numam-dpdk/drivers/net/iavf/iavf_fdir.c
Wenjun Wu 1e611cb814 net/iavf: support flow director for GRE tunnel packet
Support AVF FDIR for inner header of GRE tunnel packet.

+------------------------------+---------------------------------------+
|           Pattern            |            Input Set                  |
+------------------------------+---------------------------------------+
| eth/ipv4/gre/ipv4            | inner: src/dst ip, dscp               |
| eth/ipv4/gre/ipv4/udp        | inner: src/dst ip, dscp, src/dst port |
| eth/ipv4/gre/ipv4/tcp        | inner: src/dst ip, dscp, src/dst port |
| eth/ipv4/gre/eh/ipv6         | inner: src/dst ip, tc                 |
| eth/ipv4/gre/eh/ipv6/udp     | inner: src/dst ip, tc, src/dst port   |
| eth/ipv4/gre/eh/ipv6/tcp     | inner: src/dst ip, tc, src/dst port   |
| eth/ipv6/gre/ipv4            | inner: src/dst ip, dscp               |
| eth/ipv6/gre/ipv4/udp        | inner: src/dst ip, dscp, src/dst port |
| eth/ipv6/gre/ipv4/tcp        | inner: src/dst ip, dscp, src/dst port |
| eth/ipv6/gre/ipv6            | inner: src/dst ip, tc                 |
| eth/ipv6/gre/ipv6/udp        | inner: src/dst ip, tc, src/dst port   |
| eth/ipv6/gre/ipv6/tcp        | inner: src/dst ip, tc, src/dst port   |
+------------------------------+---------------------------------------+

Signed-off-by: Wenjun Wu <wenjun1.wu@intel.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
2021-07-04 16:57:07 +02:00

1339 lines
37 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <rte_ether.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>
#include <rte_tailq.h>
#include "iavf.h"
#include "iavf_generic_flow.h"
#include "virtchnl.h"
#include "iavf_rxtx.h"
#define IAVF_FDIR_MAX_QREGION_SIZE 128
#define IAVF_FDIR_IPV6_TC_OFFSET 20
#define IAVF_IPV6_TC_MASK (0xFF << IAVF_FDIR_IPV6_TC_OFFSET)
#define IAVF_GTPU_EH_DWLINK 0
#define IAVF_GTPU_EH_UPLINK 1
#define IAVF_FDIR_INSET_ETH (\
IAVF_INSET_ETHERTYPE)
#define IAVF_FDIR_INSET_ETH_IPV4 (\
IAVF_INSET_IPV4_SRC | IAVF_INSET_IPV4_DST | \
IAVF_INSET_IPV4_PROTO | IAVF_INSET_IPV4_TOS | \
IAVF_INSET_IPV4_TTL | IAVF_INSET_IPV4_ID)
#define IAVF_FDIR_INSET_ETH_IPV4_UDP (\
IAVF_INSET_IPV4_SRC | IAVF_INSET_IPV4_DST | \
IAVF_INSET_IPV4_TOS | IAVF_INSET_IPV4_TTL | \
IAVF_INSET_UDP_SRC_PORT | IAVF_INSET_UDP_DST_PORT)
#define IAVF_FDIR_INSET_ETH_IPV4_TCP (\
IAVF_INSET_IPV4_SRC | IAVF_INSET_IPV4_DST | \
IAVF_INSET_IPV4_TOS | IAVF_INSET_IPV4_TTL | \
IAVF_INSET_TCP_SRC_PORT | IAVF_INSET_TCP_DST_PORT)
#define IAVF_FDIR_INSET_ETH_IPV4_SCTP (\
IAVF_INSET_IPV4_SRC | IAVF_INSET_IPV4_DST | \
IAVF_INSET_IPV4_TOS | IAVF_INSET_IPV4_TTL | \
IAVF_INSET_SCTP_SRC_PORT | IAVF_INSET_SCTP_DST_PORT)
#define IAVF_FDIR_INSET_ETH_IPV6 (\
IAVF_INSET_IPV6_SRC | IAVF_INSET_IPV6_DST | \
IAVF_INSET_IPV6_NEXT_HDR | IAVF_INSET_IPV6_TC | \
IAVF_INSET_IPV6_HOP_LIMIT)
#define IAVF_FDIR_INSET_ETH_IPV6_FRAG_EXT (\
IAVF_INSET_IPV6_ID)
#define IAVF_FDIR_INSET_ETH_IPV6_UDP (\
IAVF_INSET_IPV6_SRC | IAVF_INSET_IPV6_DST | \
IAVF_INSET_IPV6_TC | IAVF_INSET_IPV6_HOP_LIMIT | \
IAVF_INSET_UDP_SRC_PORT | IAVF_INSET_UDP_DST_PORT)
#define IAVF_FDIR_INSET_ETH_IPV6_TCP (\
IAVF_INSET_IPV6_SRC | IAVF_INSET_IPV6_DST | \
IAVF_INSET_IPV6_TC | IAVF_INSET_IPV6_HOP_LIMIT | \
IAVF_INSET_TCP_SRC_PORT | IAVF_INSET_TCP_DST_PORT)
#define IAVF_FDIR_INSET_ETH_IPV6_SCTP (\
IAVF_INSET_IPV6_SRC | IAVF_INSET_IPV6_DST | \
IAVF_INSET_IPV6_TC | IAVF_INSET_IPV6_HOP_LIMIT | \
IAVF_INSET_SCTP_SRC_PORT | IAVF_INSET_SCTP_DST_PORT)
#define IAVF_FDIR_INSET_IPV4_GTPU (\
IAVF_INSET_IPV4_SRC | IAVF_INSET_IPV4_DST | \
IAVF_INSET_GTPU_TEID)
#define IAVF_FDIR_INSET_GTPU_IPV4 (\
IAVF_INSET_TUN_IPV4_SRC | IAVF_INSET_TUN_IPV4_DST | \
IAVF_INSET_TUN_IPV4_PROTO | IAVF_INSET_TUN_IPV4_TOS | \
IAVF_INSET_TUN_IPV4_TTL)
#define IAVF_FDIR_INSET_GTPU_IPV4_UDP (\
IAVF_FDIR_INSET_GTPU_IPV4 | \
IAVF_INSET_TUN_UDP_SRC_PORT | IAVF_INSET_TUN_UDP_DST_PORT)
#define IAVF_FDIR_INSET_GTPU_IPV4_TCP (\
IAVF_FDIR_INSET_GTPU_IPV4 | \
IAVF_INSET_TUN_TCP_SRC_PORT | IAVF_INSET_TUN_TCP_DST_PORT)
#define IAVF_FDIR_INSET_IPV4_GTPU_EH (\
