numam-dpdk/lib/librte_net/net_crc_sse.h
Ferruh Yigit b74fd6b842 add missing static keyword to globals
Some global variables can indeed be static, add static keyword to them.

Signed-off-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
Acked-by: Shreyansh Jain <shreyansh.jain@nxp.com>
2018-10-29 02:01:08 +01:00

335 lines
7.9 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#ifndef _RTE_NET_CRC_SSE_H_
#define _RTE_NET_CRC_SSE_H_
#include <rte_branch_prediction.h>
#include <x86intrin.h>
#include <cpuid.h>
#ifdef __cplusplus
extern "C" {
#endif
/** PCLMULQDQ CRC computation context structure */
struct crc_pclmulqdq_ctx {
__m128i rk1_rk2;
__m128i rk5_rk6;
__m128i rk7_rk8;
};
static struct crc_pclmulqdq_ctx crc32_eth_pclmulqdq __rte_aligned(16);
static struct crc_pclmulqdq_ctx crc16_ccitt_pclmulqdq __rte_aligned(16);
/**
* @brief Performs one folding round
*
* Logically function operates as follows:
* DATA = READ_NEXT_16BYTES();
* F1 = LSB8(FOLD)
* F2 = MSB8(FOLD)
* T1 = CLMUL(F1, RK1)
* T2 = CLMUL(F2, RK2)
* FOLD = XOR(T1, T2, DATA)
*
* @param data_block
* 16 byte data block
* @param precomp
* Precomputed rk1 constant
* @param fold
* Current16 byte folded data
*
* @return
* New 16 byte folded data
*/
static __rte_always_inline __m128i
crcr32_folding_round(__m128i data_block,
__m128i precomp,
__m128i fold)
{
__m128i tmp0 = _mm_clmulepi64_si128(fold, precomp, 0x01);
__m128i tmp1 = _mm_clmulepi64_si128(fold, precomp, 0x10);
return _mm_xor_si128(tmp1, _mm_xor_si128(data_block, tmp0));
}
/**
* Performs reduction from 128 bits to 64 bits
*
* @param data128
* 128 bits data to be reduced
* @param precomp
* precomputed constants rk5, rk6
*
* @return
* 64 bits reduced data
*/
static __rte_always_inline __m128i
crcr32_reduce_128_to_64(__m128i data128, __m128i precomp)
{
__m128i tmp0, tmp1, tmp2;
/* 64b fold */
tmp0 = _mm_clmulepi64_si128(data128, precomp, 0x00);
tmp1 = _mm_srli_si128(data128, 8);
tmp0 = _mm_xor_si128(tmp0, tmp1);
/* 32b fold */
tmp2 = _mm_slli_si128(tmp0, 4);
tmp1 = _mm_clmulepi64_si128(tmp2, precomp, 0x10);
return _mm_xor_si128(tmp1, tmp0);
}
/**
* Performs Barret's reduction from 64 bits to 32 bits
*
* @param data64
* 64 bits data to be reduced
* @param precomp
* rk7 precomputed constant
*
* @return
* reduced 32 bits data
*/
static __rte_always_inline uint32_t
crcr32_reduce_64_to_32(__m128i data64, __m128i precomp)
{
static const uint32_t mask1[4] __rte_aligned(16) = {
0xffffffff, 0xffffffff, 0x00000000, 0x00000000
};
static const uint32_t mask2[4] __rte_aligned(16) = {
0x00000000, 0xffffffff, 0xffffffff, 0xffffffff
};
__m128i tmp0, tmp1, tmp2;
tmp0 = _mm_and_si128(data64, _mm_load_si128((const __m128i *)mask2));
tmp1 = _mm_clmulepi64_si128(tmp0, precomp, 0x00);
tmp1 = _mm_xor_si128(tmp1, tmp0);
tmp1 = _mm_and_si128(tmp1, _mm_load_si128((const __m128i *)mask1));
tmp2 = _mm_clmulepi64_si128(tmp1, precomp, 0x10);
tmp2 = _mm_xor_si128(tmp2, tmp1);
tmp2 = _mm_xor_si128(tmp2, tmp0);
return _mm_extract_epi32(tmp2, 2);
}
static const uint8_t crc_xmm_shift_tab[48] __rte_aligned(16) = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
/**
* Shifts left 128 bit register by specified number of bytes
*
* @param reg
* 128 bit value
* @param num
* number of bytes to shift left reg by (0-16)
*
* @return
* reg << (num * 8)
*/
static __rte_always_inline __m128i
xmm_shift_left(__m128i reg, const unsigned int num)
{
const __m128i *p = (const __m128i *)(crc_xmm_shift_tab + 16 - num);
return _mm_shuffle_epi8(reg, _mm_loadu_si128(p));
}
static __rte_always_inline uint32_t
crc32_eth_calc_pclmulqdq(
const uint8_t *data,
uint32_t data_len,
uint32_t crc,
const struct crc_pclmulqdq_ctx *params)
{
__m128i temp, fold, k;
uint32_t n;
/* Get CRC init value */
temp = _mm_insert_epi32(_mm_setzero_si128(), crc, 0);
/**
