numam-dpdk/drivers/net/i40e/i40e_rxtx_vec_avx2.c
Bruce Richardson 3566515daf net/i40e: fix clang build with 16B descriptors
When compiling with 16B descriptor support enabled, clang compiles gave
an error, complaining that the final parameter of _mm256_blend_epi32()
had to be an immediate value (i.e. compile-time constant):

 i40e_rxtx_vec_avx2.c:561:21: error: argument to
'__builtin_ia32_pblendd256' must be a constant integer
   __m256i tmp0_1 = _mm256_blend_epi32(fdir_zero_mask,
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

While it appears that GCC was able to convert the constant variable
value "fdir_blend_mask" into the blend call, clang was not doing so. To
guarantee the use of an immediate we convert the variable value to a
"#define".

Fixes: 7d087a0a8b ("net/i40e: support flow director on AVX Rx")

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Xiaolong Ye <xiaolong.ye@intel.com>
2019-11-20 17:36:05 +01:00

950 lines
34 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdint.h>
#include <rte_ethdev_driver.h>
#include <rte_malloc.h>
#include "base/i40e_prototype.h"
#include "base/i40e_type.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#include "i40e_rxtx_vec_common.h"
#include <x86intrin.h>
#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif
static inline void
i40e_rxq_rearm(struct i40e_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mp,
(void *)rxep,
RTE_I40E_RXQ_REARM_THRESH) < 0) {
if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
__m128i dma_addr0;
dma_addr0 = _mm_setzero_si128();
for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
_mm_store_si128((__m128i *)&rxdp[i].read,
dma_addr0);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
RTE_I40E_RXQ_REARM_THRESH;
return;
}
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
struct rte_mbuf *mb0, *mb1;
__m128i dma_addr0, dma_addr1;
__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
RTE_PKTMBUF_HEADROOM);
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
__m128i vaddr0, vaddr1;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
offsetof(struct rte_mbuf, buf_addr) + 8);
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
/* convert pa to dma_addr hdr/data */
dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
/* add headroom to pa values */
dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);
/* flush desc with pa dma_addr */
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
}
#else
struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
__m256i dma_addr0_1, dma_addr2_3;
__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
/* Initialize the mbufs in vector, process 4 mbufs in one loop */
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
i += 4, rxep += 4, rxdp += 4) {
__m128i vaddr0, vaddr1, vaddr2, vaddr3;
__m256i vaddr0_1, vaddr2_3;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
mb2 = rxep[2].mbuf;
mb3 = rxep[3].mbuf;
/* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) !=
offsetof(struct rte_mbuf, buf_addr) + 8);
vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
/*
* merge 0 & 1, by casting 0 to 256-bit and inserting 1
* into the high lanes. Similarly for 2 & 3
*/
vaddr0_1 = _mm256_inserti128_si256(
_mm256_castsi128_si256(vaddr0), vaddr1, 1);
vaddr2_3 = _mm256_inserti128_si256(
_mm256_castsi128_si256(vaddr2), vaddr3, 1);
/* convert pa to dma_addr hdr/data */
dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);
/* add headroom to pa values */
dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);
/* flush desc with pa dma_addr */
_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
}
#endif
rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
/* Handles 32B descriptor FDIR ID processing:
* rxdp: receive descriptor ring, required to load 2nd 16B half of each desc
* rx_pkts: required to store metadata back to mbufs
* pkt_idx: offset into the burst, increments in vector widths
* desc_idx: required to select the correct shift at compile time
*/
static inline __m256i
desc_fdir_processing_32b(volatile union i40e_rx_desc *rxdp,
struct rte_mbuf **rx_pkts,
const uint32_t pkt_idx,
const uint32_t desc_idx)
{
/* 32B desc path: load rxdp.wb.qword2 for EXT_STATUS and FLEXBH_STAT */
__m128i *rxdp_desc_0 = (void *)(&rxdp[desc_idx + 0].wb.qword2);
__m128i *rxdp_desc_1 = (void *)(&rxdp[desc_idx + 1].wb.qword2);
const __m128i desc_qw2_0 = _mm_load_si128(rxdp_desc_0);
const __m128i desc_qw2_1 = _mm_load_si128(rxdp_desc_1);
/* Mask for FLEXBH_STAT, and the FDIR_ID value to compare against. The
* remaining data is set to all 1's to pass through data.