IAVF_INSET_IPV4_SRC | IAVF_INSET_IPV4_DST | \
IAVF_INSET_GTPU_TEID | IAVF_INSET_GTPU_QFI)
#define IAVF_FDIR_INSET_IPV6_GTPU (\
IAVF_INSET_IPV6_SRC | IAVF_INSET_IPV6_DST | \
IAVF_INSET_GTPU_TEID)
#define IAVF_FDIR_INSET_GTPU_IPV6 (\
IAVF_INSET_TUN_IPV6_SRC | IAVF_INSET_TUN_IPV6_DST | \
IAVF_INSET_TUN_IPV6_NEXT_HDR | IAVF_INSET_TUN_IPV6_TC | \
IAVF_INSET_TUN_IPV6_HOP_LIMIT)
#define IAVF_FDIR_INSET_GTPU_IPV6_UDP (\
IAVF_FDIR_INSET_GTPU_IPV6 | \
IAVF_INSET_TUN_UDP_SRC_PORT | IAVF_INSET_TUN_UDP_DST_PORT)
#define IAVF_FDIR_INSET_GTPU_IPV6_TCP (\
IAVF_FDIR_INSET_GTPU_IPV6 | \
IAVF_INSET_TUN_TCP_SRC_PORT | IAVF_INSET_TUN_TCP_DST_PORT)
#define IAVF_FDIR_INSET_IPV6_GTPU_EH (\
IAVF_INSET_IPV6_SRC | IAVF_INSET_IPV6_DST | \
IAVF_INSET_GTPU_TEID | IAVF_INSET_GTPU_QFI)
#define IAVF_FDIR_INSET_L2TPV3OIP (\
IAVF_L2TPV3OIP_SESSION_ID)
#define IAVF_FDIR_INSET_IPV4_ESP (\
IAVF_INSET_IPV4_SRC | IAVF_INSET_IPV4_DST | \
IAVF_INSET_ESP_SPI)
#define IAVF_FDIR_INSET_IPV6_ESP (\
IAVF_INSET_IPV6_SRC | IAVF_INSET_IPV6_DST | \
IAVF_INSET_ESP_SPI)
#define IAVF_FDIR_INSET_AH (\
IAVF_INSET_AH_SPI)
#define IAVF_FDIR_INSET_IPV4_NATT_ESP (\
IAVF_INSET_IPV4_SRC | IAVF_INSET_IPV4_DST | \
IAVF_INSET_ESP_SPI)
#define IAVF_FDIR_INSET_IPV6_NATT_ESP (\
IAVF_INSET_IPV6_SRC | IAVF_INSET_IPV6_DST | \
IAVF_INSET_ESP_SPI)
#define IAVF_FDIR_INSET_PFCP (\
IAVF_INSET_PFCP_S_FIELD)
#define IAVF_FDIR_INSET_ECPRI (\
IAVF_INSET_ECPRI)
#define IAVF_FDIR_INSET_GRE_IPV4 (\
IAVF_INSET_TUN_IPV4_SRC | IAVF_INSET_TUN_IPV4_DST | \
IAVF_INSET_TUN_IPV4_TOS | IAVF_INSET_TUN_IPV4_PROTO)
#define IAVF_FDIR_INSET_GRE_IPV4_TCP (\
IAVF_FDIR_INSET_GRE_IPV4 | IAVF_INSET_TUN_TCP_SRC_PORT | \
IAVF_INSET_TUN_TCP_DST_PORT)
#define IAVF_FDIR_INSET_GRE_IPV4_UDP (\
IAVF_FDIR_INSET_GRE_IPV4 | IAVF_INSET_TUN_UDP_SRC_PORT | \
IAVF_INSET_TUN_UDP_DST_PORT)
#define IAVF_FDIR_INSET_GRE_IPV6 (\
IAVF_INSET_TUN_IPV6_SRC | IAVF_INSET_TUN_IPV6_DST | \
IAVF_INSET_TUN_IPV6_TC | IAVF_INSET_TUN_IPV6_NEXT_HDR)
#define IAVF_FDIR_INSET_GRE_IPV6_TCP (\
IAVF_FDIR_INSET_GRE_IPV6 | IAVF_INSET_TUN_TCP_SRC_PORT | \
IAVF_INSET_TUN_TCP_DST_PORT)
#define IAVF_FDIR_INSET_GRE_IPV6_UDP (\
IAVF_FDIR_INSET_GRE_IPV6 | IAVF_INSET_TUN_UDP_SRC_PORT | \
IAVF_INSET_TUN_UDP_DST_PORT)
static struct iavf_pattern_match_item iavf_fdir_pattern[] = {
{iavf_pattern_ethertype, IAVF_FDIR_INSET_ETH, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4, IAVF_FDIR_INSET_ETH_IPV4, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_udp, IAVF_FDIR_INSET_ETH_IPV4_UDP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_tcp, IAVF_FDIR_INSET_ETH_IPV4_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_sctp, IAVF_FDIR_INSET_ETH_IPV4_SCTP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6, IAVF_FDIR_INSET_ETH_IPV6, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_frag_ext, IAVF_FDIR_INSET_ETH_IPV6_FRAG_EXT, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_udp, IAVF_FDIR_INSET_ETH_IPV6_UDP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_tcp, IAVF_FDIR_INSET_ETH_IPV6_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_sctp, IAVF_FDIR_INSET_ETH_IPV6_SCTP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu, IAVF_FDIR_INSET_IPV4_GTPU, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_ipv4, IAVF_FDIR_INSET_GTPU_IPV4, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_ipv4_udp, IAVF_FDIR_INSET_GTPU_IPV4_UDP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_ipv4_tcp, IAVF_FDIR_INSET_GTPU_IPV4_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_ipv6, IAVF_FDIR_INSET_GTPU_IPV6, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_ipv6_udp, IAVF_FDIR_INSET_GTPU_IPV6_UDP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_ipv6_tcp, IAVF_FDIR_INSET_GTPU_IPV6_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_eh, IAVF_FDIR_INSET_IPV4_GTPU_EH, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_eh_ipv4, IAVF_FDIR_INSET_GTPU_IPV4, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_eh_ipv4_udp, IAVF_FDIR_INSET_GTPU_IPV4_UDP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_eh_ipv4_tcp, IAVF_FDIR_INSET_GTPU_IPV4_