numam-dpdk/drivers/net/hns3/hns3_rxtx_vec_sve.c

504 lines
16 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020-2021 HiSilicon Limited.
*/
#include <arm_sve.h>
#include <rte_io.h>
#include <ethdev_driver.h>
#include "hns3_ethdev.h"
#include "hns3_rxtx.h"
#include "hns3_rxtx_vec.h"
#define PG16_128BIT svwhilelt_b16(0, 8)
#define PG16_256BIT svwhilelt_b16(0, 16)
#define PG32_256BIT svwhilelt_b32(0, 8)
#define PG64_64BIT svwhilelt_b64(0, 1)
#define PG64_128BIT svwhilelt_b64(0, 2)
#define PG64_256BIT svwhilelt_b64(0, 4)
#define PG64_ALLBIT svptrue_b64()
#define BD_SIZE 32
#define BD_FIELD_ADDR_OFFSET 0
#define BD_FIELD_L234_OFFSET 8
#define BD_FIELD_XLEN_OFFSET 12
#define BD_FIELD_RSS_OFFSET 16
#define BD_FIELD_OL_OFFSET 24
#define BD_FIELD_VALID_OFFSET 28
typedef struct {
uint32_t l234_info[HNS3_SVE_DEFAULT_DESCS_PER_LOOP];
uint32_t ol_info[HNS3_SVE_DEFAULT_DESCS_PER_LOOP];
uint32_t bd_base_info[HNS3_SVE_DEFAULT_DESCS_PER_LOOP];
} HNS3_SVE_KEY_FIELD_S;
static inline uint32_t
hns3_desc_parse_field_sve(struct hns3_rx_queue *rxq,
struct rte_mbuf **rx_pkts,
HNS3_SVE_KEY_FIELD_S *key,
uint32_t bd_vld_num)
{
uint32_t retcode = 0;
int ret, i;
for (i = 0; i < (int)bd_vld_num; i++) {
/* init rte_mbuf.rearm_data last 64-bit */
rx_pkts[i]->ol_flags = PKT_RX_RSS_HASH;
ret = hns3_handle_bdinfo(rxq, rx_pkts[i], key->bd_base_info[i],
net/hns3: simplify Rx checksum Currently, the L3L4P/L3E/L4E/OL3E/OL4E fields in Rx descriptor used to indicate hardware checksum result: 1. L3L4P: indicates hardware has processed L3L4 checksum for this packet, if this bit is 1 then L3E/L4E/OL3E/OL4E is trustable. 2. L3E: L3 checksum error indication, 1 means with error. 3. L4E: L4 checksum error indication, 1 means with error. 4. OL3E: outer L3 checksum error indication, 1 means with error. 5. OL4E: outer L4 checksum error indication, 1 means with error. Driver will set the good checksum flag through packet type and L3E/L4E/OL3E/OL4E when L3L4P is 1, it runs as follows: 1. If packet type indicates it's tunnel packet: 1.1. If packet type indicates it has inner L3 and L3E is zero, then mark the IP checksum good. 1.2. If packet type indicates it has inner L4 and L4E is zero, then mark the L4 checksum good. 1.3. If packet type indicates it has outer L4 and OL4E is zero, then mark the outer L4 checksum good. 2. If packet type indicates it's not tunnel packet: 2.1. If packet type indicates it has L3 and L3E is zero, then mark the IP checksum good. 2.2. If packet type indicates it has L4 and L4E is zero, then mark the L4 checksum good. As described above, the good checksum calculation is time consuming, it impacts the Rx performance. By balancing performance and functionality, driver uses the following scheme to set good checksum flag when L3L4P is 1: 1. If L3E is zero, then mark the IP checksum good. 2. If L4E is zero, then mark the L4 checksum good. The performance gains are 3% in small packet iofwd scenarios. Signed-off-by: Chengwen Feng <fengchengwen@huawei.com> Signed-off-by: Min Hu (Connor) <humin29@huawei.com>