*/
const __m256i flexbh_mask = _mm256_set_epi32(-1, -1, -1, 3 << 4,
-1, -1, -1, 3 << 4);
const __m256i flexbh_id = _mm256_set_epi32(-1, -1, -1, 1 << 4,
-1, -1, -1, 1 << 4);
/* Load descriptor, check for FLEXBH bits, generate a mask for both
* packets in the register.
*/
__m256i desc_qw2_0_1 =
_mm256_inserti128_si256(_mm256_castsi128_si256(desc_qw2_0),
desc_qw2_1, 1);
__m256i desc_tmp_msk = _mm256_and_si256(flexbh_mask, desc_qw2_0_1);
__m256i fdir_mask = _mm256_cmpeq_epi32(flexbh_id, desc_tmp_msk);
__m256i fdir_data = _mm256_alignr_epi8(desc_qw2_0_1, desc_qw2_0_1, 12);
__m256i desc_fdir_data = _mm256_and_si256(fdir_mask, fdir_data);
/* Write data out to the mbuf. There is no store to this area of the
* mbuf today, so we cannot combine it with another store.
*/
const uint32_t idx_0 = pkt_idx + desc_idx;
const uint32_t idx_1 = pkt_idx + desc_idx + 1;
rx_pkts[idx_0]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 0);
rx_pkts[idx_1]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 4);
/* Create mbuf flags as required for mbuf_flags layout
* (That's high lane [1,3,5,7, 0,2,4,6] as u32 lanes).
* Approach:
* - Mask away bits not required from the fdir_mask
* - Leave the PKT_FDIR_ID bit (1 << 13)
* - Position that bit correctly based on packet number
* - OR in the resulting bit to mbuf_flags
*/
RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
__m256i mbuf_flag_mask = _mm256_set_epi32(0, 0, 0, 1 << 13,
0, 0, 0, 1 << 13);
__m256i desc_flag_bit = _mm256_and_si256(mbuf_flag_mask, fdir_mask);
/* For static-inline function, this will be stripped out
* as the desc_idx is a hard-coded constant.
*/
switch (desc_idx) {
case 0:
return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 4);
case 2:
return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 8);
case 4:
return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 12);
case 6:
return desc_flag_bit;
default:
break;
}
/* NOT REACHED, see above switch returns */
return _mm256_setzero_si256();
}
#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
#define PKTLEN_SHIFT 10
/* Force inline as some compilers will not inline by default. */
static __rte_always_inline uint16_t
_recv_raw_pkts_vec_avx2(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
#define RTE_I40E_DESCS_PER_LOOP_AVX 8
const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
const __m256i mbuf_init = _mm256_set_epi64x(0, 0,
0, rxq->mbuf_initializer);
struct i40e_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail];
volatile union i40e_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail;
const int avx_aligned = ((rxq->rx_tail & 1) == 0);
rte_prefetch0(rxdp);
/* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP_AVX */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP_AVX);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
i40e_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.qword1.status_error_len &
rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/* constants used in processing loop */
const __m256i crc_adjust = _mm256_set_epi16(
/* first descriptor */
0, 0, 0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
0, /* ignore high-16bits of pkt_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, 0, /* ignore pkt_type field */
/* second descriptor */
0, 0, 0, /* ignore non-length fields */
-rxq->crc_len, /* sub crc on data_len */
0, /* ignore high-16bits of pkt_len */
-rxq->crc_len, /* sub crc on pkt_len */
0, 0 /* ignore pkt_type field */
);
/* 8 packets DD mask, LSB in each 32-bit value */
const __m256i dd_check = _mm256_set1_epi32(1);
/* 8 packets EOP mask, second-LSB in each 32-bit value */
const __m256i eop_check = _mm256_slli_epi32(dd_check,
I40E_RX_DESC_STATUS_EOF_SHIFT);
/* mask to shuffle from desc. to mbuf (2 descriptors)*/
const __m256i shuf_msk = _mm256_set_epi8(
/* first descriptor */
7, 6, 5, 4, /* octet 4~7, 32bits rss */
3, 2, /* octet 2~3, low 16 bits vlan_macip */
15, 14, /* octet 15~14, 16 bits data_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
15, 14, /* octet 15~14, low 16 bits pkt_len */
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /*pkt_type set as unknown */
/* second descriptor */
7, 6, 5, 4, /* octet 4~7, 32bits rss */
3, 2, /* octet 2~3, low 16 bits vlan_macip */
15, 14, /* octet 15~14, 16 bits data_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
15, 14, /* octet 15~14, low 16 bits pkt_len */
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF /*pkt_type set as unknown */
);
/*
* compile-time check the above crc and shuffle layout is correct.
