numam-dpdk/drivers/net/igc/base/igc_mac.c
Xiaoyun Li aee2733fe3 net/igc/base: update copyright
Clarify Intel copyright and update the date to 2020.

Fixes: 8cb7c57d9b ("net/igc: support device initialization")
Cc: stable@dpdk.org

Signed-off-by: Xiaoyun Li <xiaoyun.li@intel.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2020-05-18 20:35:57 +02:00

2101 lines
60 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2020 Intel Corporation
*/
#include "igc_api.h"
static s32 igc_validate_mdi_setting_generic(struct igc_hw *hw);
static void igc_set_lan_id_multi_port_pcie(struct igc_hw *hw);
static void igc_config_collision_dist_generic(struct igc_hw *hw);
static int igc_rar_set_generic(struct igc_hw *hw, u8 *addr, u32 index);
/**
* igc_init_mac_ops_generic - Initialize MAC function pointers
* @hw: pointer to the HW structure
*
* Setups up the function pointers to no-op functions
**/
void igc_init_mac_ops_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
DEBUGFUNC("igc_init_mac_ops_generic");
/* General Setup */
mac->ops.init_params = igc_null_ops_generic;
mac->ops.init_hw = igc_null_ops_generic;
mac->ops.reset_hw = igc_null_ops_generic;
mac->ops.setup_physical_interface = igc_null_ops_generic;
mac->ops.get_bus_info = igc_null_ops_generic;
mac->ops.set_lan_id = igc_set_lan_id_multi_port_pcie;
mac->ops.read_mac_addr = igc_read_mac_addr_generic;
mac->ops.config_collision_dist = igc_config_collision_dist_generic;
mac->ops.clear_hw_cntrs = igc_null_mac_generic;
/* LED */
mac->ops.cleanup_led = igc_null_ops_generic;
mac->ops.setup_led = igc_null_ops_generic;
mac->ops.blink_led = igc_null_ops_generic;
mac->ops.led_on = igc_null_ops_generic;
mac->ops.led_off = igc_null_ops_generic;
/* LINK */
mac->ops.setup_link = igc_null_ops_generic;
mac->ops.get_link_up_info = igc_null_link_info;
mac->ops.check_for_link = igc_null_ops_generic;
/* Management */
mac->ops.check_mng_mode = igc_null_mng_mode;
/* VLAN, MC, etc. */
mac->ops.update_mc_addr_list = igc_null_update_mc;
mac->ops.clear_vfta = igc_null_mac_generic;
mac->ops.write_vfta = igc_null_write_vfta;
mac->ops.rar_set = igc_rar_set_generic;
mac->ops.validate_mdi_setting = igc_validate_mdi_setting_generic;
}
/**
* igc_null_ops_generic - No-op function, returns 0
* @hw: pointer to the HW structure
**/
s32 igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG * hw)
{
DEBUGFUNC("igc_null_ops_generic");
UNREFERENCED_1PARAMETER(hw);
return IGC_SUCCESS;
}
/**
* igc_null_mac_generic - No-op function, return void
* @hw: pointer to the HW structure
**/
void igc_null_mac_generic(struct igc_hw IGC_UNUSEDARG * hw)
{
DEBUGFUNC("igc_null_mac_generic");
UNREFERENCED_1PARAMETER(hw);
}
/**
* igc_null_link_info - No-op function, return 0
* @hw: pointer to the HW structure
* @s: dummy variable
* @d: dummy variable
**/
s32 igc_null_link_info(struct igc_hw IGC_UNUSEDARG * hw,
u16 IGC_UNUSEDARG * s, u16 IGC_UNUSEDARG * d)
{
DEBUGFUNC("igc_null_link_info");
UNREFERENCED_3PARAMETER(hw, s, d);
return IGC_SUCCESS;
}
/**
* igc_null_mng_mode - No-op function, return false
* @hw: pointer to the HW structure
**/
bool igc_null_mng_mode(struct igc_hw IGC_UNUSEDARG * hw)
{
DEBUGFUNC("igc_null_mng_mode");
UNREFERENCED_1PARAMETER(hw);
return false;
}
/**
* igc_null_update_mc - No-op function, return void
* @hw: pointer to the HW structure
* @h: dummy variable
* @a: dummy variable
**/
void igc_null_update_mc(struct igc_hw IGC_UNUSEDARG * hw,
u8 IGC_UNUSEDARG * h, u32 IGC_UNUSEDARG a)
{
DEBUGFUNC("igc_null_update_mc");
UNREFERENCED_3PARAMETER(hw, h, a);
}
/**
* igc_null_write_vfta - No-op function, return void
* @hw: pointer to the HW structure
* @a: dummy variable
* @b: dummy variable
**/
void igc_null_write_vfta(struct igc_hw IGC_UNUSEDARG * hw,
u32 IGC_UNUSEDARG a, u32 IGC_UNUSEDARG b)
{
DEBUGFUNC("igc_null_write_vfta");
UNREFERENCED_3PARAMETER(hw, a, b);
}
/**
* igc_null_rar_set - No-op function, return 0
* @hw: pointer to the HW structure
* @h: dummy variable
* @a: dummy variable
**/
int igc_null_rar_set(struct igc_hw IGC_UNUSEDARG * hw,
u8 IGC_UNUSEDARG * h, u32 IGC_UNUSEDARG a)
{
DEBUGFUNC("igc_null_rar_set");
UNREFERENCED_3PARAMETER(hw, h, a);
return IGC_SUCCESS;
}
/**
* igc_get_bus_info_pci_generic - Get PCI(x) bus information
* @hw: pointer to the HW structure
*
* Determines and stores the system bus information for a particular
* network interface. The following bus information is determined and stored:
* bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
**/
s32 igc_get_bus_info_pci_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
struct igc_bus_info *bus = &hw->bus;
u32 status = IGC_READ_REG(hw, IGC_STATUS);
s32 ret_val = IGC_SUCCESS;
DEBUGFUNC("igc_get_bus_info_pci_generic");
/* PCI or PCI-X? */
bus->type = (status & IGC_STATUS_PCIX_MODE)
? igc_bus_type_pcix
: igc_bus_type_pci;
/* Bus speed */
if (bus->type == igc_bus_type_pci) {
bus->speed = (status & IGC_STATUS_PCI66)
? igc_bus_speed_66
: igc_bus_speed_33;
} else {
switch (status & IGC_STATUS_PCIX_SPEED) {
case IGC_STATUS_PCIX_SPEED_66:
bus->speed = igc_bus_speed_66;
break;
case IGC_STATUS_PCIX_SPEED_100:
bus->speed = igc_bus_speed_100;
break;
case IGC_STATUS_PCIX_SPEED_133:
bus->speed = igc_bus_speed_133;
break;
default:
bus->speed = igc_bus_speed_reserved;
break;
}
}
/* Bus width */
bus->width = (status & IGC_STATUS_BUS64)
? igc_bus_width_64
: igc_bus_width_32;
/* Which PCI(-X) function? */
mac->ops.set_lan_id(hw);
return ret_val;
}
/**
* igc_get_bus_info_pcie_generic - Get PCIe bus information
* @hw: pointer to the HW structure
*
* Determines and stores the system bus information for a particular
* network interface. The following bus information is determined and stored:
* bus speed, bus width, type (PCIe), and PCIe function.
