numam-dpdk/drivers/crypto/scheduler/rte_cryptodev_scheduler.c
Kirill Rybalchenko 4c07e0552f crypto/scheduler: add multicore scheduling mode
Multi-core scheduling mode is a mode where scheduler distributes
crypto operations in a round-robin base, between several core
assigned as workers.

Signed-off-by: Kirill Rybalchenko <kirill.rybalchenko@intel.com>
Acked-by: Fan Zhang <roy.fan.zhang@intel.com>
2017-07-06 22:34:54 +02:00

588 lines
14 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2017 Intel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_reorder.h>
#include <rte_cryptodev.h>
#include <rte_cryptodev_pmd.h>
#include <rte_malloc.h>
#include "rte_cryptodev_scheduler.h"
#include "scheduler_pmd_private.h"
/** update the scheduler pmd's capability with attaching device's
* capability.
* For each device to be attached, the scheduler's capability should be
* the common capability set of all slaves
**/
static uint32_t
sync_caps(struct rte_cryptodev_capabilities *caps,
uint32_t nb_caps,
const struct rte_cryptodev_capabilities *slave_caps)
{
uint32_t sync_nb_caps = nb_caps, nb_slave_caps = 0;
uint32_t i;
while (slave_caps[nb_slave_caps].op != RTE_CRYPTO_OP_TYPE_UNDEFINED)
nb_slave_caps++;
if (nb_caps == 0) {
rte_memcpy(caps, slave_caps, sizeof(*caps) * nb_slave_caps);
return nb_slave_caps;
}
for (i = 0; i < sync_nb_caps; i++) {
struct rte_cryptodev_capabilities *cap = &caps[i];
uint32_t j;
for (j = 0; j < nb_slave_caps; j++) {
const struct rte_cryptodev_capabilities *s_cap =
&slave_caps[j];
if (s_cap->op != cap->op || s_cap->sym.xform_type !=
cap->sym.xform_type)
continue;
if (s_cap->sym.xform_type ==
RTE_CRYPTO_SYM_XFORM_AUTH) {
if (s_cap->sym.auth.algo !=
cap->sym.auth.algo)
continue;
cap->sym.auth.digest_size.min =
s_cap->sym.auth.digest_size.min <
cap->sym.auth.digest_size.min ?
s_cap->sym.auth.digest_size.min :
cap->sym.auth.digest_size.min;
cap->sym.auth.digest_size.max =
s_cap->sym.auth.digest_size.max <
cap->sym.auth.digest_size.max ?
s_cap->sym.auth.digest_size.max :
cap->sym.auth.digest_size.max;
}
if (s_cap->sym.xform_type ==
RTE_CRYPTO_SYM_XFORM_CIPHER)
if (s_cap->sym.cipher.algo !=
cap->sym.cipher.algo)
continue;
/* no common cap found */
break;
}
if (j < nb_slave_caps)
continue;
/* remove a uncommon cap from the array */
for (j = i; j < sync_nb_caps - 1; j++)
rte_memcpy(&caps[j], &caps[j+1], sizeof(*cap));
memset(&caps[sync_nb_caps - 1], 0, sizeof(*cap));
sync_nb_caps--;
}
return sync_nb_caps;
}
static int
update_scheduler_capability(struct scheduler_ctx *sched_ctx)
{
struct rte_cryptodev_capabilities tmp_caps[256] = { {0} };
uint32_t nb_caps = 0, i;
if (sched_ctx->capabilities)
rte_free(sched_ctx->capabilities);
for (i = 0; i < sched_ctx->nb_slaves; i++) {
struct rte_cryptodev_info dev_info;
rte_cryptodev_info_get(sched_ctx->slaves[i].dev_id, &dev_info);
nb_caps = sync_caps(tmp_caps, nb_caps, dev_info.capabilities);
if (nb_caps == 0)
return -1;
}
sched_ctx->capabilities = rte_zmalloc_socket(NULL,
sizeof(struct rte_cryptodev_capabilities) *
(nb_caps + 1), 0, SOCKET_ID_ANY);
if (!sched_ctx->capabilities)
return -ENOMEM;
rte_memcpy(sched_ctx->capabilities, tmp_caps,
sizeof(struct rte_cryptodev_capabilities) * nb_caps);
return 0;
}
static void
update_scheduler_feature_flag(struct rte_cryptodev *dev)
{
struct scheduler_ctx *sched_ctx = dev->data->dev_private;
uint32_t i;
dev->feature_flags = 0;
for (i = 0; i < sched_ctx->nb_slaves; i++) {
struct rte_cryptodev_info dev_info;
rte_cryptodev_info_get(sched_ctx->slaves[i].dev_id, &dev_info);
dev->feature_flags |= dev_info.feature_flags;
}
}
static void
update_max_nb_qp(struct scheduler_ctx *sched_ctx)
{
uint32_t i;
uint32_t max_nb_qp;
if (!sched_ctx->nb_slaves)
return;
max_nb_qp = sched_ctx->nb_slaves ? UINT32_MAX : 0;
for (i = 0; i < sched_ctx->nb_slaves; i++) {
struct rte_cryptodev_info dev_info;
rte_cryptodev_info_get(sched_ctx->slaves[i].dev_id, &dev_info);
max_nb_qp = dev_info.max_nb_queue_pairs < max_nb_qp ?