* NOTE: the first field (lowest address) is given last in set_epi
* calls above.
*/
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
/* Status/Error flag masks */
/*
* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication. Bits 3-5 of error
* field (bits 22-24) are for IP/L4 checksum errors
*/
const __m256i flags_mask = _mm256_set1_epi32(
(1 << 2) | (1 << 11) | (3 << 12) | (7 << 22));
/*
* data to be shuffled by result of flag mask. If VLAN bit is set,
* (bit 2), then position 4 in this array will be used in the
* destination
*/
const __m256i vlan_flags_shuf = _mm256_set_epi32(
0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0,
0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0);
/*
* data to be shuffled by result of flag mask, shifted down 11.
* If RSS/FDIR bits are set, shuffle moves appropriate flags in
* place.
*/
const __m256i rss_flags_shuf = _mm256_set_epi8(
0, 0, 0, 0, 0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
0, 0, PKT_RX_FDIR, 0, /* end up 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0,
0, 0, PKT_RX_FDIR, 0);
/*
* data to be shuffled by the result of the flags mask shifted by 22
* bits. This gives use the l3_l4 flags.
*/
const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
/* shift right 1 bit to make sure it not exceed 255 */
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
PKT_RX_IP_CKSUM_BAD >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1,
/* second 128-bits */
0, 0, 0, 0, 0, 0, 0, 0,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1,
(PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1,
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1,
PKT_RX_IP_CKSUM_BAD >> 1,
(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1);
const __m256i cksum_mask = _mm256_set1_epi32(
PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD |
PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD |
PKT_RX_EIP_CKSUM_BAD);
RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */
uint16_t i, received;
for (i = 0, received = 0; i < nb_pkts;
i += RTE_I40E_DESCS_PER_LOOP_AVX,
rxdp += RTE_I40E_DESCS_PER_LOOP_AVX) {
/* step 1, copy over 8 mbuf pointers to rx_pkts array */
_mm256_storeu_si256((void *)&rx_pkts[i],
_mm256_loadu_si256((void *)&sw_ring[i]));
#ifdef RTE_ARCH_X86_64
_mm256_storeu_si256((void *)&rx_pkts[i + 4],
_mm256_loadu_si256((void *)&sw_ring[i + 4]));
#endif
__m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7;
#ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC
/* for AVX we need alignment otherwise loads are not atomic */
if (avx_aligned) {
/* load in descriptors, 2 at a time, in reverse order */
raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6));
rte_compiler_barrier();
raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4));
rte_compiler_barrier();
raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2));
rte_compiler_barrier();
raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0));
} else
#endif
do {
const __m128i raw_desc7 = _mm_load_si128((void *)(rxdp + 7));
rte_compiler_barrier();
const __m128i raw_desc6 = _mm_load_si128((void *)(rxdp + 6));
rte_compiler_barrier();
const __m128i raw_desc5 = _mm_load_si128((void *)(rxdp + 5));
rte_compiler_barrier();
const __m128i raw_desc4 = _mm_load_si128((void *)(rxdp + 4));
rte_compiler_barrier();
const __m128i raw_desc3 = _mm_load_si128((void *)(rxdp + 3));
rte_compiler_barrier();
const __m128i raw_desc2 = _mm_load_si128((void *)(rxdp + 2));
rte_compiler_barrier();
const __m128i raw_desc1 = _mm_load_si128((void *)(rxdp + 1));
rte_compiler_barrier();
const __m128i raw_desc0 = _mm_load_si128((void *)(rxdp + 0));
raw_desc6_7 = _mm256_inserti128_si256(
_mm256_castsi128_si256(raw_desc6), raw_desc7, 1);
raw_desc4_5 = _mm256_inserti128_si256(
_mm256_castsi128_si256(raw_desc4), raw_desc5, 1);
raw_desc2_3 = _mm256_inserti128_si256(
_mm256_castsi128_si256(raw_desc2), raw_desc3, 1);
raw_desc0_1 = _mm256_inserti128_si256(
_mm256_castsi128_si256(raw_desc0), raw_desc1, 1);
} while (0);
if (split_packet) {
int j;
for (j = 0; j < RTE_I40E_DESCS_PER_LOOP_AVX; j++)
rte_mbuf_prefetch_part2(rx_pkts[i + j]);
}
/*
* convert descriptors 4-7 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, PKTLEN_SHIFT);
const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, PKTLEN_SHIFT);
const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, len6_7, 0x80);
const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, len4_5, 0x80);
__m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk);
__m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk);
mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust);
mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust);
/*
* to get packet types, shift 64-bit values down 30 bits
* and so ptype is in lower 8-bits in each
*/
const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30);
const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30);
const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24);
const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8);
const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24);
