numam-dpdk/drivers/net/enic/enic_rxtx.c

677 lines
17 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2017 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*/
#include <rte_mbuf.h>
#include <rte_ethdev_driver.h>
#include <rte_net.h>
#include <rte_prefetch.h>
#include "enic_compat.h"
#include "rq_enet_desc.h"
#include "enic.h"
#include "enic_rxtx_common.h"
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#define RTE_PMD_USE_PREFETCH
#ifdef RTE_PMD_USE_PREFETCH
/*Prefetch a cache line into all cache levels. */
#define rte_enic_prefetch(p) rte_prefetch0(p)
#else
#define rte_enic_prefetch(p) do {} while (0)
#endif
#ifdef RTE_PMD_PACKET_PREFETCH
#define rte_packet_prefetch(p) rte_prefetch1(p)
#else
#define rte_packet_prefetch(p) do {} while (0)
#endif
/* dummy receive function to replace actual function in
* order to do safe reconfiguration operations.
*/
uint16_t
enic_dummy_recv_pkts(__rte_unused void *rx_queue,
__rte_unused struct rte_mbuf **rx_pkts,
__rte_unused uint16_t nb_pkts)
{
return 0;
}
uint16_t
enic_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct vnic_rq *sop_rq = rx_queue;
struct vnic_rq *data_rq;
struct vnic_rq *rq;
struct enic *enic = vnic_dev_priv(sop_rq->vdev);
uint16_t cq_idx;
uint16_t rq_idx, max_rx;
uint16_t rq_num;
struct rte_mbuf *nmb, *rxmb;
uint16_t nb_rx = 0;
struct vnic_cq *cq;
volatile struct cq_desc *cqd_ptr;
uint8_t color;
uint8_t tnl;
uint16_t seg_length;
struct rte_mbuf *first_seg = sop_rq->pkt_first_seg;
struct rte_mbuf *last_seg = sop_rq->pkt_last_seg;
cq = &enic->cq[enic_cq_rq(enic, sop_rq->index)];
cq_idx = cq->to_clean; /* index of cqd, rqd, mbuf_table */
cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;
color = cq->last_color;
data_rq = &enic->rq[sop_rq->data_queue_idx];
/* Receive until the end of the ring, at most. */
max_rx = RTE_MIN(nb_pkts, cq->ring.desc_count - cq_idx);
while (max_rx) {
volatile struct rq_enet_desc *rqd_ptr;
struct cq_desc cqd;
uint8_t packet_error;
uint16_t ciflags;
max_rx--;
/* Check for pkts available */
if ((cqd_ptr->type_color & CQ_DESC_COLOR_MASK_NOSHIFT) == color)
break;
/* Get the cq descriptor and extract rq info from it */
cqd = *cqd_ptr;
rq_num = cqd.q_number & CQ_DESC_Q_NUM_MASK;
rq_idx = cqd.completed_index & CQ_DESC_COMP_NDX_MASK;
rq = &enic->rq[rq_num];
rqd_ptr = ((struct rq_enet_desc *)rq->ring.descs) + rq_idx;
/* allocate a new mbuf */
nmb = rte_mbuf_raw_alloc(rq->mp);
if (nmb == NULL) {
rte_atomic64_inc(&enic->soft_stats.rx_nombuf);
break;
}
/* A packet error means descriptor and data are untrusted */
packet_error = enic_cq_rx_check_err(&cqd);
/* Get the mbuf to return and replace with one just allocated */
rxmb = rq->mbuf_ring[rq_idx];
rq->mbuf_ring[rq_idx] = nmb;
cq_idx++;
/* Prefetch next mbuf & desc while processing current one */
cqd_ptr = (struct cq_desc *)(cq->ring.descs) + cq_idx;
rte_enic_prefetch(cqd_ptr);
ciflags = enic_cq_rx_desc_ciflags(
(struct cq_enet_rq_desc *)&cqd);
/* Push descriptor for newly allocated mbuf */
nmb->data_off = RTE_PKTMBUF_HEADROOM;
/*
* Only the address needs to be refilled. length_type of the
* descriptor it set during initialization
* (enic_alloc_rx_queue_mbufs) and does not change.