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_eh_ipv6, IAVF_FDIR_INSET_GTPU_IPV6, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_eh_ipv6_udp, IAVF_FDIR_INSET_GTPU_IPV6_UDP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gtpu_eh_ipv6_tcp, IAVF_FDIR_INSET_GTPU_IPV6_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_gtpu, IAVF_FDIR_INSET_IPV6_GTPU, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_gtpu_eh, IAVF_FDIR_INSET_IPV6_GTPU_EH, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_l2tpv3, IAVF_FDIR_INSET_L2TPV3OIP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_l2tpv3, IAVF_FDIR_INSET_L2TPV3OIP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_esp, IAVF_FDIR_INSET_IPV4_ESP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_esp, IAVF_FDIR_INSET_IPV6_ESP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_ah, IAVF_FDIR_INSET_AH, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_ah, IAVF_FDIR_INSET_AH, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_udp_esp, IAVF_FDIR_INSET_IPV4_NATT_ESP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_udp_esp, IAVF_FDIR_INSET_IPV6_NATT_ESP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_pfcp, IAVF_FDIR_INSET_PFCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_pfcp, IAVF_FDIR_INSET_PFCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ecpri, IAVF_FDIR_INSET_ECPRI, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_ecpri, IAVF_FDIR_INSET_ECPRI, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gre_ipv4, IAVF_FDIR_INSET_GRE_IPV4, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gre_ipv4_tcp, IAVF_FDIR_INSET_GRE_IPV4_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gre_ipv4_udp, IAVF_FDIR_INSET_GRE_IPV4_UDP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gre_ipv6, IAVF_FDIR_INSET_GRE_IPV6, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gre_ipv6_tcp, IAVF_FDIR_INSET_GRE_IPV6_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv4_gre_ipv6_udp, IAVF_FDIR_INSET_GRE_IPV6_UDP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_gre_ipv4, IAVF_FDIR_INSET_GRE_IPV4, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_gre_ipv4_tcp, IAVF_FDIR_INSET_GRE_IPV4_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_gre_ipv4_udp, IAVF_FDIR_INSET_GRE_IPV4_UDP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_gre_ipv6, IAVF_FDIR_INSET_GRE_IPV6, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_gre_ipv6_tcp, IAVF_FDIR_INSET_GRE_IPV6_TCP, IAVF_INSET_NONE},
{iavf_pattern_eth_ipv6_gre_ipv6_udp, IAVF_FDIR_INSET_GRE_IPV6_UDP, IAVF_INSET_NONE},
};
static struct iavf_flow_parser iavf_fdir_parser;
static int
iavf_fdir_init(struct iavf_adapter *ad)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
struct iavf_flow_parser *parser;
if (!vf->vf_res)
return -EINVAL;
if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
parser = &iavf_fdir_parser;
else
return -ENOTSUP;
return iavf_register_parser(parser, ad);
}
static void
iavf_fdir_uninit(struct iavf_adapter *ad)
{
iavf_unregister_parser(&iavf_fdir_parser, ad);
}
static int
iavf_fdir_create(struct iavf_adapter *ad,
struct rte_flow *flow,
void *meta,
struct rte_flow_error *error)
{
struct iavf_fdir_conf *filter = meta;
struct iavf_fdir_conf *rule;
int ret;
rule = rte_zmalloc("fdir_entry", sizeof(*rule), 0);
if (!rule) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to allocate memory for fdir rule");
return -rte_errno;
}
ret = iavf_fdir_add(ad, filter);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to add filter rule.");
goto free_entry;
}
if (filter->mark_flag == 1)
iavf_fdir_rx_proc_enable(ad, 1);
rte_memcpy(rule, filter, sizeof(*rule));
flow->rule = rule;
return 0;
free_entry:
rte_free(rule);
return -rte_errno;
}
static int
iavf_fdir_destroy(struct iavf_adapter *ad,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct iavf_fdir_conf *filter;
int ret;
filter = (struct iavf_fdir_conf *)flow->rule;
ret = iavf_fdir_del(ad, filter);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to delete filter rule.");
return -rte_errno;
}
if (filter->mark_flag == 1)
