numam-dpdk/lib/librte_acl/acl_run_sse.c

582 lines
16 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "acl_run.h"
enum {
SHUFFLE32_SLOT1 = 0xe5,
SHUFFLE32_SLOT2 = 0xe6,
SHUFFLE32_SLOT3 = 0xe7,
SHUFFLE32_SWAP64 = 0x4e,
};
static const rte_xmm_t mm_shuffle_input = {
.u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
};
static const rte_xmm_t mm_shuffle_input64 = {
.u32 = {0x00000000, 0x04040404, 0x80808080, 0x80808080},
};
static const rte_xmm_t mm_ones_16 = {
.u16 = {1, 1, 1, 1, 1, 1, 1, 1},
};
static const rte_xmm_t mm_match_mask = {
.u32 = {
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
RTE_ACL_NODE_MATCH,
},
};
static const rte_xmm_t mm_match_mask64 = {
.u32 = {
RTE_ACL_NODE_MATCH,
0,
RTE_ACL_NODE_MATCH,
0,
},
};
static const rte_xmm_t mm_index_mask = {
.u32 = {
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
},
};
static const rte_xmm_t mm_index_mask64 = {
.u32 = {
RTE_ACL_NODE_INDEX,
RTE_ACL_NODE_INDEX,
0,
0,
},
};
/*
* Resolve priority for multiple results (sse version).
* This consists comparing the priority of the current traversal with the
* running set of results for the packet.
* For each result, keep a running array of the result (rule number) and
* its priority for each category.
*/
static inline void
resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
struct parms *parms, const struct rte_acl_match_results *p,
uint32_t categories)
{
uint32_t x;
xmm_t results, priority, results1, priority1, selector;
xmm_t *saved_results, *saved_priority;
for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
saved_priority =
(xmm_t *)(&parms[n].cmplt->priority[x]);
/* get results and priorities for completed trie */
results = MM_LOADU((const xmm_t *)&p[transition].results[x]);
priority = MM_LOADU((const xmm_t *)&p[transition].priority[x]);
/* if this is not the first completed trie */
if (parms[n].cmplt->count != ctx->num_tries) {
/* get running best results and their priorities */
results1 = MM_LOADU(saved_results);
priority1 = MM_LOADU(saved_priority);
/* select results that are highest priority */
selector = MM_CMPGT32(priority1, priority);
results = MM_BLENDV8(results, results1, selector);
priority = MM_BLENDV8(priority, priority1, selector);
}
/* save running best results and their priorities */
MM_STOREU(saved_results, results);
MM_STOREU(saved_priority, priority);
}
}
/*
* Extract transitions from an XMM register and check for any matches
*/
static void
acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
struct parms *parms, struct acl_flow_data *flows)
{
uint64_t transition1, transition2;
/* extract transition from low 64 bits. */
transition1 = MM_CVT64(*indices);
/* extract transition from high 64 bits. */
*indices = MM_SHUFFLE32(*indices, SHUFFLE32_SWAP64);
transition2 = MM_CVT64(*indices);
transition1 = acl_match_check(transition1, slot, ctx,
parms, flows, resolve_priority_sse);
transition2 = acl_match_check(transition2, slot + 1, ctx,
parms, flows, resolve_priority_sse);
/* update indices with new transitions. */
*indices = MM_SET64(transition2, transition1);
}
/*
* Check for a match in 2 transitions (contained in SSE register)
*/
static inline void
acl_match_check_x2(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows, xmm_t *indices, xmm_t match_mask)
{
xmm_t temp;
temp = MM_AND(match_mask, *indices);
while (!MM_TESTZ(temp, temp)) {
acl_process_matches(indices, slot, ctx, parms, flows);
temp = MM_AND(match_mask, *indices);
}
}
/*
* Check for any match in 4 transitions (contained in 2 SSE registers)
*/
static inline void
acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2,
xmm_t match_mask)
{
xmm_t temp;
/* put low 32 bits of each transition into one register */
temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1, (__m128)*indices2,
0x88);
/* test for match node */
temp = MM_AND(match_mask, temp);
while (!MM_TESTZ(temp, temp)) {
acl_process_matches(indices1, slot, ctx, parms, flows);
acl_process_matches(indices2, slot + 2, ctx, parms, flows);
temp = (xmm_t)MM_SHUFFLEPS((__m128)*indices1,
(__m128)*indices2,
0x88);
temp = MM_AND(match_mask, temp);
}
}
/*
* Calculate the address of the next transition for
* all types of nodes. Note that only DFA nodes and range
* nodes actually transition to another node. Match
* nodes don't move.