* Folding all data into single 16 byte data block
* Assumes: fold holds first 16 bytes of data
*/
if (unlikely(data_len < 32)) {
if (unlikely(data_len == 16)) {
/* 16 bytes */
fold = _mm_loadu_si128((const __m128i *)data);
fold = _mm_xor_si128(fold, temp);
goto reduction_128_64;
}
if (unlikely(data_len < 16)) {
/* 0 to 15 bytes */
uint8_t buffer[16] __rte_aligned(16);
memset(buffer, 0, sizeof(buffer));
memcpy(buffer, data, data_len);
fold = _mm_load_si128((const __m128i *)buffer);
fold = _mm_xor_si128(fold, temp);
if (unlikely(data_len < 4)) {
fold = xmm_shift_left(fold, 8 - data_len);
goto barret_reduction;
}
fold = xmm_shift_left(fold, 16 - data_len);
goto reduction_128_64;
}
/* 17 to 31 bytes */
fold = _mm_loadu_si128((const __m128i *)data);
fold = _mm_xor_si128(fold, temp);
n = 16;
k = params->rk1_rk2;
goto partial_bytes;
}
/** At least 32 bytes in the buffer */
/** Apply CRC initial value */
fold = _mm_loadu_si128((const __m128i *)data);
fold = _mm_xor_si128(fold, temp);
/** Main folding loop - the last 16 bytes is processed separately */
k = params->rk1_rk2;
for (n = 16; (n + 16) <= data_len; n += 16) {
temp = _mm_loadu_si128((const __m128i *)&data[n]);
fold = crcr32_folding_round(temp, k, fold);
}
partial_bytes:
if (likely(n < data_len)) {
const uint32_t mask3[4] __rte_aligned(16) = {
0x80808080, 0x80808080, 0x80808080, 0x80808080
};
const uint8_t shf_table[32] __rte_aligned(16) = {
0x00, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
};
__m128i last16, a, b;
last16 = _mm_loadu_si128((const __m128i *)&data[data_len - 16]);
temp = _mm_loadu_si128((const __m128i *)
&shf_table[data_len & 15]);
a = _mm_shuffle_epi8(fold, temp);
temp = _mm_xor_si128(temp,
_mm_load_si128((const __m128i *)mask3));
b = _mm_shuffle_epi8(fold, temp);
b = _mm_blendv_epi8(b, last16, temp);
/* k = rk1 & rk2 */
temp = _mm_clmulepi64_si128(a, k, 0x01);
fold = _mm_clmulepi64_si128(a, k, 0x10);
fold = _mm_xor_si128(fold, temp);
fold = _mm_xor_si128(fold, b);
}
/** Reduction 128 -> 32 Assumes: fold holds 128bit folded data */
reduction_128_64:
k = params->rk5_rk6;
fold = crcr32_reduce_128_to_64(fold, k);
barret_reduction:
k = params->rk7_rk8;
n = crcr32_reduce_64_to_32(fold, k);
return n;
}
static inline void
rte_net_crc_sse42_init(void)
{
uint64_t k1, k2, k5, k6;
uint64_t p = 0, q = 0;
/** Initialize CRC16 data */
k1 = 0x189aeLLU;
k2 = 0x8e10LLU;
k5 = 0x189aeLLU;
k6 = 0x114aaLLU;
q = 0x11c581910LLU;
p = 0x10811LLU;
/** Save the params in context structure */
crc16_ccitt_pclmulqdq.rk1_rk2 =
_mm_setr_epi64(_mm_cvtsi64_m64(k1), _mm_cvtsi64_m64(k2));
crc16_ccitt_pclmulqdq.rk5_rk6 =
_mm_setr_epi64(_mm_cvtsi64_m64(k5), _mm_cvtsi64_m64(k6));
crc16_ccitt_pclmulqdq.rk7_rk8 =
_mm_setr_epi64(_mm_cvtsi64_m64(q), _mm_cvtsi64_m64(p));
/** Initialize CRC32 data */
k1 = 0xccaa009eLLU;
k2 = 0x1751997d0LLU;
k5 = 0xccaa009eLLU;
k6 = 0x163cd6124LLU;
q = 0x1f7011640LLU;
p = 0x1db710641LLU;
/** Save the params in context structure */
crc32_eth_pclmulqdq.rk1_rk2 =
_mm_setr_epi64(_mm_cvtsi64_m64(k1), _mm_cvtsi64_m64(k2));
crc32_eth_pclmulqdq.rk5_rk6 =
_mm_setr_epi64(_mm_cvtsi64_m64(k5), _mm_cvtsi64_m64(k6));
crc32_eth_pclmulqdq.rk7_rk8 =
_mm_setr_epi64(_mm_cvtsi64_m64(q), _mm_cvtsi64_m64(p));
/**
* Reset the register as following calculation may
* use other data types such as float, double, etc.
*/
_mm_empty();
}
static inline uint32_t
rte_crc16_ccitt_sse42_handler(const uint8_t *data,
uint32_t data_len)
{
/** return 16-bit CRC value */
return (uint16_t)~crc32_eth_calc_pclmulqdq(data,
data_len,
0xffff,
&crc16_ccitt_pclmulqdq);
}
static inline uint32_t
rte_crc32_eth_sse42_handler(const uint8_t *data,
uint32_t data_len)
{
return ~crc32_eth_calc_pclmulqdq(data,
data_len,
0xffffffffUL,
&crc32_eth_pclmulqdq);
}
#ifdef __cplusplus
}
#endif
#endif /* _RTE_NET_CRC_SSE_H_ */