iavf_fdir_rx_proc_enable(ad, 0);
flow->rule = NULL;
rte_free(filter);
return 0;
}
static int
iavf_fdir_validation(struct iavf_adapter *ad,
__rte_unused struct rte_flow *flow,
void *meta,
struct rte_flow_error *error)
{
struct iavf_fdir_conf *filter = meta;
int ret;
ret = iavf_fdir_check(ad, filter);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to validate filter rule.");
return -rte_errno;
}
return 0;
};
static struct iavf_flow_engine iavf_fdir_engine = {
.init = iavf_fdir_init,
.uninit = iavf_fdir_uninit,
.create = iavf_fdir_create,
.destroy = iavf_fdir_destroy,
.validation = iavf_fdir_validation,
.type = IAVF_FLOW_ENGINE_FDIR,
};
static int
iavf_fdir_parse_action_qregion(struct iavf_adapter *ad,
struct rte_flow_error *error,
const struct rte_flow_action *act,
struct virtchnl_filter_action *filter_action)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
const struct rte_flow_action_rss *rss = act->conf;
uint32_t i;
if (act->type != RTE_FLOW_ACTION_TYPE_RSS) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"Invalid action.");
return -rte_errno;
}
if (rss->queue_num <= 1) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"Queue region size can't be 0 or 1.");
return -rte_errno;
}
/* check if queue index for queue region is continuous */
for (i = 0; i < rss->queue_num - 1; i++) {
if (rss->queue[i + 1] != rss->queue[i] + 1) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"Discontinuous queue region");
return -rte_errno;
}
}
if (rss->queue[rss->queue_num - 1] >= ad->eth_dev->data->nb_rx_queues) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"Invalid queue region indexes.");
return -rte_errno;
}
if (!(rte_is_power_of_2(rss->queue_num) &&
rss->queue_num <= IAVF_FDIR_MAX_QREGION_SIZE)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"The region size should be any of the following values:"
"1, 2, 4, 8, 16, 32, 64, 128 as long as the total number "
"of queues do not exceed the VSI allocation.");
return -rte_errno;
}
if (rss->queue_num > vf->max_rss_qregion) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"The region size cannot be large than the supported max RSS queue region");
return -rte_errno;
}
filter_action->act_conf.queue.index = rss->queue[0];
filter_action->act_conf.queue.region = rte_fls_u32(rss->queue_num) - 1;
return 0;
}
static int
iavf_fdir_parse_action(struct iavf_adapter *ad,
const struct rte_flow_action actions[],
struct rte_flow_error *error,
struct iavf_fdir_conf *filter)
{
const struct rte_flow_action_queue *act_q;
const struct rte_flow_action_mark *mark_spec = NULL;
uint32_t dest_num = 0;
uint32_t mark_num = 0;
int ret;
int number = 0;
struct virtchnl_filter_action *filter_action;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_PASSTHRU:
dest_num++;
filter_action = &filter->add_fltr.rule_cfg.action_set.actions[number];
filter_action->type = VIRTCHNL_ACTION_PASSTHRU;
filter->add_fltr.rule_cfg.action_set.count = ++number;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
dest_num++;
filter_action = &filter->add_fltr.rule_cfg.action_set.actions[number];
filter_action->type = VIRTCHNL_ACTION_DROP;
filter->add_fltr.rule_cfg.action_set.count = ++number;
break;
case RTE_FLOW_ACTION_TYPE_QUEUE:
dest_num++;
act_q = actions->conf;
filter_action = &filter->add_fltr.rule_cfg.action_set.actions[number];
filter_action->type = VIRTCHNL_ACTION_QUEUE;
filter_action->act_conf.queue.index = act_q->index;
if (filter_action->act_conf.queue.index >=
ad->eth_dev->data->nb_rx_queues) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions, "Invalid queue for FDIR.");
return -rte_errno;
}
filter->add_fltr.rule_cfg.action_set.count = ++number;
break;
case RTE_FLOW_ACTION_TYPE_RSS:
dest_num++;
filter_action = &filter->add_fltr.rule_cfg.action_set.actions[number];
filter_action->type = VIRTCHNL_ACTION_Q_REGION;
ret = iavf_fdir_parse_action_qregion(ad,
error, actions, filter_action);
if (ret)
return ret;
filter->add_fltr.rule_cfg.action_set.count = ++number;
break;
case RTE_FLOW_ACTION_TYPE_MARK:
mark_num++;
filter->mark_flag = 1;
mark_spec = actions->conf;