*/
rqd_ptr->address = rte_cpu_to_le_64(nmb->buf_iova +
RTE_PKTMBUF_HEADROOM);
/* Fill in the rest of the mbuf */
seg_length = enic_cq_rx_desc_n_bytes(&cqd);
if (rq->is_sop) {
first_seg = rxmb;
first_seg->pkt_len = seg_length;
} else {
first_seg->pkt_len = (uint16_t)(first_seg->pkt_len
+ seg_length);
first_seg->nb_segs++;
last_seg->next = rxmb;
}
rxmb->port = enic->port_id;
rxmb->data_len = seg_length;
rq->rx_nb_hold++;
if (!(enic_cq_rx_desc_eop(ciflags))) {
last_seg = rxmb;
continue;
}
/*
* When overlay offload is enabled, CQ.fcoe indicates the
* packet is tunnelled.
*/
tnl = enic->overlay_offload &&
(ciflags & CQ_ENET_RQ_DESC_FLAGS_FCOE) != 0;
/* cq rx flags are only valid if eop bit is set */
first_seg->packet_type =
enic_cq_rx_flags_to_pkt_type(&cqd, tnl);
enic_cq_rx_to_pkt_flags(&cqd, first_seg);
/* Wipe the outer types set by enic_cq_rx_flags_to_pkt_type() */
if (tnl) {
first_seg->packet_type &= ~(RTE_PTYPE_L3_MASK |
RTE_PTYPE_L4_MASK);
}
if (unlikely(packet_error)) {
rte_pktmbuf_free(first_seg);
rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
continue;
}
/* prefetch mbuf data for caller */
rte_packet_prefetch(RTE_PTR_ADD(first_seg->buf_addr,
RTE_PKTMBUF_HEADROOM));
/* store the mbuf address into the next entry of the array */
rx_pkts[nb_rx++] = first_seg;
}
if (unlikely(cq_idx == cq->ring.desc_count)) {
cq_idx = 0;
cq->last_color ^= CQ_DESC_COLOR_MASK_NOSHIFT;
}
sop_rq->pkt_first_seg = first_seg;
sop_rq->pkt_last_seg = last_seg;
cq->to_clean = cq_idx;
if ((sop_rq->rx_nb_hold + data_rq->rx_nb_hold) >
sop_rq->rx_free_thresh) {
if (data_rq->in_use) {
data_rq->posted_index =
enic_ring_add(data_rq->ring.desc_count,
data_rq->posted_index,
data_rq->rx_nb_hold);
data_rq->rx_nb_hold = 0;
}
sop_rq->posted_index = enic_ring_add(sop_rq->ring.desc_count,
sop_rq->posted_index,
sop_rq->rx_nb_hold);
sop_rq->rx_nb_hold = 0;
rte_mb();
if (data_rq->in_use)
iowrite32_relaxed(data_rq->posted_index,
&data_rq->ctrl->posted_index);
rte_compiler_barrier();
iowrite32_relaxed(sop_rq->posted_index,
&sop_rq->ctrl->posted_index);
}
return nb_rx;
}
uint16_t
enic_noscatter_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct rte_mbuf *mb, **rx, **rxmb;
uint16_t cq_idx, nb_rx, max_rx;
struct cq_enet_rq_desc *cqd;
struct rq_enet_desc *rqd;
unsigned int port_id;
struct vnic_cq *cq;
struct vnic_rq *rq;
struct enic *enic;
uint8_t color;
bool overlay;
bool tnl;
rq = rx_queue;
enic = vnic_dev_priv(rq->vdev);
cq = &enic->cq[enic_cq_rq(enic, rq->index)];
cq_idx = cq->to_clean;
/*
* Fill up the reserve of free mbufs. Below, we restock the receive
* ring with these mbufs to avoid allocation failures.
