numam-dpdk/app/test-crypto-perf/cperf_test_verify.c

595 lines
15 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include "cperf_test_verify.h"
#include "cperf_ops.h"
struct cperf_verify_ctx {
uint8_t dev_id;
uint16_t qp_id;
uint8_t lcore_id;
struct rte_mempool *pkt_mbuf_pool_in;
struct rte_mempool *pkt_mbuf_pool_out;
struct rte_mbuf **mbufs_in;
struct rte_mbuf **mbufs_out;
struct rte_mempool *crypto_op_pool;
struct rte_cryptodev_sym_session *sess;
cperf_populate_ops_t populate_ops;
const struct cperf_options *options;
const struct cperf_test_vector *test_vector;
};
struct cperf_op_result {
enum rte_crypto_op_status status;
};
static void
cperf_verify_test_free(struct cperf_verify_ctx *ctx, uint32_t mbuf_nb)
{
uint32_t i;
if (ctx) {
if (ctx->sess) {
rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
rte_cryptodev_sym_session_free(ctx->sess);
}
if (ctx->mbufs_in) {
for (i = 0; i < mbuf_nb; i++)
rte_pktmbuf_free(ctx->mbufs_in[i]);
rte_free(ctx->mbufs_in);
}
if (ctx->mbufs_out) {
for (i = 0; i < mbuf_nb; i++) {
if (ctx->mbufs_out[i] != NULL)
rte_pktmbuf_free(ctx->mbufs_out[i]);
}
rte_free(ctx->mbufs_out);
}
if (ctx->pkt_mbuf_pool_in)
rte_mempool_free(ctx->pkt_mbuf_pool_in);
if (ctx->pkt_mbuf_pool_out)
rte_mempool_free(ctx->pkt_mbuf_pool_out);
if (ctx->crypto_op_pool)
rte_mempool_free(ctx->crypto_op_pool);
rte_free(ctx);
}
}
static struct rte_mbuf *
cperf_mbuf_create(struct rte_mempool *mempool,
uint32_t segments_nb,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector)
{
struct rte_mbuf *mbuf;
uint32_t segment_sz = options->max_buffer_size / segments_nb;
uint32_t last_sz = options->max_buffer_size % segments_nb;
uint8_t *mbuf_data;
uint8_t *test_data =
(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
test_vector->plaintext.data :
test_vector->ciphertext.data;
mbuf = rte_pktmbuf_alloc(mempool);
if (mbuf == NULL)
goto error;
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
if (mbuf_data == NULL)
goto error;
memcpy(mbuf_data, test_data, segment_sz);
test_data += segment_sz;
segments_nb--;
while (segments_nb) {
struct rte_mbuf *m;
m = rte_pktmbuf_alloc(mempool);
if (m == NULL)
goto error;
rte_pktmbuf_chain(mbuf, m);
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
if (mbuf_data == NULL)
goto error;
memcpy(mbuf_data, test_data, segment_sz);
test_data += segment_sz;
segments_nb--;
}
if (last_sz) {
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
if (mbuf_data == NULL)
goto error;
memcpy(mbuf_data, test_data, last_sz);
}
if (options->op_type != CPERF_CIPHER_ONLY) {
mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
options->digest_sz);
if (mbuf_data == NULL)
goto error;
}
if (options->op_type == CPERF_AEAD) {
uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
RTE_ALIGN_CEIL(options->aead_aad_sz, 16));
if (aead == NULL)
goto error;
memcpy(aead, test_vector->aad.data, test_vector->aad.length);
}
return mbuf;
error:
if (mbuf != NULL)
rte_pktmbuf_free(mbuf);
return NULL;
}
void *
cperf_verify_test_constructor(struct rte_mempool *sess_mp,
uint8_t dev_id, uint16_t qp_id,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector,
const struct cperf_op_fns *op_fns)
{
struct cperf_verify_ctx *ctx = NULL;
unsigned int mbuf_idx = 0;
char pool_name[32] = "";
ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
if (ctx == NULL)
goto err;
ctx->dev_id = dev_id;
ctx->qp_id = qp_id;
ctx->populate_ops = op_fns->populate_ops;
ctx->options = options;
ctx->test_vector = test_vector;
/* IV goes at the end of the cryptop operation */
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
sizeof(struct rte_crypto_sym_op);
ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
iv_offset);
if (ctx->sess == NULL)
goto err;
snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
dev_id);
ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
options->pool_sz * options->segments_nb, 0, 0,
RTE_PKTMBUF_HEADROOM +
RTE_CACHE_LINE_ROUNDUP(
(options->max_buffer_size / options->segments_nb) +
(options->max_buffer_size % options->segments_nb) +
options->digest_sz),
rte_socket_id());
if (ctx->pkt_mbuf_pool_in == NULL)
goto err;
/* Generate mbufs_in with plaintext populated for test */