filter_action = &filter->add_fltr.rule_cfg.action_set.actions[number];
filter_action->type = VIRTCHNL_ACTION_MARK;
filter_action->act_conf.mark_id = mark_spec->id;
filter->add_fltr.rule_cfg.action_set.count = ++number;
break;
default:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Invalid action.");
return -rte_errno;
}
}
if (number > VIRTCHNL_MAX_NUM_ACTIONS) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Action numbers exceed the maximum value");
return -rte_errno;
}
if (dest_num >= 2) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Unsupported action combination");
return -rte_errno;
}
if (mark_num >= 2) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Too many mark actions");
return -rte_errno;
}
if (dest_num + mark_num == 0) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Empty action");
return -rte_errno;
}
/* Mark only is equal to mark + passthru. */
if (dest_num == 0) {
filter_action = &filter->add_fltr.rule_cfg.action_set.actions[number];
filter_action->type = VIRTCHNL_ACTION_PASSTHRU;
filter->add_fltr.rule_cfg.action_set.count = ++number;
}
return 0;
}
static bool
iavf_fdir_refine_input_set(const uint64_t input_set,
const uint64_t input_set_mask,
struct iavf_fdir_conf *filter)
{
struct virtchnl_proto_hdr *hdr, *hdr_last;
struct rte_flow_item_ipv4 ipv4_spec;
struct rte_flow_item_ipv6 ipv6_spec;
int last_layer;
uint8_t proto_id;
if (input_set & ~input_set_mask)
return false;
else if (input_set)
return true;
last_layer = filter->add_fltr.rule_cfg.proto_hdrs.count - 1;
/* Last layer of TCP/UDP pattern isn't less than 2. */
if (last_layer < 2)
return false;
hdr_last = &filter->add_fltr.rule_cfg.proto_hdrs.proto_hdr[last_layer];
if (hdr_last->type == VIRTCHNL_PROTO_HDR_TCP)
proto_id = 6;
else if (hdr_last->type == VIRTCHNL_PROTO_HDR_UDP)
proto_id = 17;
else
return false;
hdr = &filter->add_fltr.rule_cfg.proto_hdrs.proto_hdr[last_layer - 1];
switch (hdr->type) {
case VIRTCHNL_PROTO_HDR_IPV4:
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV4, PROT);
memset(&ipv4_spec, 0, sizeof(ipv4_spec));
ipv4_spec.hdr.next_proto_id = proto_id;
rte_memcpy(hdr->buffer, &ipv4_spec.hdr,
sizeof(ipv4_spec.hdr));
return true;
case VIRTCHNL_PROTO_HDR_IPV6:
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV6, PROT);
memset(&ipv6_spec, 0, sizeof(ipv6_spec));
ipv6_spec.hdr.proto = proto_id;
rte_memcpy(hdr->buffer, &ipv6_spec.hdr,
sizeof(ipv6_spec.hdr));
return true;
default:
return false;
}
}
static void
iavf_fdir_add_fragment_hdr(struct virtchnl_proto_hdrs *hdrs, int layer)
{
struct virtchnl_proto_hdr *hdr1;
struct virtchnl_proto_hdr *hdr2;
int i;
if (layer < 0 || layer > hdrs->count)
return;
/* shift headers layer */
for (i = hdrs->count; i >= layer; i--) {
hdr1 = &hdrs->proto_hdr[i];
hdr2 = &hdrs->proto_hdr[i - 1];
*hdr1 = *hdr2;
}
/* adding dummy fragment header */
hdr1 = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr1, IPV4_FRAG);
hdrs->count = ++layer;
}
static int
iavf_fdir_parse_pattern(__rte_unused struct iavf_adapter *ad,
const struct rte_flow_item pattern[],
const uint64_t input_set_mask,
struct rte_flow_error *error,
struct iavf_fdir_conf *filter)
{
struct virtchnl_proto_hdrs *hdrs =
&filter->add_fltr.rule_cfg.proto_hdrs;
enum rte_flow_item_type l3 = RTE_FLOW_ITEM_TYPE_END;
const struct rte_flow_item_eth *eth_spec, *eth_mask;
const struct rte_flow_item_ipv4 *ipv4_spec, *ipv4_last, *ipv4_mask;
const struct rte_flow_item_ipv6 *ipv6_spec, *ipv6_mask;
const struct rte_flow_item_ipv6_frag_ext *ipv6_frag_spec;
const struct rte_flow_item_ipv6_frag_ext *ipv6_frag_last;
const struct rte_flow_item_ipv6_frag_ext *ipv6_frag_mask;
const struct rte_flow_item_udp *udp_spec, *udp_mask;
const struct rte_flow_item_tcp *tcp_spec, *tcp_mask;
const struct rte_flow_item_sctp *sctp_spec, *sctp_mask;
const struct rte_flow_item_gtp *gtp_spec, *gtp_mask;
const struct rte_flow_item_gtp_psc *gtp_psc_spec, *gtp_psc_mask;
const struct rte_flow_item_l2tpv3oip *l2tpv3oip_spec, *l2tpv3oip_mask;
const struct rte_flow_item_esp *esp_spec, *esp_mask;
const struct rte_flow_item_ah *ah_spec, *ah_mask;