**/
s32 igc_get_bus_info_pcie_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
struct igc_bus_info *bus = &hw->bus;
s32 ret_val;
u16 pcie_link_status;
DEBUGFUNC("igc_get_bus_info_pcie_generic");
bus->type = igc_bus_type_pci_express;
ret_val = igc_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
&pcie_link_status);
if (ret_val) {
bus->width = igc_bus_width_unknown;
bus->speed = igc_bus_speed_unknown;
} else {
switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
case PCIE_LINK_SPEED_2500:
bus->speed = igc_bus_speed_2500;
break;
case PCIE_LINK_SPEED_5000:
bus->speed = igc_bus_speed_5000;
break;
default:
bus->speed = igc_bus_speed_unknown;
break;
}
bus->width = (enum igc_bus_width)((pcie_link_status &
PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
}
mac->ops.set_lan_id(hw);
return IGC_SUCCESS;
}
/**
* igc_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
*
* @hw: pointer to the HW structure
*
* Determines the LAN function id by reading memory-mapped registers
* and swaps the port value if requested.
**/
static void igc_set_lan_id_multi_port_pcie(struct igc_hw *hw)
{
struct igc_bus_info *bus = &hw->bus;
u32 reg;
/* The status register reports the correct function number
* for the device regardless of function swap state.
*/
reg = IGC_READ_REG(hw, IGC_STATUS);
bus->func = (reg & IGC_STATUS_FUNC_MASK) >> IGC_STATUS_FUNC_SHIFT;
}
/**
* igc_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
* @hw: pointer to the HW structure
*
* Determines the LAN function id by reading PCI config space.
**/
void igc_set_lan_id_multi_port_pci(struct igc_hw *hw)
{
struct igc_bus_info *bus = &hw->bus;
u16 pci_header_type;
u32 status;
igc_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
status = IGC_READ_REG(hw, IGC_STATUS);
bus->func = (status & IGC_STATUS_FUNC_MASK)
>> IGC_STATUS_FUNC_SHIFT;
} else {
bus->func = 0;
}
}
/**
* igc_set_lan_id_single_port - Set LAN id for a single port device
* @hw: pointer to the HW structure
*
* Sets the LAN function id to zero for a single port device.
**/
void igc_set_lan_id_single_port(struct igc_hw *hw)
{
struct igc_bus_info *bus = &hw->bus;
bus->func = 0;
}
/**
* igc_clear_vfta_generic - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* Clears the register array which contains the VLAN filter table by
* setting all the values to 0.
**/
void igc_clear_vfta_generic(struct igc_hw *hw)
{
u32 offset;
DEBUGFUNC("igc_clear_vfta_generic");
for (offset = 0; offset < IGC_VLAN_FILTER_TBL_SIZE; offset++) {
IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, 0);
IGC_WRITE_FLUSH(hw);
}
}
/**
* igc_write_vfta_generic - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: register offset in VLAN filter table
* @value: register value written to VLAN filter table
*
* Writes value at the given offset in the register array which stores
* the VLAN filter table.
**/
void igc_write_vfta_generic(struct igc_hw *hw, u32 offset, u32 value)
{
DEBUGFUNC("igc_write_vfta_generic");
IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_init_rx_addrs_generic - Initialize receive address's
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
* Setup the receive address registers by setting the base receive address
* register to the devices MAC address and clearing all the other receive
* address registers to 0.
**/
void igc_init_rx_addrs_generic(struct igc_hw *hw, u16 rar_count)
{
u32 i;
u8 mac_addr[ETH_ADDR_LEN] = {0};
DEBUGFUNC("igc_init_rx_addrs_generic");
/* Setup the receive address */
DEBUGOUT("Programming MAC Address into RAR[0]\n");
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
/* Zero out the other (rar_entry_count - 1) receive addresses */
DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count - 1);
for (i = 1; i < rar_count; i++)
hw->mac.ops.rar_set(hw, mac_addr, i);
}
/**
* igc_check_alt_mac_addr_generic - Check for alternate MAC addr
* @hw: pointer to the HW structure
*
* Checks the nvm for an alternate MAC address. An alternate MAC address
* can be setup by pre-boot software and must be treated like a permanent
* address and must override the actual permanent MAC address. If an
* alternate MAC address is found it is programmed into RAR0, replacing
* the permanent address that was installed into RAR0 by the Si on reset.
* This function will return SUCCESS unless it encounters an error while
* reading the EEPROM.
**/
s32 igc_check_alt_mac_addr_generic(struct igc_hw *hw)
{
u32 i;
s32 ret_val;
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
u8 alt_mac_addr[ETH_ADDR_LEN];
DEBUGFUNC("igc_check_alt_mac_addr_generic");
ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
if (ret_val)
return ret_val;
/* not supported on older hardware or 82573 */
if (hw->mac.type < igc_82571 || hw->mac.type == igc_82573)
return IGC_SUCCESS;
/* Alternate MAC address is handled by the option ROM for 82580
* and newer. SW support not required.
*/
if (hw->mac.type >= igc_82580)
return IGC_SUCCESS;
ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
&nvm_alt_mac_addr_offset);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
if (nvm_alt_mac_addr_offset == 0xFFFF ||
nvm_alt_mac_addr_offset == 0x0000)
/* There is no Alternate MAC Address */
return IGC_SUCCESS;
if (hw->bus.func == IGC_FUNC_1)
nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
if (hw->bus.func == IGC_FUNC_2)
nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN2;
if (hw->bus.func == IGC_FUNC_3)
nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN3;
for (i = 0; i < ETH_ADDR_LEN; i += 2) {
offset = nvm_alt_mac_addr_offset + (i >> 1);
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
}
/* if multicast bit is set, the alternate address will not be used */
if (alt_mac_addr[0] & 0x01) {
DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
return IGC_SUCCESS;
}
/* We have a valid alternate MAC address, and we want to treat it the
* same as the normal permanent MAC address stored by the HW into the
* RAR. Do this by mapping this address into RAR0.
*/
hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
return IGC_SUCCESS;
}
/**
* igc_rar_set_generic - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
*
* Sets the receive address array register at index to the address passed
* in by addr.
**/
static int igc_rar_set_generic(struct igc_hw *hw, u8 *addr, u32 index)
{
u32 rar_low, rar_high;
DEBUGFUNC("igc_rar_set_generic");
/* HW expects these in little endian so we reverse the byte order
* from network order (big endian) to little endian
*/
rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
((u32)addr[2] << 16) | ((u32)addr[3] << 24));
rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
/* If MAC address zero, no need to set the AV bit */
if (rar_low || rar_high)
rar_high |= IGC_RAH_AV;
/* Some bridges will combine consecutive 32-bit writes into
* a single burst write, which will malfunction on some parts.
