numam-dpdk/doc/guides/cryptodevs/aesni_mb.rst

195 lines
6.4 KiB
ReStructuredText
Raw Normal View History

.. SPDX-License-Identifier: BSD-3-Clause
Copyright(c) 2015-2018 Intel Corporation.
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
AES-NI Multi Buffer Crypto Poll Mode Driver
===========================================
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
The AESNI MB PMD (**librte_crypto_aesni_mb**) provides poll mode crypto driver
support for utilizing Intel multi buffer library, see the white paper
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
`Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors
<https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf>`_.
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
The AES-NI MB PMD supports synchronous mode of operation with
``rte_cryptodev_sym_cpu_crypto_process`` function call.
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
Features
--------
AESNI MB PMD has support for:
Cipher algorithms:
* RTE_CRYPTO_CIPHER_AES128_CBC
* RTE_CRYPTO_CIPHER_AES192_CBC
* RTE_CRYPTO_CIPHER_AES256_CBC
* RTE_CRYPTO_CIPHER_AES128_CTR
* RTE_CRYPTO_CIPHER_AES192_CTR
* RTE_CRYPTO_CIPHER_AES256_CTR
* RTE_CRYPTO_CIPHER_AES_DOCSISBPI
* RTE_CRYPTO_CIPHER_DES_CBC
* RTE_CRYPTO_CIPHER_3DES_CBC
* RTE_CRYPTO_CIPHER_DES_DOCSISBPI
* RTE_CRYPTO_CIPHER_AES128_ECB
* RTE_CRYPTO_CIPHER_AES192_ECB
* RTE_CRYPTO_CIPHER_AES256_ECB
* RTE_CRYPTO_CIPHER_ZUC_EEA3
* RTE_CRYPTO_CIPHER_SNOW3G_UEA2
* RTE_CRYPTO_CIPHER_KASUMI_F8
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
Hash algorithms:
* RTE_CRYPTO_AUTH_MD5_HMAC
* RTE_CRYPTO_AUTH_SHA1_HMAC
* RTE_CRYPTO_AUTH_SHA224_HMAC
* RTE_CRYPTO_AUTH_SHA256_HMAC
* RTE_CRYPTO_AUTH_SHA384_HMAC
* RTE_CRYPTO_AUTH_SHA512_HMAC
* RTE_CRYPTO_AUTH_AES_XCBC_HMAC
* RTE_CRYPTO_AUTH_AES_CMAC
* RTE_CRYPTO_AUTH_AES_GMAC
* RTE_CRYPTO_AUTH_SHA1
* RTE_CRYPTO_AUTH_SHA224
* RTE_CRYPTO_AUTH_SHA256
* RTE_CRYPTO_AUTH_SHA384
* RTE_CRYPTO_AUTH_SHA512
* RTE_CRYPTO_AUTH_ZUC_EIA3
* RTE_CRYPTO_AUTH_SNOW3G_UIA2
* RTE_CRYPTO_AUTH_KASUMI_F9
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
AEAD algorithms:
* RTE_CRYPTO_AEAD_AES_CCM
* RTE_CRYPTO_AEAD_AES_GCM
* RTE_CRYPTO_AEAD_CHACHA20_POLY1305
Protocol offloads:
* RTE_SECURITY_PROTOCOL_DOCSIS
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
Limitations
-----------
* Out-of-place is not supported for combined Crypto-CRC DOCSIS security
protocol.
* RTE_CRYPTO_CIPHER_DES_DOCSISBPI is not supported for combined Crypto-CRC
DOCSIS security protocol.
AESNI MB PMD selection over SNOW3G/ZUC/KASUMI PMDs
--------------------------------------------------
This PMD supports wireless cipher suite (SNOW3G, ZUC and KASUMI).
On Intel processors, it is recommended to use this PMD
instead of SNOW3G, ZUC and KASUMI PMDs, as it enables algorithm mixing
(e.g. cipher algorithm SNOW3G-UEA2 with authentication algorithm AES-CMAC-128)
and performance over IMIX (packet size mix) traffic is significantly higher.
AESNI MB PMD selection over CHACHA20-POLY1305 PMD
-------------------------------------------------
This PMD supports Chacha20-Poly1305 algorithm.
On Intel processors, it is recommended to use this PMD instead of CHACHA20-POLY1305 PMD,
as it delivers better performance on single segment buffers.
For multi-segment buffers, it is still recommended to use CHACHA20-POLY1305 PMD,
until the new SGL API is introduced in the AESNI MB PMD.