const struct rte_flow_item_pfcp *pfcp_spec, *pfcp_mask;
const struct rte_flow_item_ecpri *ecpri_spec, *ecpri_mask;
const struct rte_flow_item_gre *gre_spec, *gre_mask;
const struct rte_flow_item *item = pattern;
struct virtchnl_proto_hdr *hdr, *hdr1 = NULL;
struct rte_ecpri_common_hdr ecpri_common;
uint64_t input_set = IAVF_INSET_NONE;
enum rte_flow_item_type item_type;
enum rte_flow_item_type next_type;
uint8_t tun_inner = 0;
uint16_t ether_type;
int layer = 0;
uint8_t ipv6_addr_mask[16] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
for (item = pattern; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
item_type = item->type;
if (item->last && !(item_type == RTE_FLOW_ITEM_TYPE_IPV4 ||
item_type ==
RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Not support range");
}
switch (item_type) {
case RTE_FLOW_ITEM_TYPE_ETH:
eth_spec = item->spec;
eth_mask = item->mask;
next_type = (item + 1)->type;
hdr1 = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr1, ETH);
if (next_type == RTE_FLOW_ITEM_TYPE_END &&
(!eth_spec || !eth_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "NULL eth spec/mask.");
return -rte_errno;
}
if (eth_spec && eth_mask) {
if (!rte_is_zero_ether_addr(&eth_mask->src) ||
!rte_is_zero_ether_addr(&eth_mask->dst)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Invalid MAC_addr mask.");
return -rte_errno;
}
}
if (eth_spec && eth_mask && eth_mask->type) {
if (eth_mask->type != RTE_BE16(0xffff)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid type mask.");
return -rte_errno;
}
ether_type = rte_be_to_cpu_16(eth_spec->type);
if (ether_type == RTE_ETHER_TYPE_IPV4 ||
ether_type == RTE_ETHER_TYPE_IPV6) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Unsupported ether_type.");
return -rte_errno;
}
input_set |= IAVF_INSET_ETHERTYPE;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr1, ETH,
ETHERTYPE);
rte_memcpy(hdr1->buffer, eth_spec,
sizeof(struct rte_ether_hdr));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
l3 = RTE_FLOW_ITEM_TYPE_IPV4;
ipv4_spec = item->spec;
ipv4_last = item->last;
ipv4_mask = item->mask;
next_type = (item + 1)->type;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, IPV4);
if (!(ipv4_spec && ipv4_mask)) {
hdrs->count = ++layer;
break;
}
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.hdr_checksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid IPv4 mask.");
return -rte_errno;
}
if (ipv4_last &&
(ipv4_last->hdr.version_ihl ||
ipv4_last->hdr.type_of_service ||
ipv4_last->hdr.time_to_live ||
ipv4_last->hdr.total_length |
ipv4_last->hdr.next_proto_id ||
ipv4_last->hdr.hdr_checksum ||
ipv4_last->hdr.src_addr ||
ipv4_last->hdr.dst_addr)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid IPv4 last.");
return -rte_errno;
}
if (ipv4_mask->hdr.type_of_service ==
UINT8_MAX) {
input_set |= IAVF_INSET_IPV4_TOS;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV4,
DSCP);
}
if (ipv4_mask->hdr.next_proto_id == UINT8_MAX) {
input_set |= IAVF_INSET_IPV4_PROTO;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV4,
PROT);
}
if (ipv4_mask->hdr.time_to_live == UINT8_MAX) {
input_set |= IAVF_INSET_IPV4_TTL;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV4,
TTL);
}
if (ipv4_mask->hdr.src_addr == UINT32_MAX) {
input_set |= IAVF_INSET_IPV4_SRC;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV4,
SRC);
}
if (ipv4_mask->hdr.dst_addr == UINT32_MAX) {
input_set |= IAVF_INSET_IPV4_DST;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV4,
DST);
}
if (tun_inner) {
input_set &= ~IAVF_PROT_IPV4_OUTER;
input_set |= IAVF_PROT_IPV4_INNER;
}
rte_memcpy(hdr->buffer, &ipv4_spec->hdr,
sizeof(ipv4_spec->hdr));
hdrs->count = ++layer;
/* only support any packet id for fragment IPv4
* any packet_id:
* spec is 0, last is 0xffff, mask is 0xffff
*/
if (ipv4_last && ipv4_spec->hdr.packet_id == 0 &&
ipv4_last->hdr.packet_id == UINT16_MAX &&
ipv4_mask->hdr.packet_id == UINT16_MAX &&
ipv4_mask->hdr.fragment_offset == UINT16_MAX) {
/* all IPv4 fragment packet has the same
* ethertype, if the spec is for all valid
* packet id, set ethertype into input set.