2021-04-15 03:52:01 +00:00
key->l234_info[i]);
if (unlikely(ret)) {
retcode |= 1u << i;
continue;
}
rx_pkts[i]->packet_type = hns3_rx_calc_ptype(rxq,
key->l234_info[i], key->ol_info[i]);
/* Increment bytes counter */
rxq->basic_stats.bytes += rx_pkts[i]->pkt_len;
}
return retcode;
}
static inline void
hns3_rx_prefetch_mbuf_sve(struct hns3_entry *sw_ring)
{
svuint64_t prf1st = svld1_u64(PG64_256BIT, (uint64_t *)&sw_ring[0]);
svuint64_t prf2st = svld1_u64(PG64_256BIT, (uint64_t *)&sw_ring[4]);
svprfd_gather_u64base(PG64_256BIT, prf1st, SV_PLDL1KEEP);
svprfd_gather_u64base(PG64_256BIT, prf2st, SV_PLDL1KEEP);
}
static inline uint16_t
hns3_recv_burst_vec_sve(struct hns3_rx_queue *__restrict rxq,
struct rte_mbuf **__restrict rx_pkts,
uint16_t nb_pkts,
uint64_t *bd_err_mask)
{
#define XLEN_ADJUST_LEN 32
#define RSS_ADJUST_LEN 16
#define GEN_VLD_U8_ZIP_INDEX svindex_s8(28, -4)
uint16_t rx_id = rxq->next_to_use;
struct hns3_entry *sw_ring = &rxq->sw_ring[rx_id];
struct hns3_desc *rxdp = &rxq->rx_ring[rx_id];
struct hns3_desc *rxdp2;
HNS3_SVE_KEY_FIELD_S key_field;
uint64_t bd_valid_num;
uint32_t parse_retcode;
uint16_t nb_rx = 0;
int pos, offset;
uint16_t xlen_adjust[XLEN_ADJUST_LEN] = {
0, 0xffff, 1, 0xffff, /* 1st mbuf: pkt_len and dat_len */
2, 0xffff, 3, 0xffff, /* 2st mbuf: pkt_len and dat_len */
4, 0xffff, 5, 0xffff, /* 3st mbuf: pkt_len and dat_len */
6, 0xffff, 7, 0xffff, /* 4st mbuf: pkt_len and dat_len */
8, 0xffff, 9, 0xffff, /* 5st mbuf: pkt_len and dat_len */
10, 0xffff, 11, 0xffff, /* 6st mbuf: pkt_len and dat_len */
12, 0xffff, 13, 0xffff, /* 7st mbuf: pkt_len and dat_len */
14, 0xffff, 15, 0xffff, /* 8st mbuf: pkt_len and dat_len */
};
uint32_t rss_adjust[RSS_ADJUST_LEN] = {
0, 0xffff, /* 1st mbuf: rss */
1, 0xffff, /* 2st mbuf: rss */
2, 0xffff, /* 3st mbuf: rss */
3, 0xffff, /* 4st mbuf: rss */
4, 0xffff, /* 5st mbuf: rss */
5, 0xffff, /* 6st mbuf: rss */
6, 0xffff, /* 7st mbuf: rss */
7, 0xffff, /* 8st mbuf: rss */
};
svbool_t pg32 = svwhilelt_b32(0, HNS3_SVE_DEFAULT_DESCS_PER_LOOP);
svuint16_t xlen_tbl1 = svld1_u16(PG16_256BIT, xlen_adjust);
svuint16_t xlen_tbl2 = svld1_u16(PG16_256BIT, &xlen_adjust[16]);
svuint32_t rss_tbl1 = svld1_u32(PG32_256BIT, rss_adjust);
svuint32_t rss_tbl2 = svld1_u32(PG32_256BIT, &rss_adjust[8]);
/* compile-time verifies the xlen_adjust mask */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, pkt_len) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, data_len) + 2);
for (pos = 0; pos < nb_pkts; pos += HNS3_SVE_DEFAULT_DESCS_PER_LOOP,
rxdp += HNS3_SVE_DEFAULT_DESCS_PER_LOOP) {
svuint64_t vld_clz, mbp1st, mbp2st, mbuf_init;
svuint64_t xlen1st, xlen2st, rss1st, rss2st;
svuint32_t l234, ol, vld, vld2, xlen, rss;
svuint8_t vld_u8;