* The flushes avoid this.
*/
IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
IGC_WRITE_FLUSH(hw);
IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
IGC_WRITE_FLUSH(hw);
return IGC_SUCCESS;
}
/**
* igc_hash_mc_addr_generic - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
* Generates a multicast address hash value which is used to determine
* the multicast filter table array address and new table value.
**/
u32 igc_hash_mc_addr_generic(struct igc_hw *hw, u8 *mc_addr)
{
u32 hash_value, hash_mask;
u8 bit_shift = 0;
DEBUGFUNC("igc_hash_mc_addr_generic");
/* Register count multiplied by bits per register */
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
* where 0xFF would still fall within the hash mask.
*/
while (hash_mask >> bit_shift != 0xFF)
bit_shift++;
/* The portion of the address that is used for the hash table
* is determined by the mc_filter_type setting.
* The algorithm is such that there is a total of 8 bits of shifting.
* The bit_shift for a mc_filter_type of 0 represents the number of
* left-shifts where the MSB of mc_addr[5] would still fall within
* the hash_mask. Case 0 does this exactly. Since there are a total
* of 8 bits of shifting, then mc_addr[4] will shift right the
* remaining number of bits. Thus 8 - bit_shift. The rest of the
* cases are a variation of this algorithm...essentially raising the
* number of bits to shift mc_addr[5] left, while still keeping the
* 8-bit shifting total.
*
* For example, given the following Destination MAC Address and an
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
* we can see that the bit_shift for case 0 is 4. These are the hash
* values resulting from each mc_filter_type...
* [0] [1] [2] [3] [4] [5]
* 01 AA 00 12 34 56
* LSB MSB
*
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
*/
switch (hw->mac.mc_filter_type) {
default:
case 0:
break;
case 1:
bit_shift += 1;
break;
case 2:
bit_shift += 2;
break;
case 3:
bit_shift += 4;
break;
}
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
(((u16)mc_addr[5]) << bit_shift)));
return hash_value;
}
/**
* igc_update_mc_addr_list_generic - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
*
* Updates entire Multicast Table Array.
* The caller must have a packed mc_addr_list of multicast addresses.
**/
void igc_update_mc_addr_list_generic(struct igc_hw *hw,
u8 *mc_addr_list, u32 mc_addr_count)
{
u32 hash_value, hash_bit, hash_reg;
int i;
DEBUGFUNC("igc_update_mc_addr_list_generic");
/* clear mta_shadow */
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
/* update mta_shadow from mc_addr_list */
for (i = 0; (u32)i < mc_addr_count; i++) {
hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
hash_bit = hash_value & 0x1F;
hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
mc_addr_list += (ETH_ADDR_LEN);
}
/* replace the entire MTA table */
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
* @hw: pointer to the HW structure
*
* In certain situations, a system BIOS may report that the PCIx maximum
* memory read byte count (MMRBC) value is higher than than the actual
* value. We check the PCIx command register with the current PCIx status
* register.
**/
void igc_pcix_mmrbc_workaround_generic(struct igc_hw *hw)
{
u16 cmd_mmrbc;
u16 pcix_cmd;
u16 pcix_stat_hi_word;
u16 stat_mmrbc;
DEBUGFUNC("igc_pcix_mmrbc_workaround_generic");
/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
if (hw->bus.type != igc_bus_type_pcix)
return;
igc_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
igc_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
PCIX_STATUS_HI_MMRBC_SHIFT;
if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
if (cmd_mmrbc > stat_mmrbc) {
pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
igc_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
}
}
/**
* igc_clear_hw_cntrs_base_generic - Clear base hardware counters
* @hw: pointer to the HW structure
*
* Clears the base hardware counters by reading the counter registers.
**/
void igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
{
DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
IGC_READ_REG(hw, IGC_CRCERRS);
IGC_READ_REG(hw, IGC_SYMERRS);
IGC_READ_REG(hw, IGC_MPC);
IGC_READ_REG(hw, IGC_SCC);
IGC_READ_REG(hw, IGC_ECOL);
IGC_READ_REG(hw, IGC_MCC);
IGC_READ_REG(hw, IGC_LATECOL);
IGC_READ_REG(hw, IGC_COLC);
IGC_READ_REG(hw, IGC_DC);
IGC_READ_REG(hw, IGC_SEC);
IGC_READ_REG(hw, IGC_RLEC);
IGC_READ_REG(hw, IGC_XONRXC);
IGC_READ_REG(hw, IGC_XONTXC);
IGC_READ_REG(hw, IGC_XOFFRXC);
IGC_READ_REG(hw, IGC_XOFFTXC);
IGC_READ_REG(hw, IGC_FCRUC);
IGC_READ_REG(hw, IGC_GPRC);
IGC_READ_REG(hw, IGC_BPRC);
IGC_READ_REG(hw, IGC_MPRC);
IGC_READ_REG(hw, IGC_GPTC);
IGC_READ_REG(hw, IGC_GORCL);
IGC_READ_REG(hw, IGC_GORCH);
IGC_READ_REG(hw, IGC_GOTCL);
IGC_READ_REG(hw, IGC_GOTCH);
IGC_READ_REG(hw, IGC_RNBC);
IGC_READ_REG(hw, IGC_RUC);
IGC_READ_REG(hw, IGC_RFC);
IGC_READ_REG(hw, IGC_ROC);
IGC_READ_REG(hw, IGC_RJC);
IGC_READ_REG(hw, IGC_TORL);
IGC_READ_REG(hw, IGC_TORH);
IGC_READ_REG(hw, IGC_TOTL);
IGC_READ_REG(hw, IGC_TOTH);
IGC_READ_REG(hw, IGC_TPR);
IGC_READ_REG(hw, IGC_TPT);
IGC_READ_REG(hw, IGC_MPTC);
IGC_READ_REG(hw, IGC_BPTC);
}
/**
* igc_check_for_copper_link_generic - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
* change in link status has been detected, then we read the PHY registers
* to get the current speed/duplex if link exists.
**/
s32 igc_check_for_copper_link_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
s32 ret_val;
bool link;
DEBUGFUNC("igc_check_for_copper_link");
/* We only want to go out to the PHY registers to see if Auto-Neg
* has completed and/or if our link status has changed. The
* get_link_status flag is set upon receiving a Link Status
* Change or Rx Sequence Error interrupt.
*/
if (!mac->get_link_status)
return IGC_SUCCESS;
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
*/
ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
if (ret_val)
return ret_val;
if (!link)
return IGC_SUCCESS; /* No link detected */
mac->get_link_status = false;
/* Check if there was DownShift, must be checked
* immediately after link-up
*/
igc_check_downshift_generic(hw);
/* If we are forcing speed/duplex, then we simply return since
* we have already determined whether we have link or not.