const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8);
mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4);
mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0);
mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4);
mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0);
/* merge the status bits into one register */
const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7,
desc4_5);
/*
* convert descriptors 0-3 into mbufs, adjusting length and
* re-arranging fields. Then write into the mbuf
*/
const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, PKTLEN_SHIFT);
const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, PKTLEN_SHIFT);
const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, len2_3, 0x80);
const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, len0_1, 0x80);
__m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk);
__m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk);
mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust);
mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust);
/* get the packet types */
const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30);
const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30);
const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24);
const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8);
const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24);
const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8);
mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4);
mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0);
mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4);
mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0);
/* merge the status bits into one register */
const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3,
desc0_1);
/*
* take the two sets of status bits and merge to one
* After merge, the packets status flags are in the
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
*/
__m256i status0_7 = _mm256_unpacklo_epi64(status4_7,
status0_3);
/* now do flag manipulation */
/* get only flag/error bits we want */
const __m256i flag_bits = _mm256_and_si256(
status0_7, flags_mask);
/* set vlan and rss flags */
const __m256i vlan_flags = _mm256_shuffle_epi8(
vlan_flags_shuf, flag_bits);
const __m256i rss_fdir_bits = _mm256_srli_epi32(flag_bits, 11);
const __m256i rss_flags = _mm256_shuffle_epi8(rss_flags_shuf,
rss_fdir_bits);
/*
* l3_l4_error flags, shuffle, then shift to correct adjustment
* of flags in flags_shuf, and finally mask out extra bits
*/
__m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf,
_mm256_srli_epi32(flag_bits, 22));
l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1);
l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask);
/* merge flags */
__m256i mbuf_flags = _mm256_or_si256(l3_l4_flags,
_mm256_or_si256(rss_flags, vlan_flags));
/* If the rxq has FDIR enabled, read and process the FDIR info
* from the descriptor. This can cause more loads/stores, so is
* not always performed. Branch over the code when not enabled.
*/
if (rxq->fdir_enabled) {
#ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC
/* 16B descriptor code path:
* RSS and FDIR ID use the same offset in the desc, so
* only one can be present at a time. The code below
* identifies an FDIR ID match, and zeros the RSS value
* in the mbuf on FDIR match to keep mbuf data clean.
*/
#define FDIR_BLEND_MASK ((1 << 3) | (1 << 7))
/* Flags:
* - Take flags, shift bits to null out
* - CMPEQ with known FDIR ID, to get 0xFFFF or 0 mask
* - Strip bits from mask, leaving 0 or 1 for FDIR ID
* - Merge with mbuf_flags
*/
/* FLM = 1, FLTSTAT = 0b01, (FLM | FLTSTAT) == 3.
* Shift left by 28 to avoid having to mask.
*/
const __m256i fdir = _mm256_slli_epi32(rss_fdir_bits, 28);
const __m256i fdir_id = _mm256_set1_epi32(3 << 28);
/* As above, the fdir_mask to packet mapping is this:
* order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6]
* Then OR FDIR flags to mbuf_flags on FDIR ID hit.
*/
RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
const __m256i pkt_fdir_bit = _mm256_set1_epi32(1 << 13);
const __m256i fdir_mask = _mm256_cmpeq_epi32(fdir, fdir_id);
__m256i fdir_bits = _mm256_and_si256(fdir_mask, pkt_fdir_bit);
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_bits);
/* Based on FDIR_MASK, clear the RSS or FDIR value.
* The FDIR ID value is masked to zero if not a hit,
* otherwise the mb0_1 register RSS field is zeroed.
*/
const __m256i fdir_zero_mask = _mm256_setzero_si256();
__m256i tmp0_1 = _mm256_blend_epi32(fdir_zero_mask,
fdir_mask, FDIR_BLEND_MASK);
__m256i fdir_mb0_1 = _mm256_and_si256(mb0_1, fdir_mask);
mb0_1 = _mm256_andnot_si256(tmp0_1, mb0_1);
/* Write to mbuf: no stores to combine with, so just a
* scalar store to push data here.
*/
rx_pkts[i + 0]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb0_1, 3);
rx_pkts[i + 1]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb0_1, 7);
/* Same as above, only shift the fdir_mask to align
* the packet FDIR mask with the FDIR_ID desc lane.