/* calc how many bd valid: part 1 */
vld = svld1_gather_u32offset_u32(pg32, (uint32_t *)rxdp,
svindex_u32(BD_FIELD_VALID_OFFSET, BD_SIZE));
vld2 = svlsl_n_u32_z(pg32, vld,
HNS3_UINT32_BIT - 1 - HNS3_RXD_VLD_B);
vld2 = svreinterpret_u32_s32(svasr_n_s32_z(pg32,
svreinterpret_s32_u32(vld2), HNS3_UINT32_BIT - 1));
/* load 4 mbuf pointer */
mbp1st = svld1_u64(PG64_256BIT, (uint64_t *)&sw_ring[pos]);
/* calc how many bd valid: part 2 */
vld_u8 = svtbl_u8(svreinterpret_u8_u32(vld2),
svreinterpret_u8_s8(GEN_VLD_U8_ZIP_INDEX));
vld_clz = svnot_u64_z(PG64_64BIT, svreinterpret_u64_u8(vld_u8));
vld_clz = svclz_u64_z(PG64_64BIT, vld_clz);
svst1_u64(PG64_64BIT, &bd_valid_num, vld_clz);
bd_valid_num /= HNS3_UINT8_BIT;
/* load 4 more mbuf pointer */
mbp2st = svld1_u64(PG64_256BIT, (uint64_t *)&sw_ring[pos + 4]);
/* use offset to control below data load oper ordering */
offset = rxq->offset_table[bd_valid_num];
rxdp2 = rxdp + offset;
/* store 4 mbuf pointer into rx_pkts */
svst1_u64(PG64_256BIT, (uint64_t *)&rx_pkts[pos], mbp1st);
/* load key field to vector reg */
l234 = svld1_gather_u32offset_u32(pg32, (uint32_t *)rxdp2,
svindex_u32(BD_FIELD_L234_OFFSET, BD_SIZE));
ol = svld1_gather_u32offset_u32(pg32, (uint32_t *)rxdp2,
svindex_u32(BD_FIELD_OL_OFFSET, BD_SIZE));
/* store 4 mbuf pointer into rx_pkts again */
svst1_u64(PG64_256BIT, (uint64_t *)&rx_pkts[pos + 4], mbp2st);
/* load datalen, pktlen and rss_hash */
xlen = svld1_gather_u32offset_u32(pg32, (uint32_t *)rxdp2,
svindex_u32(BD_FIELD_XLEN_OFFSET, BD_SIZE));
rss = svld1_gather_u32offset_u32(pg32, (uint32_t *)rxdp2,
svindex_u32(BD_FIELD_RSS_OFFSET, BD_SIZE));
/* store key field to stash buffer */
svst1_u32(pg32, (uint32_t *)key_field.l234_info, l234);
svst1_u32(pg32, (uint32_t *)key_field.bd_base_info, vld);
svst1_u32(pg32, (uint32_t *)key_field.ol_info, ol);
/* sub crc_len for pkt_len and data_len */
xlen = svreinterpret_u32_u16(svsub_n_u16_z(PG16_256BIT,
svreinterpret_u16_u32(xlen), rxq->crc_len));
/* init mbuf_initializer */
mbuf_init = svdup_n_u64(rxq->mbuf_initializer);
/* extract datalen, pktlen and rss from xlen and rss */
xlen1st = svreinterpret_u64_u16(
svtbl_u16(svreinterpret_u16_u32(xlen), xlen_tbl1));
xlen2st = svreinterpret_u64_u16(
svtbl_u16(svreinterpret_u16_u32(xlen), xlen_tbl2));
rss1st = svreinterpret_u64_u32(
svtbl_u32(svreinterpret_u32_u32(rss), rss_tbl1));
rss2st = svreinterpret_u64_u32(
svtbl_u32(svreinterpret_u32_u32(rss), rss_tbl2));
/* save mbuf_initializer */
svst1_scatter_u64base_offset_u64(PG64_256BIT, mbp1st,
offsetof(struct rte_mbuf, rearm_data), mbuf_init);
svst1_scatter_u64base_offset_u64(PG64_256BIT, mbp2st,
offsetof(struct rte_mbuf, rearm_data), mbuf_init);
/* save datalen and pktlen and rss */
svst1_scatter_u64base_offset_u64(PG64_256BIT, mbp1st,
offsetof(struct rte_mbuf, pkt_len), xlen1st);
svst1_scatter_u64base_offset_u64(PG64_256BIT, mbp1st,
offsetof(struct rte_mbuf, hash.rss), rss1st);