*/
if (!mac->autoneg)
return -IGC_ERR_CONFIG;
/* Auto-Neg is enabled. Auto Speed Detection takes care
* of MAC speed/duplex configuration. So we only need to
* configure Collision Distance in the MAC.
*/
mac->ops.config_collision_dist(hw);
/* Configure Flow Control now that Auto-Neg has completed.
* First, we need to restore the desired flow control
* settings because we may have had to re-autoneg with a
* different link partner.
*/
ret_val = igc_config_fc_after_link_up_generic(hw);
if (ret_val)
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
/**
* igc_check_for_fiber_link_generic - Check for link (Fiber)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
**/
s32 igc_check_for_fiber_link_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
s32 ret_val;
DEBUGFUNC("igc_check_for_fiber_link_generic");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
status = IGC_READ_REG(hw, IGC_STATUS);
rxcw = IGC_READ_REG(hw, IGC_RXCW);
/* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), the cable is plugged in (we have signal),
* and our link partner is not trying to auto-negotiate with us (we
* are receiving idles or data), we need to force link up. We also
* need to give auto-negotiation time to complete, in case the cable
* was just plugged in. The autoneg_failed flag does this.
*/
/* (ctrl & IGC_CTRL_SWDPIN1) == 1 == have signal */
if ((ctrl & IGC_CTRL_SWDPIN1) && !(status & IGC_STATUS_LU) &&
!(rxcw & IGC_RXCW_C)) {
if (!mac->autoneg_failed) {
mac->autoneg_failed = true;
return IGC_SUCCESS;
}
DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
IGC_WRITE_REG(hw, IGC_TXCW, (mac->txcw & ~IGC_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = IGC_READ_REG(hw, IGC_CTRL);
ctrl |= (IGC_CTRL_SLU | IGC_CTRL_FD);
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = igc_config_fc_after_link_up_generic(hw);
if (ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
} else if ((ctrl & IGC_CTRL_SLU) && (rxcw & IGC_RXCW_C)) {
/* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
IGC_WRITE_REG(hw, IGC_TXCW, mac->txcw);
IGC_WRITE_REG(hw, IGC_CTRL, (ctrl & ~IGC_CTRL_SLU));
mac->serdes_has_link = true;
}
return IGC_SUCCESS;
}
/**
* igc_check_for_serdes_link_generic - Check for link (Serdes)
* @hw: pointer to the HW structure
*
* Checks for link up on the hardware. If link is not up and we have
* a signal, then we need to force link up.
**/
s32 igc_check_for_serdes_link_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
u32 rxcw;
u32 ctrl;
u32 status;
s32 ret_val;
DEBUGFUNC("igc_check_for_serdes_link_generic");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
status = IGC_READ_REG(hw, IGC_STATUS);
rxcw = IGC_READ_REG(hw, IGC_RXCW);
/* If we don't have link (auto-negotiation failed or link partner
* cannot auto-negotiate), and our link partner is not trying to
* auto-negotiate with us (we are receiving idles or data),
* we need to force link up. We also need to give auto-negotiation
* time to complete.
*/
/* (ctrl & IGC_CTRL_SWDPIN1) == 1 == have signal */
if (!(status & IGC_STATUS_LU) && !(rxcw & IGC_RXCW_C)) {
if (!mac->autoneg_failed) {
mac->autoneg_failed = true;
return IGC_SUCCESS;
}
DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
/* Disable auto-negotiation in the TXCW register */
IGC_WRITE_REG(hw, IGC_TXCW, (mac->txcw & ~IGC_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = IGC_READ_REG(hw, IGC_CTRL);
ctrl |= (IGC_CTRL_SLU | IGC_CTRL_FD);
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
ret_val = igc_config_fc_after_link_up_generic(hw);
if (ret_val) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
} else if ((ctrl & IGC_CTRL_SLU) && (rxcw & IGC_RXCW_C)) {
/* If we are forcing link and we are receiving /C/ ordered
* sets, re-enable auto-negotiation in the TXCW register
* and disable forced link in the Device Control register
* in an attempt to auto-negotiate with our link partner.
*/
DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
IGC_WRITE_REG(hw, IGC_TXCW, mac->txcw);
IGC_WRITE_REG(hw, IGC_CTRL, (ctrl & ~IGC_CTRL_SLU));
mac->serdes_has_link = true;
} else if (!(IGC_TXCW_ANE & IGC_READ_REG(hw, IGC_TXCW))) {
/* If we force link for non-auto-negotiation switch, check
* link status based on MAC synchronization for internal
* serdes media type.
*/
/* SYNCH bit and IV bit are sticky. */
usec_delay(10);
rxcw = IGC_READ_REG(hw, IGC_RXCW);
if (rxcw & IGC_RXCW_SYNCH) {
if (!(rxcw & IGC_RXCW_IV)) {
mac->serdes_has_link = true;
DEBUGOUT("SERDES: Link up - forced.\n");
}
} else {
mac->serdes_has_link = false;
DEBUGOUT("SERDES: Link down - force failed.\n");
}
}
if (IGC_TXCW_ANE & IGC_READ_REG(hw, IGC_TXCW)) {
status = IGC_READ_REG(hw, IGC_STATUS);
if (status & IGC_STATUS_LU) {
/* SYNCH bit and IV bit are sticky, so reread rxcw. */
usec_delay(10);
rxcw = IGC_READ_REG(hw, IGC_RXCW);
if (rxcw & IGC_RXCW_SYNCH) {
if (!(rxcw & IGC_RXCW_IV)) {
mac->serdes_has_link = true;
DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
} else {
mac->serdes_has_link = false;
DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
}
} else {
mac->serdes_has_link = false;
DEBUGOUT("SERDES: Link down - no sync.\n");
}
} else {
mac->serdes_has_link = false;
DEBUGOUT("SERDES: Link down - autoneg failed\n");
}
}
return IGC_SUCCESS;
}
/**
* igc_set_default_fc_generic - Set flow control default values
* @hw: pointer to the HW structure
*
* Read the EEPROM for the default values for flow control and store the
* values.
**/
s32 igc_set_default_fc_generic(struct igc_hw *hw)
{
s32 ret_val;
u16 nvm_data;
u16 nvm_offset = 0;
DEBUGFUNC("igc_set_default_fc_generic");
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if (hw->mac.type == igc_i350) {
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
ret_val = hw->nvm.ops.read(hw,
NVM_INIT_CONTROL2_REG +
nvm_offset,
1, &nvm_data);
} else {
ret_val = hw->nvm.ops.read(hw,
NVM_INIT_CONTROL2_REG,
1, &nvm_data);
}
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
hw->fc.requested_mode = igc_fc_none;
else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
NVM_WORD0F_ASM_DIR)
hw->fc.requested_mode = igc_fc_tx_pause;
else
hw->fc.requested_mode = igc_fc_full;
return IGC_SUCCESS;
}
/**
* igc_setup_link_generic - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
* control. Calls the appropriate media-specific link configuration
* function. Assuming the adapter has a valid link partner, a valid link
* should be established. Assumes the hardware has previously been reset
* and the transmitter and receiver are not enabled.