*/
if (rq->num_free_mbufs == 0) {
if (rte_mempool_get_bulk(rq->mp, (void **)rq->free_mbufs,
ENIC_RX_BURST_MAX))
return 0;
rq->num_free_mbufs = ENIC_RX_BURST_MAX;
}
/* Receive until the end of the ring, at most. */
max_rx = RTE_MIN(nb_pkts, rq->num_free_mbufs);
max_rx = RTE_MIN(max_rx, cq->ring.desc_count - cq_idx);
cqd = (struct cq_enet_rq_desc *)(cq->ring.descs) + cq_idx;
color = cq->last_color;
rxmb = rq->mbuf_ring + cq_idx;
port_id = enic->port_id;
overlay = enic->overlay_offload;
rx = rx_pkts;
while (max_rx) {
max_rx--;
if ((cqd->type_color & CQ_DESC_COLOR_MASK_NOSHIFT) == color)
break;
if (unlikely(cqd->bytes_written_flags &
CQ_ENET_RQ_DESC_FLAGS_TRUNCATED)) {
rte_pktmbuf_free(*rxmb++);
rte_atomic64_inc(&enic->soft_stats.rx_packet_errors);
cqd++;
continue;
}
mb = *rxmb++;
/* prefetch mbuf data for caller */
rte_packet_prefetch(RTE_PTR_ADD(mb->buf_addr,
RTE_PKTMBUF_HEADROOM));
mb->data_len = cqd->bytes_written_flags &
CQ_ENET_RQ_DESC_BYTES_WRITTEN_MASK;
mb->pkt_len = mb->data_len;
mb->port = port_id;
tnl = overlay && (cqd->completed_index_flags &
CQ_ENET_RQ_DESC_FLAGS_FCOE) != 0;
mb->packet_type =
enic_cq_rx_flags_to_pkt_type((struct cq_desc *)cqd,
tnl);
enic_cq_rx_to_pkt_flags((struct cq_desc *)cqd, mb);
/* Wipe the outer types set by enic_cq_rx_flags_to_pkt_type() */
if (tnl) {
mb->packet_type &= ~(RTE_PTYPE_L3_MASK |
RTE_PTYPE_L4_MASK);
}
cqd++;
*rx++ = mb;
}
/* Number of descriptors visited */
nb_rx = cqd - (struct cq_enet_rq_desc *)(cq->ring.descs) - cq_idx;
if (nb_rx == 0)
return 0;
rqd = ((struct rq_enet_desc *)rq->ring.descs) + cq_idx;
rxmb = rq->mbuf_ring + cq_idx;
cq_idx += nb_rx;
rq->rx_nb_hold += nb_rx;
if (unlikely(cq_idx == cq->ring.desc_count)) {
cq_idx = 0;
cq->last_color ^= CQ_DESC_COLOR_MASK_NOSHIFT;
}
cq->to_clean = cq_idx;
memcpy(rxmb, rq->free_mbufs + ENIC_RX_BURST_MAX - rq->num_free_mbufs,
sizeof(struct rte_mbuf *) * nb_rx);
rq->num_free_mbufs -= nb_rx;
while (nb_rx) {
nb_rx--;
mb = *rxmb++;
mb->data_off = RTE_PKTMBUF_HEADROOM;
rqd->address = mb->buf_iova + RTE_PKTMBUF_HEADROOM;
rqd++;
}
if (rq->rx_nb_hold > rq->rx_free_thresh) {
rq->posted_index = enic_ring_add(rq->ring.desc_count,
rq->posted_index,
rq->rx_nb_hold);
rq->rx_nb_hold = 0;
rte_wmb();
iowrite32_relaxed(rq->posted_index,
&rq->ctrl->posted_index);
}
return rx - rx_pkts;
}
static inline void enic_free_wq_bufs(struct vnic_wq *wq, u16 completed_index)
{
struct rte_mbuf *buf;
struct rte_mbuf *m, *free[ENIC_MAX_WQ_DESCS];
unsigned int nb_to_free, nb_free = 0, i;
struct rte_mempool *pool;
unsigned int tail_idx;
unsigned int desc_count = wq->ring.desc_count;