svst1_scatter_u64base_offset_u64(PG64_256BIT, mbp2st,
offsetof(struct rte_mbuf, pkt_len), xlen2st);
svst1_scatter_u64base_offset_u64(PG64_256BIT, mbp2st,
offsetof(struct rte_mbuf, hash.rss), rss2st);
rte_prefetch_non_temporal(rxdp +
HNS3_SVE_DEFAULT_DESCS_PER_LOOP);
parse_retcode = hns3_desc_parse_field_sve(rxq, &rx_pkts[pos],
&key_field, bd_valid_num);
if (unlikely(parse_retcode))
(*bd_err_mask) |= ((uint64_t)parse_retcode) << pos;
hns3_rx_prefetch_mbuf_sve(&sw_ring[pos +
HNS3_SVE_DEFAULT_DESCS_PER_LOOP]);
nb_rx += bd_valid_num;
if (unlikely(bd_valid_num < HNS3_SVE_DEFAULT_DESCS_PER_LOOP))
break;
}
rxq->rx_rearm_nb += nb_rx;
rxq->next_to_use += nb_rx;
if (rxq->next_to_use >= rxq->nb_rx_desc)
rxq->next_to_use = 0;
return nb_rx;
}
static inline void
hns3_rxq_rearm_mbuf_sve(struct hns3_rx_queue *rxq)
{
#define REARM_LOOP_STEP_NUM 4
struct hns3_entry *rxep = &rxq->sw_ring[rxq->rx_rearm_start];
struct hns3_desc *rxdp = rxq->rx_ring + rxq->rx_rearm_start;
struct hns3_entry *rxep_tmp = rxep;
int i;
if (unlikely(rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep,
HNS3_DEFAULT_RXQ_REARM_THRESH) < 0)) {
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
return;
}
for (i = 0; i < HNS3_DEFAULT_RXQ_REARM_THRESH; i += REARM_LOOP_STEP_NUM,
rxep_tmp += REARM_LOOP_STEP_NUM) {
svuint64_t prf = svld1_u64(PG64_256BIT, (uint64_t *)rxep_tmp);
svprfd_gather_u64base(PG64_256BIT, prf, SV_PLDL1STRM);
}
for (i = 0; i < HNS3_DEFAULT_RXQ_REARM_THRESH; i += REARM_LOOP_STEP_NUM,
rxep += REARM_LOOP_STEP_NUM, rxdp += REARM_LOOP_STEP_NUM) {
uint64_t iova[REARM_LOOP_STEP_NUM];
iova[0] = rxep[0].mbuf->buf_iova;
iova[1] = rxep[1].mbuf->buf_iova;
iova[2] = rxep[2].mbuf->buf_iova;
iova[3] = rxep[3].mbuf->buf_iova;
svuint64_t siova = svld1_u64(PG64_256BIT, iova);
siova = svadd_n_u64_z(PG64_256BIT, siova, RTE_PKTMBUF_HEADROOM);
svuint64_t ol_base = svdup_n_u64(0);
svst1_scatter_u64offset_u64(PG64_256BIT,
(uint64_t *)&rxdp[0].addr,
svindex_u64(BD_FIELD_ADDR_OFFSET, BD_SIZE), siova);
svst1_scatter_u64offset_u64(PG64_256BIT,
(uint64_t *)&rxdp[0].addr,
svindex_u64(BD_FIELD_OL_OFFSET, BD_SIZE), ol_base);
}
rxq->rx_rearm_start += HNS3_DEFAULT_RXQ_REARM_THRESH;
if (rxq->rx_rearm_start >= rxq->nb_rx_desc)
rxq->rx_rearm_start = 0;
rxq->rx_rearm_nb -= HNS3_DEFAULT_RXQ_REARM_THRESH;
hns3_write_reg_opt(rxq->io_head_reg, HNS3_DEFAULT_RXQ_REARM_THRESH);
}
uint16_t
hns3_recv_pkts_vec_sve(void *__restrict rx_queue,
struct rte_mbuf **__restrict rx_pkts,
uint16_t nb_pkts)
{
struct hns3_rx_queue *rxq = rx_queue;
struct hns3_desc *rxdp = &rxq->rx_ring[rxq->next_to_use];
uint64_t pkt_err_mask; /* bit mask indicate whick pkts is error */
uint16_t nb_rx;
rte_prefetch_non_temporal(rxdp);
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, HNS3_SVE_DEFAULT_DESCS_PER_LOOP);
if (rxq->rx_rearm_nb > HNS3_DEFAULT_RXQ_REARM_THRESH)
hns3_rxq_rearm_mbuf_sve(rxq);