**/
s32 igc_setup_link_generic(struct igc_hw *hw)
{
s32 ret_val;
DEBUGFUNC("igc_setup_link_generic");
/* In the case of the phy reset being blocked, we already have a link.
* We do not need to set it up again.
*/
if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
return IGC_SUCCESS;
/* If requested flow control is set to default, set flow control
* based on the EEPROM flow control settings.
*/
if (hw->fc.requested_mode == igc_fc_default)
hw->fc.requested_mode = igc_fc_full;
/* Save off the requested flow control mode for use later. Depending
* on the link partner's capabilities, we may or may not use this mode.
*/
hw->fc.current_mode = hw->fc.requested_mode;
DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
hw->fc.current_mode);
/* Call the necessary media_type subroutine to configure the link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
if (ret_val)
return ret_val;
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
return igc_set_fc_watermarks_generic(hw);
}
/**
* igc_commit_fc_settings_generic - Configure flow control
* @hw: pointer to the HW structure
*
* Write the flow control settings to the Transmit Config Word Register (TXCW)
* base on the flow control settings in igc_mac_info.
**/
s32 igc_commit_fc_settings_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
u32 txcw;
DEBUGFUNC("igc_commit_fc_settings_generic");
/* Check for a software override of the flow control settings, and
* setup the device accordingly. If auto-negotiation is enabled, then
* software will have to set the "PAUSE" bits to the correct value in
* the Transmit Config Word Register (TXCW) and re-start auto-
* negotiation. However, if auto-negotiation is disabled, then
* software will have to manually configure the two flow control enable
* bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames,
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we
* do not support receiving pause frames).
* 3: Both Rx and Tx flow control (symmetric) are enabled.
*/
switch (hw->fc.current_mode) {
case igc_fc_none:
/* Flow control completely disabled by a software over-ride. */
txcw = (IGC_TXCW_ANE | IGC_TXCW_FD);
break;
case igc_fc_rx_pause:
/* Rx Flow control is enabled and Tx Flow control is disabled
* by a software over-ride. Since there really isn't a way to
* advertise that we are capable of Rx Pause ONLY, we will
* advertise that we support both symmetric and asymmetric Rx
* PAUSE. Later, we will disable the adapter's ability to send
* PAUSE frames.
*/
txcw = (IGC_TXCW_ANE | IGC_TXCW_FD | IGC_TXCW_PAUSE_MASK);
break;
case igc_fc_tx_pause:
/* Tx Flow control is enabled, and Rx Flow control is disabled,
* by a software over-ride.
*/
txcw = (IGC_TXCW_ANE | IGC_TXCW_FD | IGC_TXCW_ASM_DIR);
break;
case igc_fc_full:
/* Flow control (both Rx and Tx) is enabled by a software
* over-ride.
*/
txcw = (IGC_TXCW_ANE | IGC_TXCW_FD | IGC_TXCW_PAUSE_MASK);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -IGC_ERR_CONFIG;
}
IGC_WRITE_REG(hw, IGC_TXCW, txcw);
mac->txcw = txcw;
return IGC_SUCCESS;
}
/**
* igc_poll_fiber_serdes_link_generic - Poll for link up
* @hw: pointer to the HW structure
*
* Polls for link up by reading the status register, if link fails to come
* up with auto-negotiation, then the link is forced if a signal is detected.
**/
s32 igc_poll_fiber_serdes_link_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
u32 i, status;
s32 ret_val;
DEBUGFUNC("igc_poll_fiber_serdes_link_generic");
/* If we have a signal (the cable is plugged in, or assumed true for
* serdes media) then poll for a "Link-Up" indication in the Device
* Status Register. Time-out if a link isn't seen in 500 milliseconds
* seconds (Auto-negotiation should complete in less than 500
* milliseconds even if the other end is doing it in SW).
*/
for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
msec_delay(10);
status = IGC_READ_REG(hw, IGC_STATUS);
if (status & IGC_STATUS_LU)
break;
}
if (i == FIBER_LINK_UP_LIMIT) {
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
mac->autoneg_failed = true;
/* AutoNeg failed to achieve a link, so we'll call
* mac->check_for_link. This routine will force the
* link up if we detect a signal. This will allow us to
* communicate with non-autonegotiating link partners.
*/
ret_val = mac->ops.check_for_link(hw);
if (ret_val) {
DEBUGOUT("Error while checking for link\n");
return ret_val;
}
mac->autoneg_failed = false;
} else {
mac->autoneg_failed = false;
DEBUGOUT("Valid Link Found\n");
}
return IGC_SUCCESS;
}
/**
* igc_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
* @hw: pointer to the HW structure
*
* Configures collision distance and flow control for fiber and serdes
* links. Upon successful setup, poll for link.
**/
s32 igc_setup_fiber_serdes_link_generic(struct igc_hw *hw)
{
u32 ctrl;
s32 ret_val;
DEBUGFUNC("igc_setup_fiber_serdes_link_generic");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
/* Take the link out of reset */
ctrl &= ~IGC_CTRL_LRST;
hw->mac.ops.config_collision_dist(hw);
ret_val = igc_commit_fc_settings_generic(hw);
if (ret_val)
return ret_val;
/* Since auto-negotiation is enabled, take the link out of reset (the
* link will be in reset, because we previously reset the chip). This
* will restart auto-negotiation. If auto-negotiation is successful
* then the link-up status bit will be set and the flow control enable
* bits (RFCE and TFCE) will be set according to their negotiated value.
*/
DEBUGOUT("Auto-negotiation enabled\n");
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
IGC_WRITE_FLUSH(hw);
msec_delay(1);
/* For these adapters, the SW definable pin 1 is set when the optics
* detect a signal. If we have a signal, then poll for a "Link-Up"
* indication.
*/
if (hw->phy.media_type == igc_media_type_internal_serdes ||
(IGC_READ_REG(hw, IGC_CTRL) & IGC_CTRL_SWDPIN1)) {
ret_val = igc_poll_fiber_serdes_link_generic(hw);
} else {
DEBUGOUT("No signal detected\n");
}
return ret_val;
}
/**
* igc_config_collision_dist_generic - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
* during link setup.
**/
static void igc_config_collision_dist_generic(struct igc_hw *hw)
{
u32 tctl;
DEBUGFUNC("igc_config_collision_dist_generic");
tctl = IGC_READ_REG(hw, IGC_TCTL);
tctl &= ~IGC_TCTL_COLD;
tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
IGC_WRITE_REG(hw, IGC_TCTL, tctl);
IGC_WRITE_FLUSH(hw);
}
/**
* igc_set_fc_watermarks_generic - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
* Sets the flow control high/low threshold (watermark) registers. If
* flow control XON frame transmission is enabled, then set XON frame
* transmission as well.