*/
__m256i tmp2_3 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 12);
__m256i fdir_mb2_3 = _mm256_and_si256(mb2_3, tmp2_3);
tmp2_3 = _mm256_blend_epi32(fdir_zero_mask, tmp2_3,
FDIR_BLEND_MASK);
mb2_3 = _mm256_andnot_si256(tmp2_3, mb2_3);
rx_pkts[i + 2]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb2_3, 3);
rx_pkts[i + 3]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb2_3, 7);
__m256i tmp4_5 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 8);
__m256i fdir_mb4_5 = _mm256_and_si256(mb4_5, tmp4_5);
tmp4_5 = _mm256_blend_epi32(fdir_zero_mask, tmp4_5,
FDIR_BLEND_MASK);
mb4_5 = _mm256_andnot_si256(tmp4_5, mb4_5);
rx_pkts[i + 4]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb4_5, 3);
rx_pkts[i + 5]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb4_5, 7);
__m256i tmp6_7 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 4);
__m256i fdir_mb6_7 = _mm256_and_si256(mb6_7, tmp6_7);
tmp6_7 = _mm256_blend_epi32(fdir_zero_mask, tmp6_7,
FDIR_BLEND_MASK);
mb6_7 = _mm256_andnot_si256(tmp6_7, mb6_7);
rx_pkts[i + 6]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb6_7, 3);
rx_pkts[i + 7]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb6_7, 7);
/* End of 16B descriptor handling */
#else
/* 32B descriptor FDIR ID mark handling. Returns bits
* to be OR-ed into the mbuf olflags.
*/
__m256i fdir_add_flags;
fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 0);
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 2);
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 4);
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 6);
mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags);
/* End 32B desc handling */
#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
} /* if() on FDIR enabled */
/*
* At this point, we have the 8 sets of flags in the low 16-bits
* of each 32-bit value in vlan0.
* We want to extract these, and merge them with the mbuf init data
* so we can do a single write to the mbuf to set the flags
* and all the other initialization fields. Extracting the
* appropriate flags means that we have to do a shift and blend for
* each mbuf before we do the write. However, we can also
* add in the previously computed rx_descriptor fields to
* make a single 256-bit write per mbuf
*/
/* check the structure matches expectations */
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_mbuf, rearm_data) + 8);
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
/* build up data and do writes */
__m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5,
rearm6, rearm7;
rearm6 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04);
rearm4 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04);
rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04);
rearm0 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04);
/* permute to add in the rx_descriptor e.g. rss fields */
rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20);
rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20);
rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20);
rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20);
/* write to mbuf */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0);
/* repeat for the odd mbufs */
const __m256i odd_flags = _mm256_castsi128_si256(
_mm256_extracti128_si256(mbuf_flags, 1));
rearm7 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04);
rearm5 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04);
rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04);
rearm1 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04);
/* since odd mbufs are already in hi 128-bits use blend */
rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0);
rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0);
rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0);
rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0);
/* again write to mbufs */
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3);
_mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1);
/* extract and record EOP bit */
if (split_packet) {
const __m128i eop_mask = _mm_set1_epi16(
1 << I40E_RX_DESC_STATUS_EOF_SHIFT);
const __m256i eop_bits256 = _mm256_and_si256(status0_7,
eop_check);
/* pack status bits into a single 128-bit register */
const __m128i eop_bits = _mm_packus_epi32(
_mm256_castsi256_si128(eop_bits256),
_mm256_extractf128_si256(eop_bits256, 1));
/*
* flip bits, and mask out the EOP bit, which is now
* a split-packet bit i.e. !EOP, rather than EOP one.
*/
__m128i split_bits = _mm_andnot_si128(eop_bits,
eop_mask);
/*
* eop bits are out of order, so we need to shuffle them
* back into order again. In doing so, only use low 8
* bits, which acts like another pack instruction
* The original order is (hi->lo): 1,3,5,7,0,2,4,6
* [Since we use epi8, the 16-bit positions are
* multiplied by 2 in the eop_shuffle value.]