if (unlikely(!(rxdp->rx.bd_base_info &
rte_cpu_to_le_32(1u << HNS3_RXD_VLD_B))))
return 0;
hns3_rx_prefetch_mbuf_sve(&rxq->sw_ring[rxq->next_to_use]);
if (likely(nb_pkts <= HNS3_DEFAULT_RX_BURST)) {
pkt_err_mask = 0;
nb_rx = hns3_recv_burst_vec_sve(rxq, rx_pkts, nb_pkts,
&pkt_err_mask);
nb_rx = hns3_rx_reassemble_pkts(rx_pkts, nb_rx, pkt_err_mask);
return nb_rx;
}
nb_rx = 0;
while (nb_pkts > 0) {
uint16_t ret, n;
n = RTE_MIN(nb_pkts, HNS3_DEFAULT_RX_BURST);
pkt_err_mask = 0;
ret = hns3_recv_burst_vec_sve(rxq, &rx_pkts[nb_rx], n,
&pkt_err_mask);
nb_pkts -= ret;
nb_rx += hns3_rx_reassemble_pkts(&rx_pkts[nb_rx], ret,
pkt_err_mask);
if (ret < n)
break;
if (rxq->rx_rearm_nb > HNS3_DEFAULT_RXQ_REARM_THRESH)
hns3_rxq_rearm_mbuf_sve(rxq);
}
return nb_rx;
}
static inline void
hns3_tx_free_buffers_sve(struct hns3_tx_queue *txq)
{
#define HNS3_SVE_CHECK_DESCS_PER_LOOP 8
#define TX_VLD_U8_ZIP_INDEX svindex_u8(0, 4)
svbool_t pg32 = svwhilelt_b32(0, HNS3_SVE_CHECK_DESCS_PER_LOOP);
svuint32_t vld, vld2;
svuint8_t vld_u8;
uint64_t vld_all;
struct hns3_desc *tx_desc;
int i;
/*
* All mbufs can be released only when the VLD bits of all
* descriptors in a batch are cleared.
*/
/* do logical OR operation for all desc's valid field */
vld = svdup_n_u32(0);
tx_desc = &txq->tx_ring[txq->next_to_clean];
for (i = 0; i < txq->tx_rs_thresh; i += HNS3_SVE_CHECK_DESCS_PER_LOOP,
tx_desc += HNS3_SVE_CHECK_DESCS_PER_LOOP) {
vld2 = svld1_gather_u32offset_u32(pg32, (uint32_t *)tx_desc,
svindex_u32(BD_FIELD_VALID_OFFSET, BD_SIZE));
vld = svorr_u32_z(pg32, vld, vld2);
}
/* shift left and then right to get all valid bit */
vld = svlsl_n_u32_z(pg32, vld,
HNS3_UINT32_BIT - 1 - HNS3_TXD_VLD_B);
vld = svreinterpret_u32_s32(svasr_n_s32_z(pg32,
svreinterpret_s32_u32(vld), HNS3_UINT32_BIT - 1));
/* use tbl to compress 32bit-lane to 8bit-lane */
vld_u8 = svtbl_u8(svreinterpret_u8_u32(vld), TX_VLD_U8_ZIP_INDEX);
/* dump compressed 64bit to variable */
svst1_u64(PG64_64BIT, &vld_all, svreinterpret_u64_u8(vld_u8));
if (vld_all > 0)
return;
hns3_tx_bulk_free_buffers(txq);
}
static inline void
hns3_tx_fill_hw_ring_sve(struct hns3_tx_queue *txq,
struct rte_mbuf **pkts,
uint16_t nb_pkts)
{
#define DATA_OFF_LEN_VAL_MASK 0xFFFF
struct hns3_desc *txdp = &txq->tx_ring[txq->next_to_use];
struct hns3_entry *tx_entry = &txq->sw_ring[txq->next_to_use];
const uint64_t valid_bit = (BIT(HNS3_TXD_VLD_B) | BIT(HNS3_TXD_FE_B)) <<
HNS3_UINT32_BIT;
svuint64_t base_addr, buf_iova, data_off, data_len, addr;
svuint64_t offsets = svindex_u64(0, BD_SIZE);
uint32_t i = 0;
svbool_t pg = svwhilelt_b64_u32(i, nb_pkts);
do {
base_addr = svld1_u64(pg, (uint64_t *)pkts);
/* calc mbuf's field buf_iova address */
buf_iova = svadd_n_u64_z(pg, base_addr,
offsetof(struct rte_mbuf, buf_iova));
/* calc mbuf's field data_off address */
data_off = svadd_n_u64_z(pg, base_addr,
offsetof(struct rte_mbuf, data_off));