**/
s32 igc_set_fc_watermarks_generic(struct igc_hw *hw)
{
u32 fcrtl = 0, fcrth = 0;
DEBUGFUNC("igc_set_fc_watermarks_generic");
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames is not enabled, then these
* registers will be set to 0.
*/
if (hw->fc.current_mode & igc_fc_tx_pause) {
/* We need to set up the Receive Threshold high and low water
* marks as well as (optionally) enabling the transmission of
* XON frames.
*/
fcrtl = hw->fc.low_water;
if (hw->fc.send_xon)
fcrtl |= IGC_FCRTL_XONE;
fcrth = hw->fc.high_water;
}
IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
return IGC_SUCCESS;
}
/**
* igc_force_mac_fc_generic - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
* device control register to reflect the adapter settings. TFCE and RFCE
* need to be explicitly set by software when a copper PHY is used because
* autonegotiation is managed by the PHY rather than the MAC. Software must
* also configure these bits when link is forced on a fiber connection.
**/
s32 igc_force_mac_fc_generic(struct igc_hw *hw)
{
u32 ctrl;
DEBUGFUNC("igc_force_mac_fc_generic");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc.current_mode" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and Tx flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
switch (hw->fc.current_mode) {
case igc_fc_none:
ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
break;
case igc_fc_rx_pause:
ctrl &= (~IGC_CTRL_TFCE);
ctrl |= IGC_CTRL_RFCE;
break;
case igc_fc_tx_pause:
ctrl &= (~IGC_CTRL_RFCE);
ctrl |= IGC_CTRL_TFCE;
break;
case igc_fc_full:
ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -IGC_ERR_CONFIG;
}
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
return IGC_SUCCESS;
}
/**
* igc_config_fc_after_link_up_generic - Configures flow control after link
* @hw: pointer to the HW structure
*
* Checks the status of auto-negotiation after link up to ensure that the
* speed and duplex were not forced. If the link needed to be forced, then
* flow control needs to be forced also. If auto-negotiation is enabled
* and did not fail, then we configure flow control based on our link
* partner.
**/
s32 igc_config_fc_after_link_up_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
s32 ret_val = IGC_SUCCESS;
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
u16 speed, duplex;
DEBUGFUNC("igc_config_fc_after_link_up_generic");
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if (mac->autoneg_failed) {
if (hw->phy.media_type == igc_media_type_copper)
ret_val = igc_force_mac_fc_generic(hw);
}
if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if (hw->phy.media_type == igc_media_type_copper && mac->autoneg) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
if (ret_val)
return ret_val;
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
return ret_val;
}
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement
* Register (Address 4) and the Auto_Negotiation Base
* Page Ability Register (Address 5) to determine how
* flow control was negotiated.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg);
if (ret_val)
return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | igc_fc_none
* 0 | 1 | 0 | DC | igc_fc_none
* 0 | 1 | 1 | 0 | igc_fc_none
* 0 | 1 | 1 | 1 | igc_fc_tx_pause
* 1 | 0 | 0 | DC | igc_fc_none
* 1 | DC | 1 | DC | igc_fc_full
* 1 | 1 | 0 | 0 | igc_fc_none
* 1 | 1 | 0 | 1 | igc_fc_rx_pause
*
* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | IGC_fc_full
*
*/
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected Rx ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise Rx
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
if (hw->fc.requested_mode == igc_fc_full) {
hw->fc.current_mode = igc_fc_full;
DEBUGOUT("Flow Control = FULL.\n");
} else {
hw->fc.current_mode = igc_fc_rx_pause;
DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | igc_fc_tx_pause
*/
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = igc_fc_tx_pause;
DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | igc_fc_rx_pause
*/
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.current_mode = igc_fc_rx_pause;
DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
} else {
/* Per the IEEE spec, at this point flow control
* should be disabled.
*/
hw->fc.current_mode = igc_fc_none;
DEBUGOUT("Flow Control = NONE.\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
if (ret_val) {
DEBUGOUT("Error getting link speed and duplex\n");
return ret_val;
}
if (duplex == HALF_DUPLEX)
hw->fc.current_mode = igc_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
ret_val = igc_force_mac_fc_generic(hw);
if (ret_val) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
}
return IGC_SUCCESS;
}
/**
* igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Read the status register for the current speed/duplex and store the current
* speed and duplex for copper connections.
**/
s32 igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, u16 *speed,
u16 *duplex)
{
u32 status;
DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
status = IGC_READ_REG(hw, IGC_STATUS);
if (status & IGC_STATUS_SPEED_1000) {
/* For I225, STATUS will indicate 1G speed in both 1 Gbps
* and 2.5 Gbps link modes. An additional bit is used
* to differentiate between 1 Gbps and 2.5 Gbps.
*/
if (hw->mac.type == igc_i225 &&
(status & IGC_STATUS_SPEED_2500)) {
*speed = SPEED_2500;
DEBUGOUT("2500 Mbs, ");
} else {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
}
} else if (status & IGC_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
}
if (status & IGC_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\n");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT("Half Duplex\n");
}
return IGC_SUCCESS;
}
/**
* igc_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Sets the speed and duplex to gigabit full duplex (the only possible option)
* for fiber/serdes links.
**/
s32
igc_get_speed_and_duplex_fiber_serdes_generic(struct igc_hw *hw,
u16 *speed, u16 *duplex)
{
DEBUGFUNC("igc_get_speed_and_duplex_fiber_serdes_generic");
UNREFERENCED_1PARAMETER(hw);
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
return IGC_SUCCESS;
}
/**
* igc_get_hw_semaphore_generic - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
**/
s32 igc_get_hw_semaphore_generic(struct igc_hw *hw)
{
u32 swsm;
s32 timeout = hw->nvm.word_size + 1;
s32 i = 0;
DEBUGFUNC("igc_get_hw_semaphore_generic");
/* Get the SW semaphore */
while (i < timeout) {
swsm = IGC_READ_REG(hw, IGC_SWSM);
if (!(swsm & IGC_SWSM_SMBI))
break;
usec_delay(50);
i++;
}
if (i == timeout) {
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
return -IGC_ERR_NVM;
}
/* Get the FW semaphore. */
for (i = 0; i < timeout; i++) {
swsm = IGC_READ_REG(hw, IGC_SWSM);
IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
break;
usec_delay(50);
}
if (i == timeout) {
/* Release semaphores */
igc_put_hw_semaphore_generic(hw);
DEBUGOUT("Driver can't access the NVM\n");
return -IGC_ERR_NVM;
}
return IGC_SUCCESS;
}
/**
* igc_put_hw_semaphore_generic - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
**/
void igc_put_hw_semaphore_generic(struct igc_hw *hw)
{
u32 swsm;
DEBUGFUNC("igc_put_hw_semaphore_generic");
swsm = IGC_READ_REG(hw, IGC_SWSM);
swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
IGC_WRITE_REG(hw, IGC_SWSM, swsm);
}
/**
* igc_get_auto_rd_done_generic - Check for auto read completion
* @hw: pointer to the HW structure
*
* Check EEPROM for Auto Read done bit.