ctx->mbufs_in = rte_malloc(NULL,
(sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
ctx->pkt_mbuf_pool_in, options->segments_nb,
options, test_vector);
if (ctx->mbufs_in[mbuf_idx] == NULL)
goto err;
}
if (options->out_of_place == 1) {
snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
dev_id);
ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
pool_name, options->pool_sz, 0, 0,
RTE_PKTMBUF_HEADROOM +
RTE_CACHE_LINE_ROUNDUP(
options->max_buffer_size +
options->digest_sz),
rte_socket_id());
if (ctx->pkt_mbuf_pool_out == NULL)
goto err;
}
ctx->mbufs_out = rte_malloc(NULL,
(sizeof(struct rte_mbuf *) *
ctx->options->pool_sz), 0);
for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
if (options->out_of_place == 1) {
ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
ctx->pkt_mbuf_pool_out, 1,
options, test_vector);
if (ctx->mbufs_out[mbuf_idx] == NULL)
goto err;
} else {
ctx->mbufs_out[mbuf_idx] = NULL;
}
}
snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
dev_id);
uint16_t priv_size = test_vector->cipher_iv.length +
test_vector->auth_iv.length;
ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz,
512, priv_size, rte_socket_id());
if (ctx->crypto_op_pool == NULL)
goto err;
return ctx;
err:
cperf_verify_test_free(ctx, mbuf_idx);
return NULL;
}
static int
cperf_verify_op(struct rte_crypto_op *op,
const struct cperf_options *options,
const struct cperf_test_vector *vector)
{
const struct rte_mbuf *m;
uint32_t len;
uint16_t nb_segs;
uint8_t *data;
uint32_t cipher_offset, auth_offset;
uint8_t cipher, auth;
int res = 0;
if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
return 1;
if (op->sym->m_dst)
m = op->sym->m_dst;
else
m = op->sym->m_src;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
len += m->data_len;
m = m->next;
nb_segs--;
}
data = rte_malloc(NULL, len, 0);
if (data == NULL)
return 1;
if (op->sym->m_dst)
m = op->sym->m_dst;
else
m = op->sym->m_src;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
m->data_len);
len += m->data_len;
m = m->next;
nb_segs--;
}
switch (options->op_type) {
case CPERF_CIPHER_ONLY:
cipher = 1;
cipher_offset = 0;
auth = 0;
auth_offset = 0;
break;
case CPERF_CIPHER_THEN_AUTH:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = options->test_buffer_size;
break;
case CPERF_AUTH_ONLY:
cipher = 0;
cipher_offset = 0;
auth = 1;
auth_offset = options->test_buffer_size;
break;
case CPERF_AUTH_THEN_CIPHER:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = options->test_buffer_size;
break;
case CPERF_AEAD:
cipher = 1;
cipher_offset = vector->aad.length;
auth = 1;
auth_offset = vector->aad.length + options->test_buffer_size;
break;
}
if (cipher == 1) {
if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
res += memcmp(data + cipher_offset,
vector->ciphertext.data,
options->test_buffer_size);
else
res += memcmp(data + cipher_offset,
vector->plaintext.data,
options->test_buffer_size);
}
if (auth == 1) {
if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
res += memcmp(data + auth_offset,
vector->digest.data,
options->digest_sz);
}
return !!res;
}
int
cperf_verify_test_runner(void *test_ctx)
{
struct cperf_verify_ctx *ctx = test_ctx;
uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
uint64_t ops_failed = 0;
static int only_once;
uint64_t i, m_idx = 0;
uint16_t ops_unused = 0;
struct rte_crypto_op *ops[ctx->options->max_burst_size];
struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
uint32_t lcore = rte_lcore_id();
#ifdef CPERF_LINEARIZATION_ENABLE
struct rte_cryptodev_info dev_info;
int linearize = 0;
/* Check if source mbufs require coalescing */
if (ctx->options->segments_nb > 1) {
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
if ((dev_info.feature_flags &
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
linearize = 1;
}
#endif /* CPERF_LINEARIZATION_ENABLE */
ctx->lcore_id = lcore;
if (!ctx->options->csv)
printf("\n# Running verify test on device: %u, lcore: %u\n",
ctx->dev_id, lcore);
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
sizeof(struct rte_crypto_sym_op);
while (ops_enqd_total < ctx->options->total_ops) {
uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
<= ctx->options->total_ops) ?