*/
__m128i eop_shuffle = _mm_set_epi8(
0xFF, 0xFF, 0xFF, 0xFF, /* zero hi 64b */
0xFF, 0xFF, 0xFF, 0xFF,
8, 0, 10, 2, /* move values to lo 64b */
12, 4, 14, 6);
split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle);
*(uint64_t *)split_packet = _mm_cvtsi128_si64(split_bits);
split_packet += RTE_I40E_DESCS_PER_LOOP_AVX;
}
/* perform dd_check */
status0_7 = _mm256_and_si256(status0_7, dd_check);
status0_7 = _mm256_packs_epi32(status0_7,
_mm256_setzero_si256());
uint64_t burst = __builtin_popcountll(_mm_cvtsi128_si64(
_mm256_extracti128_si256(status0_7, 1)));
burst += __builtin_popcountll(_mm_cvtsi128_si64(
_mm256_castsi256_si128(status0_7)));
received += burst;
if (burst != RTE_I40E_DESCS_PER_LOOP_AVX)
break;
}
/* update tail pointers */
rxq->rx_tail += received;
rxq->rx_tail &= (rxq->nb_rx_desc - 1);
if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */
rxq->rx_tail--;
received--;
}
rxq->rxrearm_nb += received;
return received;
}
/*
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
*/
uint16_t
i40e_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL);
}
/*
* vPMD receive routine that reassembles single burst of 32 scattered packets
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
*/
static uint16_t
i40e_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq = rx_queue;
uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (rxq->pkt_first_seg == NULL &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (rxq->pkt_first_seg == NULL) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/*
* vPMD receive routine that reassembles scattered packets.
* Main receive routine that can handle arbitrary burst sizes
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
*/
uint16_t
i40e_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t retval = 0;
while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
uint16_t burst = i40e_recv_scattered_burst_vec_avx2(rx_queue,
rx_pkts + retval, RTE_I40E_VPMD_RX_BURST);
retval += burst;
nb_pkts -= burst;
if (burst < RTE_I40E_VPMD_RX_BURST)
return retval;
}
return retval + i40e_recv_scattered_burst_vec_avx2(rx_queue,
rx_pkts + retval, nb_pkts);
}
static inline void
vtx1(volatile struct i40e_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
__m128i descriptor = _mm_set_epi64x(high_qw,
pkt->buf_physaddr + pkt->data_off);
_mm_store_si128((__m128i *)txdp, descriptor);
}
static inline void
vtx(volatile struct i40e_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
const uint64_t hi_qw_tmpl = (I40E_TX_DESC_DTYPE_DATA |
((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT));
/* if unaligned on 32-bit boundary, do one to align */
if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) {
vtx1(txdp, *pkt, flags);
nb_pkts--, txdp++, pkt++;
}
/* do two at a time while possible, in bursts */
for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) {
uint64_t hi_qw3 = hi_qw_tmpl |
((uint64_t)pkt[3]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
uint64_t hi_qw2 = hi_qw_tmpl |
((uint64_t)pkt[2]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
uint64_t hi_qw1 = hi_qw_tmpl |
((uint64_t)pkt[1]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
uint64_t hi_qw0 = hi_qw_tmpl |
((uint64_t)pkt[0]->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT);
__m256i desc2_3 = _mm256_set_epi64x(
hi_qw3, pkt[3]->buf_physaddr + pkt[3]->data_off,
hi_qw2, pkt[2]->buf_physaddr + pkt[2]->data_off);
__m256i desc0_1 = _mm256_set_epi64x(
hi_qw1, pkt[1]->buf_physaddr + pkt[1]->data_off,
hi_qw0, pkt[0]->buf_physaddr + pkt[0]->data_off);
_mm256_store_si256((void *)(txdp + 2), desc2_3);
_mm256_store_si256((void *)txdp, desc0_1);
}
/* do any last ones */
while (nb_pkts) {
vtx1(txdp, *pkt, flags);
txdp++, pkt++, nb_pkts--;
}
}
static inline uint16_t
i40e_xmit_fixed_burst_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
volatile struct i40e_tx_desc *txdp;
struct i40e_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = I40E_TD_CMD;
uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
i40e_tx_free_bufs(txq);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry(txep, tx_pkts, n);
vtx(txdp, tx_pkts, n - 1, flags);
tx_pkts += (n - 1);
txdp += (n - 1);
vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
}
tx_backlog_entry(txep, tx_pkts, nb_commit);
vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
I40E_TXD_QW1_CMD_SHIFT);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
uint16_t
i40e_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
uint16_t nb_tx = 0;
struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
while (nb_pkts) {
uint16_t ret, num;
num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
ret = i40e_xmit_fixed_burst_vec_avx2(tx_queue, &tx_pkts[nb_tx],
num);
nb_tx += ret;
nb_pkts -= ret;
if (ret < num)
break;
}
return nb_tx;
}