**/
s32 igc_get_auto_rd_done_generic(struct igc_hw *hw)
{
s32 i = 0;
DEBUGFUNC("igc_get_auto_rd_done_generic");
while (i < AUTO_READ_DONE_TIMEOUT) {
if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
break;
msec_delay(1);
i++;
}
if (i == AUTO_READ_DONE_TIMEOUT) {
DEBUGOUT("Auto read by HW from NVM has not completed.\n");
return -IGC_ERR_RESET;
}
return IGC_SUCCESS;
}
/**
* igc_valid_led_default_generic - Verify a valid default LED config
* @hw: pointer to the HW structure
* @data: pointer to the NVM (EEPROM)
*
* Read the EEPROM for the current default LED configuration. If the
* LED configuration is not valid, set to a valid LED configuration.
**/
s32 igc_valid_led_default_generic(struct igc_hw *hw, u16 *data)
{
s32 ret_val;
DEBUGFUNC("igc_valid_led_default_generic");
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
DEBUGOUT("NVM Read Error\n");
return ret_val;
}
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
*data = ID_LED_DEFAULT;
return IGC_SUCCESS;
}
/**
* igc_id_led_init_generic -
* @hw: pointer to the HW structure
*
**/
s32 igc_id_led_init_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
s32 ret_val;
const u32 ledctl_mask = 0x000000FF;
const u32 ledctl_on = IGC_LEDCTL_MODE_LED_ON;
const u32 ledctl_off = IGC_LEDCTL_MODE_LED_OFF;
u16 data, i, temp;
const u16 led_mask = 0x0F;
DEBUGFUNC("igc_id_led_init_generic");
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
if (ret_val)
return ret_val;
mac->ledctl_default = IGC_READ_REG(hw, IGC_LEDCTL);
mac->ledctl_mode1 = mac->ledctl_default;
mac->ledctl_mode2 = mac->ledctl_default;
for (i = 0; i < 4; i++) {
temp = (data >> (i << 2)) & led_mask;
switch (temp) {
case ID_LED_ON1_DEF2:
case ID_LED_ON1_ON2:
case ID_LED_ON1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_on << (i << 3);
break;
case ID_LED_OFF1_DEF2:
case ID_LED_OFF1_ON2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode1 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
switch (temp) {
case ID_LED_DEF1_ON2:
case ID_LED_ON1_ON2:
case ID_LED_OFF1_ON2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_on << (i << 3);
break;
case ID_LED_DEF1_OFF2:
case ID_LED_ON1_OFF2:
case ID_LED_OFF1_OFF2:
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
mac->ledctl_mode2 |= ledctl_off << (i << 3);
break;
default:
/* Do nothing */
break;
}
}
return IGC_SUCCESS;
}
/**
* igc_setup_led_generic - Configures SW controllable LED
* @hw: pointer to the HW structure
*
* This prepares the SW controllable LED for use and saves the current state
* of the LED so it can be later restored.
**/
s32 igc_setup_led_generic(struct igc_hw *hw)
{
u32 ledctl;
DEBUGFUNC("igc_setup_led_generic");
if (hw->mac.ops.setup_led != igc_setup_led_generic)
return -IGC_ERR_CONFIG;
if (hw->phy.media_type == igc_media_type_fiber) {
ledctl = IGC_READ_REG(hw, IGC_LEDCTL);
hw->mac.ledctl_default = ledctl;
/* Turn off LED0 */
ledctl &= ~(IGC_LEDCTL_LED0_IVRT | IGC_LEDCTL_LED0_BLINK |
IGC_LEDCTL_LED0_MODE_MASK);
ledctl |= (IGC_LEDCTL_MODE_LED_OFF <<
IGC_LEDCTL_LED0_MODE_SHIFT);
IGC_WRITE_REG(hw, IGC_LEDCTL, ledctl);
} else if (hw->phy.media_type == igc_media_type_copper) {
IGC_WRITE_REG(hw, IGC_LEDCTL, hw->mac.ledctl_mode1);
}
return IGC_SUCCESS;
}
/**
* igc_cleanup_led_generic - Set LED config to default operation
* @hw: pointer to the HW structure
*
* Remove the current LED configuration and set the LED configuration
* to the default value, saved from the EEPROM.
**/
s32 igc_cleanup_led_generic(struct igc_hw *hw)
{
DEBUGFUNC("igc_cleanup_led_generic");
IGC_WRITE_REG(hw, IGC_LEDCTL, hw->mac.ledctl_default);
return IGC_SUCCESS;
}
/**
* igc_blink_led_generic - Blink LED
* @hw: pointer to the HW structure
*
* Blink the LEDs which are set to be on.
**/
s32 igc_blink_led_generic(struct igc_hw *hw)
{
u32 ledctl_blink = 0;
u32 i;
DEBUGFUNC("igc_blink_led_generic");
if (hw->phy.media_type == igc_media_type_fiber) {
/* always blink LED0 for PCI-E fiber */
ledctl_blink = IGC_LEDCTL_LED0_BLINK |
(IGC_LEDCTL_MODE_LED_ON << IGC_LEDCTL_LED0_MODE_SHIFT);
} else {
/* Set the blink bit for each LED that's "on" (0x0E)
* (or "off" if inverted) in ledctl_mode2. The blink
* logic in hardware only works when mode is set to "on"
* so it must be changed accordingly when the mode is
* "off" and inverted.
*/
ledctl_blink = hw->mac.ledctl_mode2;
for (i = 0; i < 32; i += 8) {
u32 mode = (hw->mac.ledctl_mode2 >> i) &
IGC_LEDCTL_LED0_MODE_MASK;
u32 led_default = hw->mac.ledctl_default >> i;
if ((!(led_default & IGC_LEDCTL_LED0_IVRT) &&
mode == IGC_LEDCTL_MODE_LED_ON) ||
((led_default & IGC_LEDCTL_LED0_IVRT) &&
mode == IGC_LEDCTL_MODE_LED_OFF)) {
ledctl_blink &=
~(IGC_LEDCTL_LED0_MODE_MASK << i);
ledctl_blink |= (IGC_LEDCTL_LED0_BLINK |
IGC_LEDCTL_MODE_LED_ON) << i;
}
}
}
IGC_WRITE_REG(hw, IGC_LEDCTL, ledctl_blink);
return IGC_SUCCESS;
}
/**
* igc_led_on_generic - Turn LED on
* @hw: pointer to the HW structure
*
* Turn LED on.