nb_to_free = enic_ring_sub(desc_count, wq->tail_idx, completed_index)
+ 1;
tail_idx = wq->tail_idx;
pool = wq->bufs[tail_idx]->pool;
for (i = 0; i < nb_to_free; i++) {
buf = wq->bufs[tail_idx];
m = rte_pktmbuf_prefree_seg(buf);
if (unlikely(m == NULL)) {
tail_idx = enic_ring_incr(desc_count, tail_idx);
continue;
}
if (likely(m->pool == pool)) {
RTE_ASSERT(nb_free < ENIC_MAX_WQ_DESCS);
free[nb_free++] = m;
} else {
rte_mempool_put_bulk(pool, (void *)free, nb_free);
free[0] = m;
nb_free = 1;
pool = m->pool;
}
tail_idx = enic_ring_incr(desc_count, tail_idx);
}
if (nb_free > 0)
rte_mempool_put_bulk(pool, (void **)free, nb_free);
wq->tail_idx = tail_idx;
wq->ring.desc_avail += nb_to_free;
}
unsigned int enic_cleanup_wq(__rte_unused struct enic *enic, struct vnic_wq *wq)
{
u16 completed_index;
completed_index = *((uint32_t *)wq->cqmsg_rz->addr) & 0xffff;
if (wq->last_completed_index != completed_index) {
enic_free_wq_bufs(wq, completed_index);
wq->last_completed_index = completed_index;
}
return 0;
}
uint16_t enic_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct vnic_wq *wq = (struct vnic_wq *)tx_queue;
int32_t ret;
uint16_t i;
uint64_t ol_flags;
struct rte_mbuf *m;
for (i = 0; i != nb_pkts; i++) {
m = tx_pkts[i];
if (unlikely(m->pkt_len > ENIC_TX_MAX_PKT_SIZE)) {
rte_errno = EINVAL;
return i;
}
ol_flags = m->ol_flags;
if (ol_flags & wq->tx_offload_notsup_mask) {
rte_errno = ENOTSUP;
return i;
}
#ifdef RTE_LIBRTE_ETHDEV_DEBUG
ret = rte_validate_tx_offload(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
#endif
ret = rte_net_intel_cksum_prepare(m);
if (ret != 0) {
rte_errno = ret;
return i;
}
}
return i;
}
uint16_t enic_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t index;
unsigned int pkt_len, data_len;
unsigned int nb_segs;
struct rte_mbuf *tx_pkt;
struct vnic_wq *wq = (struct vnic_wq *)tx_queue;
struct enic *enic = vnic_dev_priv(wq->vdev);
unsigned short vlan_id;
uint64_t ol_flags;
uint64_t ol_flags_mask;
unsigned int wq_desc_avail;
int head_idx;
unsigned int desc_count;
struct wq_enet_desc *descs, *desc_p, desc_tmp;
uint16_t mss;
uint8_t vlan_tag_insert;
uint8_t eop, cq;
uint64_t bus_addr;
uint8_t offload_mode;
uint16_t header_len;
uint64_t tso;
rte_atomic64_t *tx_oversized;
enic_cleanup_wq(enic, wq);
wq_desc_avail = vnic_wq_desc_avail(wq);
head_idx = wq->head_idx;
desc_count = wq->ring.desc_count;
ol_flags_mask = PKT_TX_VLAN | PKT_TX_IP_CKSUM | PKT_TX_L4_MASK;
tx_oversized = &enic->soft_stats.tx_oversized;
nb_pkts = RTE_MIN(nb_pkts, ENIC_TX_XMIT_MAX);
for (index = 0; index < nb_pkts; index++) {