dev_info.max_nb_queue_pairs : max_nb_qp;
}
sched_ctx->max_nb_queue_pairs = max_nb_qp;
}
/** Attach a device to the scheduler. */
int
rte_cryptodev_scheduler_slave_attach(uint8_t scheduler_id, uint8_t slave_id)
{
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
struct scheduler_slave *slave;
struct rte_cryptodev_info dev_info;
uint32_t i;
if (!dev) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->driver_id != cryptodev_driver_id) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->data->dev_started) {
CS_LOG_ERR("Illegal operation");
return -EBUSY;
}
sched_ctx = dev->data->dev_private;
if (sched_ctx->nb_slaves >=
RTE_CRYPTODEV_SCHEDULER_MAX_NB_SLAVES) {
CS_LOG_ERR("Too many slaves attached");
return -ENOMEM;
}
for (i = 0; i < sched_ctx->nb_slaves; i++)
if (sched_ctx->slaves[i].dev_id == slave_id) {
CS_LOG_ERR("Slave already added");
return -ENOTSUP;
}
slave = &sched_ctx->slaves[sched_ctx->nb_slaves];
rte_cryptodev_info_get(slave_id, &dev_info);
slave->dev_id = slave_id;
slave->driver_id = dev_info.driver_id;
sched_ctx->nb_slaves++;
if (update_scheduler_capability(sched_ctx) < 0) {
slave->dev_id = 0;
slave->driver_id = 0;
sched_ctx->nb_slaves--;
CS_LOG_ERR("capabilities update failed");
return -ENOTSUP;
}
update_scheduler_feature_flag(dev);
update_max_nb_qp(sched_ctx);
return 0;
}
int
rte_cryptodev_scheduler_slave_detach(uint8_t scheduler_id, uint8_t slave_id)
{
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
uint32_t i, slave_pos;
if (!dev) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->driver_id != cryptodev_driver_id) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->data->dev_started) {
CS_LOG_ERR("Illegal operation");
return -EBUSY;
}
sched_ctx = dev->data->dev_private;
for (slave_pos = 0; slave_pos < sched_ctx->nb_slaves; slave_pos++)
if (sched_ctx->slaves[slave_pos].dev_id == slave_id)
break;
if (slave_pos == sched_ctx->nb_slaves) {
CS_LOG_ERR("Cannot find slave");
return -ENOTSUP;
}
if (sched_ctx->ops.slave_detach(dev, slave_id) < 0) {
CS_LOG_ERR("Failed to detach slave");
return -ENOTSUP;
}
for (i = slave_pos; i < sched_ctx->nb_slaves - 1; i++) {
memcpy(&sched_ctx->slaves[i], &sched_ctx->slaves[i+1],
sizeof(struct scheduler_slave));
}
memset(&sched_ctx->slaves[sched_ctx->nb_slaves - 1], 0,
sizeof(struct scheduler_slave));
sched_ctx->nb_slaves--;
if (update_scheduler_capability(sched_ctx) < 0) {
CS_LOG_ERR("capabilities update failed");
return -ENOTSUP;
}
update_scheduler_feature_flag(dev);
update_max_nb_qp(sched_ctx);
return 0;
}
int
rte_cryptodev_scheduler_mode_set(uint8_t scheduler_id,
enum rte_cryptodev_scheduler_mode mode)
{
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
if (!dev) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->driver_id != cryptodev_driver_id) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->data->dev_started) {
CS_LOG_ERR("Illegal operation");
return -EBUSY;
}
sched_ctx = dev->data->dev_private;
if (mode == sched_ctx->mode)
return 0;
switch (mode) {
case CDEV_SCHED_MODE_ROUNDROBIN:
if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id,
roundrobin_scheduler) < 0) {
CS_LOG_ERR("Failed to load scheduler");
return -1;
}
break;
case CDEV_SCHED_MODE_PKT_SIZE_DISTR:
if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id,
pkt_size_based_distr_scheduler) < 0) {
CS_LOG_ERR("Failed to load scheduler");
return -1;
}
break;
case CDEV_SCHED_MODE_FAILOVER:
if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id,
failover_scheduler) < 0) {
CS_LOG_ERR("Failed to load scheduler");
return -1;
}
break;
case CDEV_SCHED_MODE_MULTICORE:
if (rte_cryptodev_scheduler_load_user_scheduler(scheduler_id,
multicore_scheduler) < 0) {
CS_LOG_ERR("Failed to load scheduler");
return -1;
}
break;
default:
CS_LOG_ERR("Not yet supported");
return -ENOTSUP;
}
return 0;
}
enum rte_cryptodev_scheduler_mode
rte_cryptodev_scheduler_mode_get(uint8_t scheduler_id)
{
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
if (!dev) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->driver_id != cryptodev_driver_id) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
sched_ctx = dev->data->dev_private;
