIM(rte_flow_desc_action) ||
!rte_flow_desc_action[action->type].name) {
rte_errno = ENOTSUP;
return 0;
}
if (fd)
dst = memcpy(fd->data + off1, action,
sizeof(*action));
off1 += sizeof(*action);
if (action->conf) {
if (fd)
dst->conf = fd->data + off2;
off2 += flow_action_conf_copy
(fd ? fd->data + off2 : NULL, action);
}
off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
}
if (fd != NULL)
return size;
off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
tmp = RTE_ALIGN_CEIL(offsetof(struct rte_flow_desc, data),
sizeof(double));
size = tmp + off1 + off2;
if (size > len)
return size;
fd = desc;
if (fd != NULL) {
*fd = (const struct rte_flow_desc) {
.size = size,
.attr = *attr,
};
tmp -= offsetof(struct rte_flow_desc, data);
off2 = tmp + off1;
off1 = tmp;
goto store;
}
return 0;
}
/**
* Expand RSS flows into several possible flows according to the RSS hash
* fields requested and the driver capabilities.
*/
int
rte_flow_expand_rss(struct rte_flow_expand_rss *buf, size_t size,
const struct rte_flow_item *pattern, uint64_t types,
const struct rte_flow_expand_node graph[],
int graph_root_index)
{
const int elt_n = 8;
const struct rte_flow_item *item;
const struct rte_flow_expand_node *node = &graph[graph_root_index];
const int *next_node;
const int *stack[elt_n];
int stack_pos = 0;
struct rte_flow_item flow_items[elt_n];
unsigned int i;
size_t lsize;
size_t user_pattern_size = 0;
void *addr = NULL;
lsize = offsetof(struct rte_flow_expand_rss, entry) +
elt_n * sizeof(buf->entry[0]);
if (lsize <= size) {
buf->entry[0].priority = 0;
buf->entry[0].pattern = (void *)&buf->entry[elt_n];
buf->entries = 0;
addr = buf->entry[0].pattern;
}
for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
const struct rte_flow_expand_node *next = NULL;
for (i = 0; node->next && node->next[i]; ++i) {
next = &graph[node->next[i]];
if (next->type == item->type)
break;
}
if (next)
node = next;
user_pattern_size += sizeof(*item);
}
user_pattern_size += sizeof(*item); /* Handle END item. */
lsize += user_pattern_size;
/* Copy the user pattern in the first entry of the buffer. */
if (lsize <= size) {
rte_memcpy(addr, pattern, user_pattern_size);
addr = (void *)(((uintptr_t)addr) + user_pattern_size);
buf->entries = 1;
}
/* Start expanding. */
memset(flow_items, 0, sizeof(flow_items));
user_pattern_size -= sizeof(*item);
next_node = node->next;
stack[stack_pos] = next_node;
node = next_node ? &graph[*next_node] : NULL;
while (node) {
flow_items[stack_pos].type = node->type;
if (node->rss_types & types) {
/*
* compute the number of items to copy from the
* expansion and copy it.
* When the stack_pos is 0, there are 1 element in it,
* plus the addition END item.
*/
int elt = stack_pos + 2;
flow_items[stack_pos + 1].type = RTE_FLOW_ITEM_TYPE_END;
lsize += elt * sizeof(*item) + user_pattern_size;
if (lsize <= size) {
size_t n = elt * sizeof(*item);
buf->entry[buf->entries].priority =
stack_pos + 1;
buf->entry[buf->entries].pattern = addr;
buf->entries++;
rte_memcpy(addr, buf->entry[0].pattern,
user_pattern_size);
addr = (void *)(((uintptr_t)addr) +
user_pattern_size);
rte_memcpy(addr, flow_items, n);
addr = (void *)(((uintptr_t)addr) + n);
}
}
/* Go deeper. */
if (node->next) {
next_node = node->next;
if (stack_pos++ == elt_n) {
rte_errno = E2BIG;
return -rte_errno;
}
stack[stack_pos] = next_node;
} else if (*(next_node + 1)) {
/* Follow up with the next possibility. */
++next_node;
} else {
/* Move to the next path. */
if (stack_pos)
next_node = stack[--stack_pos];
next_node++;
stack[stack_pos] = next_node;
}
node = *next_node ? &graph[*next_node] : NULL;
};
return lsize;
}