tx_pkt = *tx_pkts++;
pkt_len = tx_pkt->pkt_len;
data_len = tx_pkt->data_len;
ol_flags = tx_pkt->ol_flags;
nb_segs = tx_pkt->nb_segs;
tso = ol_flags & PKT_TX_TCP_SEG;
/* drop packet if it's too big to send */
if (unlikely(!tso && pkt_len > ENIC_TX_MAX_PKT_SIZE)) {
rte_pktmbuf_free(tx_pkt);
rte_atomic64_inc(tx_oversized);
continue;
}
if (nb_segs > wq_desc_avail) {
if (index > 0)
goto post;
goto done;
}
mss = 0;
vlan_id = tx_pkt->vlan_tci;
vlan_tag_insert = !!(ol_flags & PKT_TX_VLAN);
bus_addr = (dma_addr_t)
(tx_pkt->buf_iova + tx_pkt->data_off);
descs = (struct wq_enet_desc *)wq->ring.descs;
desc_p = descs + head_idx;
eop = (data_len == pkt_len);
offload_mode = WQ_ENET_OFFLOAD_MODE_CSUM;
header_len = 0;
if (tso) {
header_len = tx_pkt->l2_len + tx_pkt->l3_len +
tx_pkt->l4_len;
/* Drop if non-TCP packet or TSO seg size is too big */
if (unlikely(header_len == 0 || ((tx_pkt->tso_segsz +
header_len) > ENIC_TX_MAX_PKT_SIZE))) {
rte_pktmbuf_free(tx_pkt);
rte_atomic64_inc(tx_oversized);
continue;
}
offload_mode = WQ_ENET_OFFLOAD_MODE_TSO;
mss = tx_pkt->tso_segsz;
/* For tunnel, need the size of outer+inner headers */
if (ol_flags & PKT_TX_TUNNEL_MASK) {
header_len += tx_pkt->outer_l2_len +
tx_pkt->outer_l3_len;
}
}
if ((ol_flags & ol_flags_mask) && (header_len == 0)) {
if (ol_flags & PKT_TX_IP_CKSUM)
mss |= ENIC_CALC_IP_CKSUM;
/* Nic uses just 1 bit for UDP and TCP */
switch (ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
case PKT_TX_UDP_CKSUM:
mss |= ENIC_CALC_TCP_UDP_CKSUM;
break;
}
}
wq->cq_pend++;
cq = 0;
if (eop && wq->cq_pend >= ENIC_WQ_CQ_THRESH) {
cq = 1;
wq->cq_pend = 0;
}
wq_enet_desc_enc(&desc_tmp, bus_addr, data_len, mss, header_len,
offload_mode, eop, cq, 0, vlan_tag_insert,
vlan_id, 0);
*desc_p = desc_tmp;
wq->bufs[head_idx] = tx_pkt;
head_idx = enic_ring_incr(desc_count, head_idx);
wq_desc_avail--;
if (!eop) {
for (tx_pkt = tx_pkt->next; tx_pkt; tx_pkt =
tx_pkt->next) {
data_len = tx_pkt->data_len;
wq->cq_pend++;
cq = 0;
if (tx_pkt->next == NULL) {
eop = 1;
if (wq->cq_pend >= ENIC_WQ_CQ_THRESH) {
cq = 1;
wq->cq_pend = 0;
}
}
desc_p = descs + head_idx;
bus_addr = (dma_addr_t)(tx_pkt->buf_iova
+ tx_pkt->data_off);
wq_enet_desc_enc((struct wq_enet_desc *)
&desc_tmp, bus_addr, data_len,
mss, 0, offload_mode, eop, cq,
0, vlan_tag_insert, vlan_id,
0);
*desc_p = desc_tmp;
wq->bufs[head_idx] = tx_pkt;
head_idx = enic_ring_incr(desc_count, head_idx);
wq_desc_avail--;
}
}
}
post:
rte_wmb();
iowrite32_relaxed(head_idx, &wq->ctrl->posted_index);
done:
wq->ring.desc_avail = wq_desc_avail;