*/
input_set |= IAVF_INSET_ETHERTYPE;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr1, ETH,
ETHERTYPE);
/* add dummy header for IPv4 Fragment */
iavf_fdir_add_fragment_hdr(hdrs, layer);
} else if (ipv4_mask->hdr.packet_id == UINT16_MAX) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid IPv4 mask.");
return -rte_errno;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
l3 = RTE_FLOW_ITEM_TYPE_IPV6;
ipv6_spec = item->spec;
ipv6_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, IPV6);
if (!(ipv6_spec && ipv6_mask)) {
hdrs->count = ++layer;
break;
}
if (ipv6_mask->hdr.payload_len) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid IPv6 mask");
return -rte_errno;
}
if ((ipv6_mask->hdr.vtc_flow &
rte_cpu_to_be_32(IAVF_IPV6_TC_MASK))
== rte_cpu_to_be_32(IAVF_IPV6_TC_MASK)) {
input_set |= IAVF_INSET_IPV6_TC;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV6,
TC);
}
if (ipv6_mask->hdr.proto == UINT8_MAX) {
input_set |= IAVF_INSET_IPV6_NEXT_HDR;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV6,
PROT);
}
if (ipv6_mask->hdr.hop_limits == UINT8_MAX) {
input_set |= IAVF_INSET_IPV6_HOP_LIMIT;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV6,
HOP_LIMIT);
}
if (!memcmp(ipv6_mask->hdr.src_addr, ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.src_addr))) {
input_set |= IAVF_INSET_IPV6_SRC;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV6,
SRC);
}
if (!memcmp(ipv6_mask->hdr.dst_addr, ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.dst_addr))) {
input_set |= IAVF_INSET_IPV6_DST;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, IPV6,
DST);
}
if (tun_inner) {
input_set &= ~IAVF_PROT_IPV6_OUTER;
input_set |= IAVF_PROT_IPV6_INNER;
}
rte_memcpy(hdr->buffer, &ipv6_spec->hdr,
sizeof(ipv6_spec->hdr));
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_IPV6_FRAG_EXT:
ipv6_frag_spec = item->spec;
ipv6_frag_last = item->last;
ipv6_frag_mask = item->mask;
next_type = (item + 1)->type;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, IPV6_EH_FRAG);
if (!(ipv6_frag_spec && ipv6_frag_mask)) {
hdrs->count = ++layer;
break;
}
/* only support any packet id for fragment IPv6
* any packet_id:
* spec is 0, last is 0xffffffff, mask is 0xffffffff
*/
if (ipv6_frag_last && ipv6_frag_spec->hdr.id == 0 &&
ipv6_frag_last->hdr.id == UINT32_MAX &&
ipv6_frag_mask->hdr.id == UINT32_MAX &&
ipv6_frag_mask->hdr.frag_data == UINT16_MAX) {
/* all IPv6 fragment packet has the same
* ethertype, if the spec is for all valid
* packet id, set ethertype into input set.
*/
input_set |= IAVF_INSET_ETHERTYPE;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr1, ETH,
ETHERTYPE);
rte_memcpy(hdr->buffer, &ipv6_frag_spec->hdr,
sizeof(ipv6_frag_spec->hdr));
} else if (ipv6_frag_mask->hdr.id == UINT32_MAX) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid IPv6 mask.");
return -rte_errno;
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp_spec = item->spec;
udp_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, UDP);
if (udp_spec && udp_mask) {
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Invalid UDP mask");
return -rte_errno;
}
if (udp_mask->hdr.src_port == UINT16_MAX) {
input_set |= IAVF_INSET_UDP_SRC_PORT;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, UDP, SRC_PORT);
}
if (udp_mask->hdr.dst_port == UINT16_MAX) {
input_set |= IAVF_INSET_UDP_DST_PORT;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, UDP, DST_PORT);
}
if (tun_inner) {
input_set &= ~IAVF_PROT_UDP_OUTER;
input_set |= IAVF_PROT_UDP_INNER;
}
if (l3 == RTE_FLOW_ITEM_TYPE_IPV4)
rte_memcpy(hdr->buffer,
&udp_spec->hdr,
sizeof(udp_spec->hdr));
else if (l3 == RTE_FLOW_ITEM_TYPE_IPV6)
rte_memcpy(hdr->buffer,
&udp_spec->hdr,
sizeof(udp_spec->hdr));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_TCP:
tcp_spec = item->spec;
tcp_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, TCP);
if (tcp_spec && tcp_mask) {
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.tcp_flags ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Invalid TCP mask");
return -rte_errno;
}
if (tcp_mask->hdr.src_port == UINT16_MAX) {
input_set |= IAVF_INSET_TCP_SRC_PORT;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, TCP, SRC_PORT);
}
if (tcp_mask->hdr.dst_port == UINT16_MAX) {
input_set |= IAVF_INSET_TCP_DST_PORT;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, TCP, DST_PORT);
}
if (tun_inner) {
input_set &= ~IAVF_PROT_TCP_OUTER;
input_set |= IAVF_PROT_TCP_INNER;
}
if (l3 == RTE_FLOW_ITEM_TYPE_IPV4)
rte_memcpy(hdr->buffer,
&tcp_spec->hdr,
sizeof(tcp_spec->hdr));
else if (l3 == RTE_FLOW_ITEM_TYPE_IPV6)
rte_memcpy(hdr->buffer,
&tcp_spec->hdr,
sizeof(tcp_spec->hdr));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_SCTP:
sctp_spec = item->spec;
sctp_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, SCTP);
if (sctp_spec && sctp_mask) {
if (sctp_mask->hdr.cksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Invalid UDP mask");
return -rte_errno;
}
if (sctp_mask->hdr.src_port == UINT16_MAX) {
input_set |= IAVF_INSET_SCTP_SRC_PORT;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, SCTP, SRC_PORT);
}
if (sctp_mask->hdr.dst_port == UINT16_MAX) {
input_set |= IAVF_INSET_SCTP_DST_PORT;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, SCTP, DST_PORT);
}
if (l3 == RTE_FLOW_ITEM_TYPE_IPV4)
rte_memcpy(hdr->buffer,
&sctp_spec->hdr,
sizeof(sctp_spec->hdr));
else if (l3 == RTE_FLOW_ITEM_TYPE_IPV6)
rte_memcpy(hdr->buffer,
&sctp_spec->hdr,