*/
static inline xmm_t
acl_calc_addr(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
xmm_t ones_16, xmm_t indices1, xmm_t indices2)
{
xmm_t addr, node_types, range, temp;
xmm_t dfa_msk, dfa_ofs, quad_ofs;
xmm_t in, r, t;
const xmm_t range_base = _mm_set_epi32(0xffffff0c, 0xffffff08,
0xffffff04, 0xffffff00);
/*
* Note that no transition is done for a match
* node and therefore a stream freezes when
* it reaches a match.
*/
/* Shuffle low 32 into temp and high 32 into indices2 */
temp = (xmm_t)MM_SHUFFLEPS((__m128)indices1, (__m128)indices2, 0x88);
range = (xmm_t)MM_SHUFFLEPS((__m128)indices1, (__m128)indices2, 0xdd);
t = MM_XOR(index_mask, index_mask);
/* shuffle input byte to all 4 positions of 32 bit value */
in = MM_SHUFFLE8(next_input, shuffle_input);
/* Calc node type and node addr */
node_types = MM_ANDNOT(index_mask, temp);
addr = MM_AND(index_mask, temp);
/*
* Calc addr for DFAs - addr = dfa_index + input_byte
*/
/* mask for DFA type (0) nodes */
dfa_msk = MM_CMPEQ32(node_types, t);
r = _mm_srli_epi32(in, 30);
r = _mm_add_epi8(r, range_base);
t = _mm_srli_epi32(in, 24);
r = _mm_shuffle_epi8(range, r);
dfa_ofs = _mm_sub_epi32(t, r);
/*
* Calculate number of range boundaries that are less than the
* input value. Range boundaries for each node are in signed 8 bit,
* ordered from -128 to 127 in the indices2 register.
* This is effectively a popcnt of bytes that are greater than the
* input byte.
*/
/* check ranges */
temp = MM_CMPGT8(in, range);
/* convert -1 to 1 (bytes greater than input byte */
temp = MM_SIGN8(temp, temp);
/* horizontal add pairs of bytes into words */
temp = MM_MADD8(temp, temp);
/* horizontal add pairs of words into dwords */
quad_ofs = MM_MADD16(temp, ones_16);
/* mask to range type nodes */
temp = _mm_blendv_epi8(quad_ofs, dfa_ofs, dfa_msk);
/* add index into node position */
return MM_ADD32(addr, temp);
}
/*
* Process 4 transitions (in 2 SIMD registers) in parallel
*/
static inline xmm_t
transition4(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
xmm_t ones_16, const uint64_t *trans,
xmm_t *indices1, xmm_t *indices2)
{
xmm_t addr;
uint64_t trans0, trans2;
/* Calculate the address (array index) for all 4 transitions. */
addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
*indices1, *indices2);
/* Gather 64 bit transitions and pack back into 2 registers. */
trans0 = trans[MM_CVT32(addr)];
/* get slot 2 */
/* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT2);
trans2 = trans[MM_CVT32(addr)];
/* get slot 1 */
/* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
*indices1 = MM_SET64(trans[MM_CVT32(addr)], trans0);
/* get slot 3 */
/* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT3);
*indices2 = MM_SET64(trans[MM_CVT32(addr)], trans2);
return MM_SRL32(next_input, 8);
}
/*
* Execute trie traversal with 8 traversals in parallel
*/
static inline int
search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SSE8];
struct completion cmplt[MAX_SEARCHES_SSE8];
struct parms parms[MAX_SEARCHES_SSE8];
xmm_t input0, input1;
xmm_t indices1, indices2, indices3, indices4;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
/*
* indices1 contains index_array[0,1]
* indices2 contains index_array[2,3]
* indices3 contains index_array[4,5]
* indices4 contains index_array[6,7]
*/
indices1 = MM_LOADU((xmm_t *) &index_array[0]);
indices2 = MM_LOADU((xmm_t *) &index_array[2]);
indices3 = MM_LOADU((xmm_t *) &index_array[4]);
indices4 = MM_LOADU((xmm_t *) &index_array[6]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indices1, &indices2, mm_match_mask.x);
acl_match_check_x4(4, ctx, parms, &flows,
&indices3, &indices4, mm_match_mask.x);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input0 = MM_INSERT32(mm_ones_16.x, GET_NEXT_4BYTES(parms, 0),
0);
input1 = MM_INSERT32(mm_ones_16.x, GET_NEXT_4BYTES(parms, 4),
0);
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 1), 1);
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 5), 1);
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 2), 2);
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 6), 2);
input0 = MM_INSERT32(input0, GET_NEXT_4BYTES(parms, 3), 3);
input1 = MM_INSERT32(input1, GET_NEXT_4BYTES(parms, 7), 3);
/* Process the 4 bytes of input on each stream. */
input0 = transition4(mm_index_mask.x, input0,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices1, &indices2);
input1 = transition4(mm_index_mask.x, input1,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices3, &indices4);
input0 = transition4(mm_index_mask.x, input0,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices1, &indices2);