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
Installation
------------
To build DPDK with the AESNI_MB_PMD the user is required to download the multi-buffer
library from `here <https://github.com/01org/intel-ipsec-mb>`_
and compile it on their user system before building DPDK.
The latest version of the library supported by this PMD is v1.3, which
can be downloaded from `<https://github.com/01org/intel-ipsec-mb/archive/v1.3.zip>`_.
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
.. code-block:: console
make
make install
aesni_mb: add driver for multi buffer based crypto This patch provides the initial implementation of the AES-NI multi-buffer based crypto poll mode driver using DPDK's new cryptodev framework. This PMD is dependent on Intel's multibuffer library, see the whitepaper "Fast Multi-buffer IPsec Implementations on Intel® Architecture Processors", see ref 1 for details on the library's design and ref 2 to download the library itself. This initial implementation is limited to supporting the chained operations of "hash then cipher" or "cipher then hash" for the following cipher and hash algorithms: Cipher algorithms: - RTE_CRYPTO_CIPHER_AES_CBC (with 128-bit, 192-bit and 256-bit keys supported) Authentication algorithms: - RTE_CRYPTO_AUTH_SHA1_HMAC - RTE_CRYPTO_AUTH_SHA256_HMAC - RTE_CRYPTO_AUTH_SHA512_HMAC - RTE_CRYPTO_AUTH_AES_XCBC_MAC Important Note: Due to the fact that the multi-buffer library is designed for accelerating IPsec crypto operation, the digest's generated for the HMAC functions are truncated to lengths specified by IPsec RFC's, ie RFC2404 for using HMAC-SHA-1 with IPsec specifies that the digest is truncate from 20 to 12 bytes. Build instructions: To build DPDK with the AESNI_MB_PMD the user is required to download (ref 2) and compile the multi-buffer library on there system before building DPDK. The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with the path where you extracted and built the multi buffer library and finally set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp. Current status: It's doesn't support crypto operation across chained mbufs, or cipher only or hash only operations. ref 1: https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-p ref 2: https://downloadcenter.intel.com/download/22972 Signed-off-by: Declan Doherty <declan.doherty@intel.com> Acked-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
2015-11-25 13:25:15 +00:00
The library requires NASM to be built. Depending on the library version, it might
require a minimum NASM version (e.g. v0.54 requires at least NASM 2.14).
NASM is packaged for different OS. However, on some OS the version is too old,
so a manual installation is required. In that case, NASM can be downloaded from
`NASM website <https://www.nasm.us/pub/nasm/releasebuilds/?C=M;O=D>`_.
Once it is downloaded, extract it and follow these steps:
.. code-block:: console
./configure
make
make install
.. note::
Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53.
If a lower GCC version than 5.0, the workaround proposed by the following link
should be used: `<https://github.com/intel/intel-ipsec-mb/issues/40>`_.
As a reference, the following table shows a mapping between the past DPDK versions
and the Multi-Buffer library version supported by them:
.. _table_aesni_mb_versions:
.. table:: DPDK and Multi-Buffer library version compatibility
============== ============================
DPDK version Multi-buffer library version
============== ============================
2.2 - 16.11 0.43 - 0.44
17.02 0.44
17.05 - 17.08 0.45 - 0.48
17.11 0.47 - 0.48
18.02 0.48
18.05 - 19.02 0.49 - 0.52
19.05 - 19.08 0.52
19.11 - 20.08 0.52 - 0.55
20.11 - 21.08 0.53 - 1.3*
21.11+ 1.0 - 1.3*
============== ============================
\* Multi-buffer library 1.0 or newer only works for Meson but not Make build system.
Initialization
--------------
In order to enable this virtual crypto PMD, user must:
* Build the multi buffer library (explained in Installation section).
To use the PMD in an application, user must:
* Call rte_vdev_init("crypto_aesni_mb") within the application.
* Use --vdev="crypto_aesni_mb" in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:
* socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running on).
* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).
Example:
.. code-block:: console
./dpdk-l2fwd-crypto -l 1 -n 4 --vdev="crypto_aesni_mb,socket_id=0,max_nb_sessions=128" \
-- -p 1 --cdev SW --chain CIPHER_HASH --cipher_algo "aes-cbc" --auth_algo "sha1-hmac"
Extra notes
-----------
For AES Counter mode (AES-CTR), the library supports two different sizes for Initialization
Vector (IV):
* 12 bytes: used mainly for IPsec, as it requires 12 bytes from the user, which internally
are appended the counter block (4 bytes), which is set to 1 for the first block
(no padding required from the user)
* 16 bytes: when passing 16 bytes, the library will take them and use the last 4 bytes
as the initial counter block for the first block.