ctx->options->max_burst_size :
ctx->options->total_ops -
ops_enqd_total;
uint16_t ops_needed = burst_size - ops_unused;
/* Allocate crypto ops from pool */
if (ops_needed != rte_crypto_op_bulk_alloc(
ctx->crypto_op_pool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
ops, ops_needed))
return -1;
/* Setup crypto op, attach mbuf etc */
(ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
&ctx->mbufs_out[m_idx],
ops_needed, ctx->sess, ctx->options,
ctx->test_vector, iv_offset);
#ifdef CPERF_LINEARIZATION_ENABLE
if (linearize) {
/* PMD doesn't support scatter-gather and source buffer
* is segmented.
* We need to linearize it before enqueuing.
*/
for (i = 0; i < burst_size; i++)
rte_pktmbuf_linearize(ops[i]->sym->m_src);
}
#endif /* CPERF_LINEARIZATION_ENABLE */
/* Enqueue burst of ops on crypto device */
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
ops, burst_size);
if (ops_enqd < burst_size)
ops_enqd_failed++;
/**
* Calculate number of ops not enqueued (mainly for hw
* accelerators whose ingress queue can fill up).
*/
ops_unused = burst_size - ops_enqd;
ops_enqd_total += ops_enqd;
/* Dequeue processed burst of ops from crypto device */
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
ops_processed, ctx->options->max_burst_size);
m_idx += ops_needed;
if (m_idx + ctx->options->max_burst_size > ctx->options->pool_sz)
m_idx = 0;
if (ops_deqd == 0) {
/**
* Count dequeue polls which didn't return any
* processed operations. This statistic is mainly
* relevant to hw accelerators.
*/
ops_deqd_failed++;
continue;
}
for (i = 0; i < ops_deqd; i++) {
if (cperf_verify_op(ops_processed[i], ctx->options,
ctx->test_vector))
ops_failed++;
/* free crypto ops so they can be reused. We don't free
* the mbufs here as we don't want to reuse them as
* the crypto operation will change the data and cause
* failures.
*/
rte_crypto_op_free(ops_processed[i]);
}
ops_deqd_total += ops_deqd;
}
/* Dequeue any operations still in the crypto device */
while (ops_deqd_total < ctx->options->total_ops) {
/* Sending 0 length burst to flush sw crypto device */
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
/* dequeue burst */
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
ops_processed, ctx->options->max_burst_size);
if (ops_deqd == 0) {
ops_deqd_failed++;
continue;
}
for (i = 0; i < ops_deqd; i++) {
if (cperf_verify_op(ops_processed[i], ctx->options,
ctx->test_vector))
ops_failed++;
/* free crypto ops so they can be reused. We don't free
* the mbufs here as we don't want to reuse them as
* the crypto operation will change the data and cause
* failures.
*/
rte_crypto_op_free(ops_processed[i]);
}
ops_deqd_total += ops_deqd;
}
if (!ctx->options->csv) {
if (!only_once)
printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
"lcore id", "Buf Size", "Burst size",
"Enqueued", "Dequeued", "Failed Enq",
"Failed Deq", "Failed Ops");
only_once = 1;
printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
"%12"PRIu64"%12"PRIu64"\n",
ctx->lcore_id,
ctx->options->max_buffer_size,
ctx->options->max_burst_size,
ops_enqd_total,
ops_deqd_total,
ops_enqd_failed,
ops_deqd_failed,
ops_failed);
} else {
if (!only_once)
printf("\n# lcore id, Buffer Size(B), "
"Burst Size,Enqueued,Dequeued,Failed Enq,"
"Failed Deq,Failed Ops\n");
only_once = 1;
printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
"%"PRIu64"\n",
ctx->lcore_id,
ctx->options->max_buffer_size,
ctx->options->max_burst_size,
ops_enqd_total,
ops_deqd_total,
ops_enqd_failed,
ops_deqd_failed,
ops_failed);
}
return 0;
}
void
cperf_verify_test_destructor(void *arg)
{
struct cperf_verify_ctx *ctx = arg;
if (ctx == NULL)
return;
rte_cryptodev_stop(ctx->dev_id);
cperf_verify_test_free(ctx, ctx->options->pool_sz);
}