input1 = transition4(mm_index_mask.x, input1,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices3, &indices4);
input0 = transition4(mm_index_mask.x, input0,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices1, &indices2);
input1 = transition4(mm_index_mask.x, input1,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices3, &indices4);
input0 = transition4(mm_index_mask.x, input0,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices1, &indices2);
input1 = transition4(mm_index_mask.x, input1,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices3, &indices4);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indices1, &indices2, mm_match_mask.x);
acl_match_check_x4(4, ctx, parms, &flows,
&indices3, &indices4, mm_match_mask.x);
}
return 0;
}
/*
* Execute trie traversal with 4 traversals in parallel
*/
static inline int
search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, int total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SSE4];
struct completion cmplt[MAX_SEARCHES_SSE4];
struct parms parms[MAX_SEARCHES_SSE4];
xmm_t input, indices1, indices2;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
indices1 = MM_LOADU((xmm_t *) &index_array[0]);
indices2 = MM_LOADU((xmm_t *) &index_array[2]);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indices1, &indices2, mm_match_mask.x);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input = MM_INSERT32(mm_ones_16.x, GET_NEXT_4BYTES(parms, 0), 0);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 2), 2);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 3), 3);
/* Process the 4 bytes of input on each stream. */
input = transition4(mm_index_mask.x, input,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices1, &indices2);
input = transition4(mm_index_mask.x, input,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices1, &indices2);
input = transition4(mm_index_mask.x, input,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices1, &indices2);
input = transition4(mm_index_mask.x, input,
mm_shuffle_input.x, mm_ones_16.x,
flows.trans, &indices1, &indices2);
/* Check for any matches. */
acl_match_check_x4(0, ctx, parms, &flows,
&indices1, &indices2, mm_match_mask.x);
}
return 0;
}
static inline xmm_t
transition2(xmm_t index_mask, xmm_t next_input, xmm_t shuffle_input,
xmm_t ones_16, const uint64_t *trans, xmm_t *indices1)
{
uint64_t t;
xmm_t addr, indices2;
indices2 = MM_XOR(ones_16, ones_16);
addr = acl_calc_addr(index_mask, next_input, shuffle_input, ones_16,
*indices1, indices2);
/* Gather 64 bit transitions and pack 2 per register. */
t = trans[MM_CVT32(addr)];
/* get slot 1 */
addr = MM_SHUFFLE32(addr, SHUFFLE32_SLOT1);
*indices1 = MM_SET64(trans[MM_CVT32(addr)], t);
return MM_SRL32(next_input, 8);
}
/*
* Execute trie traversal with 2 traversals in parallel.
*/
static inline int
search_sse_2(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t total_packets, uint32_t categories)
{
int n;
struct acl_flow_data flows;
uint64_t index_array[MAX_SEARCHES_SSE2];
struct completion cmplt[MAX_SEARCHES_SSE2];
struct parms parms[MAX_SEARCHES_SSE2];
xmm_t input, indices;
acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
total_packets, categories, ctx->trans_table);
for (n = 0; n < MAX_SEARCHES_SSE2; n++) {
cmplt[n].count = 0;
index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
}
indices = MM_LOADU((xmm_t *) &index_array[0]);
/* Check for any matches. */
acl_match_check_x2(0, ctx, parms, &flows, &indices, mm_match_mask64.x);
while (flows.started > 0) {
/* Gather 4 bytes of input data for each stream. */
input = MM_INSERT32(mm_ones_16.x, GET_NEXT_4BYTES(parms, 0), 0);
input = MM_INSERT32(input, GET_NEXT_4BYTES(parms, 1), 1);
/* Process the 4 bytes of input on each stream. */
input = transition2(mm_index_mask64.x, input,
mm_shuffle_input64.x, mm_ones_16.x,
flows.trans, &indices);
input = transition2(mm_index_mask64.x, input,
mm_shuffle_input64.x, mm_ones_16.x,
flows.trans, &indices);
input = transition2(mm_index_mask64.x, input,
mm_shuffle_input64.x, mm_ones_16.x,
flows.trans, &indices);
input = transition2(mm_index_mask64.x, input,
mm_shuffle_input64.x, mm_ones_16.x,
flows.trans, &indices);
/* Check for any matches. */
acl_match_check_x2(0, ctx, parms, &flows, &indices,
mm_match_mask64.x);
}
return 0;
}
int
rte_acl_classify_sse(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
if (likely(num >= MAX_SEARCHES_SSE8))
return search_sse_8(ctx, data, results, num, categories);
else if (num >= MAX_SEARCHES_SSE4)
return search_sse_4(ctx, data, results, num, categories);
else
return search_sse_2(ctx, data, results, num, categories);
}