numam-dpdk/drivers/net/i40e/i40e_rxtx_common_avx.h
Leyi Rong c454435d88 net/i40e: fix generic build on FreeBSD
The common header file for vectorization is included in multiple files,
and so must use macros for the current compilation unit, rather than the
compiler-capability flag set for the whole driver. With the current,
incorrect, macro, the AVX512 or AVX2 flags may be set when compiling up
SSE code, leading to compilation errors. Changing from "CC_AVX*_SUPPORT"
to the compiler-defined "__AVX*__" macros fixes this issue. In addition,
splitting AVX-specific code into the new i40e_rxtx_common_avx.h header
file to avoid such bugs.

Bugzilla ID: 788
Fixes: 0604b1f220 ("net/i40e: fix crash in AVX512")
Cc: stable@dpdk.org

Signed-off-by: Leyi Rong <leyi.rong@intel.com>
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2021-10-19 13:01:56 +02:00

215 lines
6.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2015 Intel Corporation
*/
#ifndef _I40E_RXTX_COMMON_AVX_H_
#define _I40E_RXTX_COMMON_AVX_H_
#include <stdint.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
#ifdef __AVX2__
static __rte_always_inline void
i40e_rxq_rearm_common(struct i40e_rx_queue *rxq, __rte_unused bool avx512)
{
int i;
uint16_t rx_id;
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mp,
(void *)rxep,
RTE_I40E_RXQ_REARM_THRESH) < 0) {
if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
_mm_store_si128((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
RTE_I40E_RXQ_REARM_THRESH;
return;
}
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
struct rte_mbuf *mb0, *mb1;
__m128i dma_addr0, dma_addr1;
__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
RTE_PKTMBUF_HEADROOM);
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
__m128i vaddr0, vaddr1;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
offsetof(struct rte_mbuf, buf_addr) + 8);
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
/* convert pa to dma_addr hdr/data */
dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
/* add headroom to pa values */
dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
/* flush desc with pa dma_addr */
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
}
#else
#ifdef __AVX512VL__
if (avx512) {
struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
struct rte_mbuf *mb4, *mb5, *mb6, *mb7;
__m512i dma_addr0_3, dma_addr4_7;
__m512i hdr_room = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
/* Initialize the mbufs in vector, process 8 mbufs in one loop */
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
i += 8, rxep += 8, rxdp += 8) {
__m128i vaddr0, vaddr1, vaddr2, vaddr3;
__m128i vaddr4, vaddr5, vaddr6, vaddr7;
__m256i vaddr0_1, vaddr2_3;
__m256i vaddr4_5, vaddr6_7;
__m512i vaddr0_3, vaddr4_7;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
mb2 = rxep[2].mbuf;
mb3 = rxep[3].mbuf;
mb4 = rxep[4].mbuf;
mb5 = rxep[5].mbuf;
mb6 = rxep[6].mbuf;
mb7 = rxep[7].mbuf;
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
offsetof(struct rte_mbuf, buf_addr) + 8);
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr);
vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr);
vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr);
vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr);
/**
* merge 0 & 1, by casting 0 to 256-bit and inserting 1
* into the high lanes. Similarly for 2 & 3, and so on.
*/
vaddr0_1 =
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
vaddr1, 1);
vaddr2_3 =
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
vaddr3, 1);
vaddr4_5 =
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr4),
vaddr5, 1);
vaddr6_7 =
_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr6),
vaddr7, 1);
vaddr0_3 =
_mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1),
vaddr2_3, 1);
vaddr4_7 =
_mm512_inserti64x4(_mm512_castsi256_si512(vaddr4_5),
vaddr6_7, 1);
/* convert pa to dma_addr hdr/data */
dma_addr0_3 = _mm512_unpackhi_epi64(vaddr0_3, vaddr0_3);
dma_addr4_7 = _mm512_unpackhi_epi64(vaddr4_7, vaddr4_7);
/* add headroom to pa values */
dma_addr0_3 = _mm512_add_epi64(dma_addr0_3, hdr_room);
dma_addr4_7 = _mm512_add_epi64(dma_addr4_7, hdr_room);
/* flush desc with pa dma_addr */
_mm512_store_si512((__m512i *)&rxdp->read, dma_addr0_3);
_mm512_store_si512((__m512i *)&(rxdp + 4)->read, dma_addr4_7);
}
} else
#endif /* __AVX512VL__*/
{
struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
__m256i dma_addr0_1, dma_addr2_3;
__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
/* Initialize the mbufs in vector, process 4 mbufs in one loop */
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
i += 4, rxep += 4, rxdp += 4) {
__m128i vaddr0, vaddr1, vaddr2, vaddr3;
__m256i vaddr0_1, vaddr2_3;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
mb2 = rxep[2].mbuf;
mb3 = rxep[3].mbuf;
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
offsetof(struct rte_mbuf, buf_addr) + 8);
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
/**
* merge 0 & 1, by casting 0 to 256-bit and inserting 1
* into the high lanes. Similarly for 2 & 3
*/
vaddr0_1 = _mm256_inserti128_si256
(_mm256_castsi128_si256(vaddr0), vaddr1, 1);
vaddr2_3 = _mm256_inserti128_si256
(_mm256_castsi128_si256(vaddr2), vaddr3, 1);
/* convert pa to dma_addr hdr/data */
dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
/* add headroom to pa values */
dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
/* flush desc with pa dma_addr */
_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
}
}
#endif
rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
}
#endif /* __AVX2__*/
#endif /*_I40E_RXTX_COMMON_AVX_H_*/