sizeof(sctp_spec->hdr));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_GTPU:
gtp_spec = item->spec;
gtp_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, GTPU_IP);
if (gtp_spec && gtp_mask) {
if (gtp_mask->v_pt_rsv_flags ||
gtp_mask->msg_type ||
gtp_mask->msg_len) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid GTP mask");
return -rte_errno;
}
if (gtp_mask->teid == UINT32_MAX) {
input_set |= IAVF_INSET_GTPU_TEID;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, GTPU_IP, TEID);
}
rte_memcpy(hdr->buffer,
gtp_spec, sizeof(*gtp_spec));
}
tun_inner = 1;
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_GTP_PSC:
gtp_psc_spec = item->spec;
gtp_psc_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
if (!gtp_psc_spec)
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, GTPU_EH);
else if ((gtp_psc_mask->qfi) && !(gtp_psc_mask->pdu_type))
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, GTPU_EH);
else if (gtp_psc_spec->pdu_type == IAVF_GTPU_EH_UPLINK)
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, GTPU_EH_PDU_UP);
else if (gtp_psc_spec->pdu_type == IAVF_GTPU_EH_DWLINK)
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, GTPU_EH_PDU_DWN);
if (gtp_psc_spec && gtp_psc_mask) {
if (gtp_psc_mask->qfi == UINT8_MAX) {
input_set |= IAVF_INSET_GTPU_QFI;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, GTPU_EH, QFI);
}
rte_memcpy(hdr->buffer, gtp_psc_spec,
sizeof(*gtp_psc_spec));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
l2tpv3oip_spec = item->spec;
l2tpv3oip_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, L2TPV3);
if (l2tpv3oip_spec && l2tpv3oip_mask) {
if (l2tpv3oip_mask->session_id == UINT32_MAX) {
input_set |= IAVF_L2TPV3OIP_SESSION_ID;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, L2TPV3, SESS_ID);
}
rte_memcpy(hdr->buffer, l2tpv3oip_spec,
sizeof(*l2tpv3oip_spec));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_ESP:
esp_spec = item->spec;
esp_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, ESP);
if (esp_spec && esp_mask) {
if (esp_mask->hdr.spi == UINT32_MAX) {
input_set |= IAVF_INSET_ESP_SPI;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, ESP, SPI);
}
rte_memcpy(hdr->buffer, &esp_spec->hdr,
sizeof(esp_spec->hdr));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_AH:
ah_spec = item->spec;
ah_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, AH);
if (ah_spec && ah_mask) {
if (ah_mask->spi == UINT32_MAX) {
input_set |= IAVF_INSET_AH_SPI;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, AH, SPI);
}
rte_memcpy(hdr->buffer, ah_spec,
sizeof(*ah_spec));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_PFCP:
pfcp_spec = item->spec;
pfcp_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, PFCP);
if (pfcp_spec && pfcp_mask) {
if (pfcp_mask->s_field == UINT8_MAX) {
input_set |= IAVF_INSET_PFCP_S_FIELD;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, PFCP, S_FIELD);
}
rte_memcpy(hdr->buffer, pfcp_spec,
sizeof(*pfcp_spec));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_ECPRI:
ecpri_spec = item->spec;
ecpri_mask = item->mask;
ecpri_common.u32 = rte_be_to_cpu_32(ecpri_spec->hdr.common.u32);
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, ECPRI);
if (ecpri_spec && ecpri_mask) {
if (ecpri_common.type == RTE_ECPRI_MSG_TYPE_IQ_DATA &&
ecpri_mask->hdr.type0.pc_id == UINT16_MAX) {
input_set |= IAVF_ECPRI_PC_RTC_ID;
VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, ECPRI,
PC_RTC_ID);
}
rte_memcpy(hdr->buffer, ecpri_spec,
sizeof(*ecpri_spec));
}
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_GRE:
gre_spec = item->spec;
gre_mask = item->mask;
hdr = &hdrs->proto_hdr[layer];
VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, GRE);
if (gre_spec && gre_mask) {
rte_memcpy(hdr->buffer, gre_spec,
sizeof(*gre_spec));
}
tun_inner = 1;
hdrs->count = ++layer;
break;
case RTE_FLOW_ITEM_TYPE_VOID:
break;
default:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Invalid pattern item.");
return -rte_errno;
}
}
if (layer > VIRTCHNL_MAX_NUM_PROTO_HDRS) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM, item,
"Protocol header layers exceed the maximum value");
return -rte_errno;
}
if (!iavf_fdir_refine_input_set(input_set,
input_set_mask | IAVF_INSET_ETHERTYPE,
filter)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC, pattern,
"Invalid input set");
return -rte_errno;
}
filter->input_set = input_set;
return 0;
}
static int
iavf_fdir_parse(struct iavf_adapter *ad,
struct iavf_pattern_match_item *array,
uint32_t array_len,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
void **meta,
struct rte_flow_error *error)
{
struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
struct iavf_fdir_conf *filter = &vf->fdir.conf;
struct iavf_pattern_match_item *item = NULL;
int ret;
memset(filter, 0, sizeof(*filter));
item = iavf_search_pattern_match_item(pattern, array, array_len, error);
if (!item)
return -rte_errno;
ret = iavf_fdir_parse_pattern(ad, pattern, item->input_set_mask,
error, filter);
if (ret)
goto error;
ret = iavf_fdir_parse_action(ad, actions, error, filter);
if (ret)
goto error;
if (meta)
*meta = filter;
error:
rte_free(item);
return ret;
}
static struct iavf_flow_parser iavf_fdir_parser = {
.engine = &iavf_fdir_engine,
.array = iavf_fdir_pattern,
.array_len = RTE_DIM(iavf_fdir_pattern),
.parse_pattern_action = iavf_fdir_parse,
.stage = IAVF_FLOW_STAGE_DISTRIBUTOR,
};
RTE_INIT(iavf_fdir_engine_register)
{
iavf_register_flow_engine(&iavf_fdir_engine);
}