**/
s32 igc_led_on_generic(struct igc_hw *hw)
{
u32 ctrl;
DEBUGFUNC("igc_led_on_generic");
switch (hw->phy.media_type) {
case igc_media_type_fiber:
ctrl = IGC_READ_REG(hw, IGC_CTRL);
ctrl &= ~IGC_CTRL_SWDPIN0;
ctrl |= IGC_CTRL_SWDPIO0;
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
break;
case igc_media_type_copper:
IGC_WRITE_REG(hw, IGC_LEDCTL, hw->mac.ledctl_mode2);
break;
default:
break;
}
return IGC_SUCCESS;
}
/**
* igc_led_off_generic - Turn LED off
* @hw: pointer to the HW structure
*
* Turn LED off.
**/
s32 igc_led_off_generic(struct igc_hw *hw)
{
u32 ctrl;
DEBUGFUNC("igc_led_off_generic");
switch (hw->phy.media_type) {
case igc_media_type_fiber:
ctrl = IGC_READ_REG(hw, IGC_CTRL);
ctrl |= IGC_CTRL_SWDPIN0;
ctrl |= IGC_CTRL_SWDPIO0;
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
break;
case igc_media_type_copper:
IGC_WRITE_REG(hw, IGC_LEDCTL, hw->mac.ledctl_mode1);
break;
default:
break;
}
return IGC_SUCCESS;
}
/**
* igc_set_pcie_no_snoop_generic - Set PCI-express capabilities
* @hw: pointer to the HW structure
* @no_snoop: bitmap of snoop events
*
* Set the PCI-express register to snoop for events enabled in 'no_snoop'.
**/
void igc_set_pcie_no_snoop_generic(struct igc_hw *hw, u32 no_snoop)
{
u32 gcr;
DEBUGFUNC("igc_set_pcie_no_snoop_generic");
if (hw->bus.type != igc_bus_type_pci_express)
return;
if (no_snoop) {
gcr = IGC_READ_REG(hw, IGC_GCR);
gcr &= ~(PCIE_NO_SNOOP_ALL);
gcr |= no_snoop;
IGC_WRITE_REG(hw, IGC_GCR, gcr);
}
}
/**
* igc_disable_pcie_master_generic - Disables PCI-express master access
* @hw: pointer to the HW structure
*
* Returns IGC_SUCCESS if successful, else returns -10
* (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
* the master requests to be disabled.
*
* Disables PCI-Express master access and verifies there are no pending
* requests.
**/
s32 igc_disable_pcie_master_generic(struct igc_hw *hw)
{
u32 ctrl;
s32 timeout = MASTER_DISABLE_TIMEOUT;
DEBUGFUNC("igc_disable_pcie_master_generic");
ctrl = IGC_READ_REG(hw, IGC_CTRL);
ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
while (timeout) {
if (!(IGC_READ_REG(hw, IGC_STATUS) &
IGC_STATUS_GIO_MASTER_ENABLE) ||
IGC_REMOVED(hw->hw_addr))
break;
usec_delay(100);
timeout--;
}
if (!timeout) {
DEBUGOUT("Master requests are pending.\n");
return -IGC_ERR_MASTER_REQUESTS_PENDING;
}
return IGC_SUCCESS;
}
/**
* igc_reset_adaptive_generic - Reset Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Reset the Adaptive Interframe Spacing throttle to default values.
**/
void igc_reset_adaptive_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
DEBUGFUNC("igc_reset_adaptive_generic");
if (!mac->adaptive_ifs) {
DEBUGOUT("Not in Adaptive IFS mode!\n");
return;
}
mac->current_ifs_val = 0;
mac->ifs_min_val = IFS_MIN;
mac->ifs_max_val = IFS_MAX;
mac->ifs_step_size = IFS_STEP;
mac->ifs_ratio = IFS_RATIO;
mac->in_ifs_mode = false;
IGC_WRITE_REG(hw, IGC_AIT, 0);
}
/**
* igc_update_adaptive_generic - Update Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Update the Adaptive Interframe Spacing Throttle value based on the
* time between transmitted packets and time between collisions.
**/
void igc_update_adaptive_generic(struct igc_hw *hw)
{
struct igc_mac_info *mac = &hw->mac;
DEBUGFUNC("igc_update_adaptive_generic");
if (!mac->adaptive_ifs) {
DEBUGOUT("Not in Adaptive IFS mode!\n");
return;
}
if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
if (mac->tx_packet_delta > MIN_NUM_XMITS) {
mac->in_ifs_mode = true;
if (mac->current_ifs_val < mac->ifs_max_val) {
if (!mac->current_ifs_val)
mac->current_ifs_val = mac->ifs_min_val;
else
mac->current_ifs_val +=
mac->ifs_step_size;
IGC_WRITE_REG(hw, IGC_AIT,
mac->current_ifs_val);
}
}
} else {
if (mac->in_ifs_mode &&
mac->tx_packet_delta <= MIN_NUM_XMITS) {
mac->current_ifs_val = 0;
mac->in_ifs_mode = false;
IGC_WRITE_REG(hw, IGC_AIT, 0);
}
}
}
/**
* igc_validate_mdi_setting_generic - Verify MDI/MDIx settings
* @hw: pointer to the HW structure
*
* Verify that when not using auto-negotiation that MDI/MDIx is correctly
* set, which is forced to MDI mode only.
**/
static s32 igc_validate_mdi_setting_generic(struct igc_hw *hw)
{
DEBUGFUNC("igc_validate_mdi_setting_generic");
if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
DEBUGOUT("Invalid MDI setting detected\n");
hw->phy.mdix = 1;
return -IGC_ERR_CONFIG;
}
return IGC_SUCCESS;
}
/**
* igc_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
* @hw: pointer to the HW structure
*
* Validate the MDI/MDIx setting, allowing for auto-crossover during forced
* operation.
**/
s32
igc_validate_mdi_setting_crossover_generic(struct igc_hw IGC_UNUSEDARG * hw)
{
DEBUGFUNC("igc_validate_mdi_setting_crossover_generic");
UNREFERENCED_1PARAMETER(hw);
return IGC_SUCCESS;
}
/**
* igc_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
* @hw: pointer to the HW structure
* @reg: 32bit register offset such as IGC_SCTL
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes an address/data control type register. There are several of these
* and they all have the format address << 8 | data and bit 31 is polled for
* completion.
**/
s32 igc_write_8bit_ctrl_reg_generic(struct igc_hw *hw, u32 reg,
u32 offset, u8 data)
{
u32 i, regvalue = 0;
DEBUGFUNC("igc_write_8bit_ctrl_reg_generic");
/* Set up the address and data */
regvalue = ((u32)data) | (offset << IGC_GEN_CTL_ADDRESS_SHIFT);
IGC_WRITE_REG(hw, reg, regvalue);
/* Poll the ready bit to see if the MDI read completed */
for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) {
usec_delay(5);
regvalue = IGC_READ_REG(hw, reg);
if (regvalue & IGC_GEN_CTL_READY)
break;
}
if (!(regvalue & IGC_GEN_CTL_READY)) {
DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
return -IGC_ERR_PHY;
}
return IGC_SUCCESS;
}