wq->head_idx = head_idx;
return index;
}
static void enqueue_simple_pkts(struct rte_mbuf **pkts,
struct wq_enet_desc *desc,
uint16_t n,
struct enic *enic)
{
struct rte_mbuf *p;
uint16_t mss;
while (n) {
n--;
p = *pkts++;
desc->address = p->buf_iova + p->data_off;
desc->length = p->pkt_len;
/* VLAN insert */
desc->vlan_tag = p->vlan_tci;
desc->header_length_flags &=
((1 << WQ_ENET_FLAGS_EOP_SHIFT) |
(1 << WQ_ENET_FLAGS_CQ_ENTRY_SHIFT));
if (p->ol_flags & PKT_TX_VLAN) {
desc->header_length_flags |=
1 << WQ_ENET_FLAGS_VLAN_TAG_INSERT_SHIFT;
}
/*
* Checksum offload. We use WQ_ENET_OFFLOAD_MODE_CSUM, which
* is 0, so no need to set offload_mode.
*/
mss = 0;
if (p->ol_flags & PKT_TX_IP_CKSUM)
mss |= ENIC_CALC_IP_CKSUM << WQ_ENET_MSS_SHIFT;
if (p->ol_flags & PKT_TX_L4_MASK)
mss |= ENIC_CALC_TCP_UDP_CKSUM << WQ_ENET_MSS_SHIFT;
desc->mss_loopback = mss;
/*
* The app should not send oversized
* packets. tx_pkt_prepare includes a check as
* well. But some apps ignore the device max size and
* tx_pkt_prepare. Oversized packets cause WQ errrors
* and the NIC ends up disabling the whole WQ. So
* truncate packets..
*/
if (unlikely(p->pkt_len > ENIC_TX_MAX_PKT_SIZE)) {
desc->length = ENIC_TX_MAX_PKT_SIZE;
rte_atomic64_inc(&enic->soft_stats.tx_oversized);
}
desc++;
}
}
uint16_t enic_simple_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
unsigned int head_idx, desc_count;
struct wq_enet_desc *desc;
struct vnic_wq *wq;
struct enic *enic;
uint16_t rem, n;
wq = (struct vnic_wq *)tx_queue;
enic = vnic_dev_priv(wq->vdev);
enic_cleanup_wq(enic, wq);
/* Will enqueue this many packets in this call */
nb_pkts = RTE_MIN(nb_pkts, wq->ring.desc_avail);
if (nb_pkts == 0)
return 0;
head_idx = wq->head_idx;
desc_count = wq->ring.desc_count;
/* Descriptors until the end of the ring */
n = desc_count - head_idx;
n = RTE_MIN(nb_pkts, n);
/* Save mbuf pointers to free later */
memcpy(wq->bufs + head_idx, tx_pkts, sizeof(struct rte_mbuf *) * n);
/* Enqueue until the ring end */
rem = nb_pkts - n;
desc = ((struct wq_enet_desc *)wq->ring.descs) + head_idx;
enqueue_simple_pkts(tx_pkts, desc, n, enic);
/* Wrap to the start of the ring */
if (rem) {
tx_pkts += n;
memcpy(wq->bufs, tx_pkts, sizeof(struct rte_mbuf *) * rem);
desc = (struct wq_enet_desc *)wq->ring.descs;
enqueue_simple_pkts(tx_pkts, desc, rem, enic);
}
rte_wmb();
/* Update head_idx and desc_avail */
wq->ring.desc_avail -= nb_pkts;
head_idx += nb_pkts;
if (head_idx >= desc_count)
head_idx -= desc_count;
wq->head_idx = head_idx;
iowrite32_relaxed(head_idx, &wq->ctrl->posted_index);
return nb_pkts;
}