/* calc mbuf's field data_len address */
data_len = svadd_n_u64_z(pg, base_addr,
offsetof(struct rte_mbuf, data_len));
/* store mbuf to tx_entry */
svst1_u64(pg, (uint64_t *)tx_entry, base_addr);
/* read pkts->buf_iova */
buf_iova = svld1_gather_u64base_u64(pg, buf_iova);
/* read pkts->data_off's 64bit val */
data_off = svld1_gather_u64base_u64(pg, data_off);
/* read pkts->data_len's 64bit val */
data_len = svld1_gather_u64base_u64(pg, data_len);
/* zero data_off high 48bit by svand ops */
data_off = svand_n_u64_z(pg, data_off, DATA_OFF_LEN_VAL_MASK);
/* zero data_len high 48bit by svand ops */
data_len = svand_n_u64_z(pg, data_len, DATA_OFF_LEN_VAL_MASK);
/* calc mbuf data region iova addr */
addr = svadd_u64_z(pg, buf_iova, data_off);
/* shift due data_len's offset is 2byte of BD's second 8byte */
data_len = svlsl_n_u64_z(pg, data_len, HNS3_UINT16_BIT);
/* save offset 0~7byte of every BD */
svst1_scatter_u64offset_u64(pg, (uint64_t *)&txdp->addr,
offsets, addr);
/* save offset 8~15byte of every BD */
svst1_scatter_u64offset_u64(pg, (uint64_t *)&txdp->tx.vlan_tag,
offsets, data_len);
/* save offset 16~23byte of every BD */
svst1_scatter_u64offset_u64(pg,
(uint64_t *)&txdp->tx.outer_vlan_tag,
offsets, svdup_n_u64(0));
/* save offset 24~31byte of every BD */
svst1_scatter_u64offset_u64(pg,
(uint64_t *)&txdp->tx.paylen_fd_dop_ol4cs,
offsets, svdup_n_u64(valid_bit));
/* Increment bytes counter */
uint32_t idx;
for (idx = 0; idx < svcntd(); idx++)
txq->basic_stats.bytes += pkts[idx]->pkt_len;
/* update index for next loop */
i += svcntd();
pkts += svcntd();
txdp += svcntd();
tx_entry += svcntd();
pg = svwhilelt_b64_u32(i, nb_pkts);
} while (svptest_any(svptrue_b64(), pg));
}
static uint16_t
hns3_xmit_fixed_burst_vec_sve(void *__restrict tx_queue,
struct rte_mbuf **__restrict tx_pkts,
uint16_t nb_pkts)
{
struct hns3_tx_queue *txq = (struct hns3_tx_queue *)tx_queue;
uint16_t nb_tx = 0;
if (txq->tx_bd_ready < txq->tx_free_thresh)
hns3_tx_free_buffers_sve(txq);
nb_pkts = RTE_MIN(txq->tx_bd_ready, nb_pkts);
if (unlikely(nb_pkts == 0)) {
txq->dfx_stats.queue_full_cnt++;
return 0;
}
if (txq->next_to_use + nb_pkts > txq->nb_tx_desc) {
nb_tx = txq->nb_tx_desc - txq->next_to_use;
hns3_tx_fill_hw_ring_sve(txq, tx_pkts, nb_tx);
txq->next_to_use = 0;
}
hns3_tx_fill_hw_ring_sve(txq, tx_pkts + nb_tx, nb_pkts - nb_tx);
txq->next_to_use += nb_pkts - nb_tx;
txq->tx_bd_ready -= nb_pkts;
hns3_write_txq_tail_reg(txq, nb_pkts);
return nb_pkts;
}
uint16_t
hns3_xmit_pkts_vec_sve(void *tx_queue,
struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct hns3_tx_queue *txq = (struct hns3_tx_queue *)tx_queue;
uint16_t ret, new_burst;
uint16_t nb_tx = 0;
while (nb_pkts) {
new_burst = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = hns3_xmit_fixed_burst_vec_sve(tx_queue, &tx_pkts[nb_tx],
new_burst);
nb_tx += ret;
nb_pkts -= ret;
if (ret < new_burst)
break;
}
return nb_tx;
}