return sched_ctx->mode;
}
int
rte_cryptodev_scheduler_ordering_set(uint8_t scheduler_id,
uint32_t enable_reorder)
{
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
if (!dev) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->driver_id != cryptodev_driver_id) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->data->dev_started) {
CS_LOG_ERR("Illegal operation");
return -EBUSY;
}
sched_ctx = dev->data->dev_private;
sched_ctx->reordering_enabled = enable_reorder;
return 0;
}
int
rte_cryptodev_scheduler_ordering_get(uint8_t scheduler_id)
{
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
if (!dev) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->driver_id != cryptodev_driver_id) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
sched_ctx = dev->data->dev_private;
return (int)sched_ctx->reordering_enabled;
}
int
rte_cryptodev_scheduler_load_user_scheduler(uint8_t scheduler_id,
struct rte_cryptodev_scheduler *scheduler) {
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
if (!dev) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->driver_id != cryptodev_driver_id) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->data->dev_started) {
CS_LOG_ERR("Illegal operation");
return -EBUSY;
}
sched_ctx = dev->data->dev_private;
strncpy(sched_ctx->name, scheduler->name,
RTE_CRYPTODEV_SCHEDULER_NAME_MAX_LEN);
strncpy(sched_ctx->description, scheduler->description,
RTE_CRYPTODEV_SCHEDULER_DESC_MAX_LEN);
/* load scheduler instance operations functions */
sched_ctx->ops.config_queue_pair = scheduler->ops->config_queue_pair;
sched_ctx->ops.create_private_ctx = scheduler->ops->create_private_ctx;
sched_ctx->ops.scheduler_start = scheduler->ops->scheduler_start;
sched_ctx->ops.scheduler_stop = scheduler->ops->scheduler_stop;
sched_ctx->ops.slave_attach = scheduler->ops->slave_attach;
sched_ctx->ops.slave_detach = scheduler->ops->slave_detach;
sched_ctx->ops.option_set = scheduler->ops->option_set;
sched_ctx->ops.option_get = scheduler->ops->option_get;
if (sched_ctx->private_ctx)
rte_free(sched_ctx->private_ctx);
if (sched_ctx->ops.create_private_ctx) {
int ret = (*sched_ctx->ops.create_private_ctx)(dev);
if (ret < 0) {
CS_LOG_ERR("Unable to create scheduler private "
"context");
return ret;
}
}
sched_ctx->mode = scheduler->mode;
return 0;
}
int
rte_cryptodev_scheduler_slaves_get(uint8_t scheduler_id, uint8_t *slaves)
{
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
uint32_t nb_slaves = 0;
if (!dev) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (dev->driver_id != cryptodev_driver_id) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
sched_ctx = dev->data->dev_private;
nb_slaves = sched_ctx->nb_slaves;
if (slaves && nb_slaves) {
uint32_t i;
for (i = 0; i < nb_slaves; i++)
slaves[i] = sched_ctx->slaves[i].dev_id;
}
return (int)nb_slaves;
}
int
rte_cryptodev_scheduler_option_set(uint8_t scheduler_id,
enum rte_cryptodev_schedule_option_type option_type,
void *option)
{
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
if (option_type == CDEV_SCHED_OPTION_NOT_SET ||
option_type >= CDEV_SCHED_OPTION_COUNT) {
CS_LOG_ERR("Invalid option parameter");
return -EINVAL;
}
if (!option) {
CS_LOG_ERR("Invalid option parameter");
return -EINVAL;
}
if (dev->data->dev_started) {
CS_LOG_ERR("Illegal operation");
return -EBUSY;
}
sched_ctx = dev->data->dev_private;
RTE_FUNC_PTR_OR_ERR_RET(*sched_ctx->ops.option_set, -ENOTSUP);
return (*sched_ctx->ops.option_set)(dev, option_type, option);
}
int
rte_cryptodev_scheduler_option_get(uint8_t scheduler_id,
enum rte_cryptodev_schedule_option_type option_type,
void *option)
{
struct rte_cryptodev *dev = rte_cryptodev_pmd_get_dev(scheduler_id);
struct scheduler_ctx *sched_ctx;
if (!dev) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
if (!option) {
CS_LOG_ERR("Invalid option parameter");
return -EINVAL;
}
if (dev->driver_id != cryptodev_driver_id) {
CS_LOG_ERR("Operation not supported");
return -ENOTSUP;
}
sched_ctx = dev->data->dev_private;
RTE_FUNC_PTR_OR_ERR_RET(*sched_ctx->ops.option_get, -ENOTSUP);
return (*sched_ctx->ops.option_get)(dev, option_type, option);
}