numam-dpdk/lib/vhost/vhost.c
Maxime Coquelin b3d4a18b9c vhost: use DPDK allocations for in-flight data
Inflight metadata are allocated using glibc's calloc.
This patch converts them to rte_zmalloc_socket to take
care of the NUMA affinity.

Signed-off-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Reviewed-by: Chenbo Xia <chenbo.xia@intel.com>
2021-06-30 13:32:38 +02:00

1783 lines
37 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2017 Intel Corporation
*/
#include <linux/vhost.h>
#include <linux/virtio_net.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#ifdef RTE_LIBRTE_VHOST_NUMA
#include <numa.h>
#include <numaif.h>
#endif
#include <rte_errno.h>
#include <rte_ethdev.h>
#include <rte_log.h>
#include <rte_string_fns.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <rte_vhost.h>
#include <rte_rwlock.h>
#include "iotlb.h"
#include "vhost.h"
#include "vhost_user.h"
struct virtio_net *vhost_devices[MAX_VHOST_DEVICE];
pthread_mutex_t vhost_dev_lock = PTHREAD_MUTEX_INITIALIZER;
/* Called with iotlb_lock read-locked */
uint64_t
__vhost_iova_to_vva(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t iova, uint64_t *size, uint8_t perm)
{
uint64_t vva, tmp_size;
if (unlikely(!*size))
return 0;
tmp_size = *size;
vva = vhost_user_iotlb_cache_find(vq, iova, &tmp_size, perm);
if (tmp_size == *size)
return vva;
iova += tmp_size;
if (!vhost_user_iotlb_pending_miss(vq, iova, perm)) {
/*
* iotlb_lock is read-locked for a full burst,
* but it only protects the iotlb cache.
* In case of IOTLB miss, we might block on the socket,
* which could cause a deadlock with QEMU if an IOTLB update
* is being handled. We can safely unlock here to avoid it.
*/
vhost_user_iotlb_rd_unlock(vq);
vhost_user_iotlb_pending_insert(vq, iova, perm);
if (vhost_user_iotlb_miss(dev, iova, perm)) {
VHOST_LOG_CONFIG(ERR,
"IOTLB miss req failed for IOVA 0x%" PRIx64 "\n",
iova);
vhost_user_iotlb_pending_remove(vq, iova, 1, perm);
}
vhost_user_iotlb_rd_lock(vq);
}
return 0;
}
#define VHOST_LOG_PAGE 4096
/*
* Atomically set a bit in memory.
*/
static __rte_always_inline void
vhost_set_bit(unsigned int nr, volatile uint8_t *addr)
{
#if defined(RTE_TOOLCHAIN_GCC) && (GCC_VERSION < 70100)
/*
* __sync_ built-ins are deprecated, but __atomic_ ones
* are sub-optimized in older GCC versions.
*/
__sync_fetch_and_or_1(addr, (1U << nr));
#else
__atomic_fetch_or(addr, (1U << nr), __ATOMIC_RELAXED);
#endif
}
static __rte_always_inline void
vhost_log_page(uint8_t *log_base, uint64_t page)
{
vhost_set_bit(page % 8, &log_base[page / 8]);
}
void
__vhost_log_write(struct virtio_net *dev, uint64_t addr, uint64_t len)
{
uint64_t page;
if (unlikely(!dev->log_base || !len))
return;
if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
return;
/* To make sure guest memory updates are committed before logging */
rte_atomic_thread_fence(__ATOMIC_RELEASE);
page = addr / VHOST_LOG_PAGE;
while (page * VHOST_LOG_PAGE < addr + len) {
vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
page += 1;
}
}
void
__vhost_log_write_iova(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t iova, uint64_t len)
{
uint64_t hva, gpa, map_len;
map_len = len;
hva = __vhost_iova_to_vva(dev, vq, iova, &map_len, VHOST_ACCESS_RW);
if (map_len != len) {
VHOST_LOG_DATA(ERR,
"Failed to write log for IOVA 0x%" PRIx64 ". No IOTLB entry found\n",
iova);
return;
}
gpa = hva_to_gpa(dev, hva, len);
if (gpa)
__vhost_log_write(dev, gpa, len);
}
void
__vhost_log_cache_sync(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
unsigned long *log_base;
int i;
if (unlikely(!dev->log_base))
return;
/* No cache, nothing to sync */
if (unlikely(!vq->log_cache))
return;
rte_atomic_thread_fence(__ATOMIC_RELEASE);
log_base = (unsigned long *)(uintptr_t)dev->log_base;
for (i = 0; i < vq->log_cache_nb_elem; i++) {
struct log_cache_entry *elem = vq->log_cache + i;
#if defined(RTE_TOOLCHAIN_GCC) && (GCC_VERSION < 70100)
/*
* '__sync' builtins are deprecated, but '__atomic' ones
* are sub-optimized in older GCC versions.
*/
__sync_fetch_and_or(log_base + elem->offset, elem->val);
#else
__atomic_fetch_or(log_base + elem->offset, elem->val,
__ATOMIC_RELAXED);
#endif
}
rte_atomic_thread_fence(__ATOMIC_RELEASE);
vq->log_cache_nb_elem = 0;
}
static __rte_always_inline void
vhost_log_cache_page(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t page)
{
uint32_t bit_nr = page % (sizeof(unsigned long) << 3);
uint32_t offset = page / (sizeof(unsigned long) << 3);
int i;
if (unlikely(!vq->log_cache)) {
/* No logging cache allocated, write dirty log map directly */
rte_atomic_thread_fence(__ATOMIC_RELEASE);
vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
return;
}
for (i = 0; i < vq->log_cache_nb_elem; i++) {
struct log_cache_entry *elem = vq->log_cache + i;
if (elem->offset == offset) {
elem->val |= (1UL << bit_nr);
return;
}
}
if (unlikely(i >= VHOST_LOG_CACHE_NR)) {
/*
* No more room for a new log cache entry,
* so write the dirty log map directly.
*/
rte_atomic_thread_fence(__ATOMIC_RELEASE);
vhost_log_page((uint8_t *)(uintptr_t)dev->log_base, page);
return;
}
vq->log_cache[i].offset = offset;
vq->log_cache[i].val = (1UL << bit_nr);
vq->log_cache_nb_elem++;
}
void
__vhost_log_cache_write(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t addr, uint64_t len)
{
uint64_t page;
if (unlikely(!dev->log_base || !len))
return;
if (unlikely(dev->log_size <= ((addr + len - 1) / VHOST_LOG_PAGE / 8)))
return;
page = addr / VHOST_LOG_PAGE;
while (page * VHOST_LOG_PAGE < addr + len) {
vhost_log_cache_page(dev, vq, page);
page += 1;
}
}
void
__vhost_log_cache_write_iova(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t iova, uint64_t len)
{
uint64_t hva, gpa, map_len;
map_len = len;
hva = __vhost_iova_to_vva(dev, vq, iova, &map_len, VHOST_ACCESS_RW);
if (map_len != len) {
VHOST_LOG_DATA(ERR,
"Failed to write log for IOVA 0x%" PRIx64 ". No IOTLB entry found\n",
iova);
return;
}
gpa = hva_to_gpa(dev, hva, len);
if (gpa)
__vhost_log_cache_write(dev, vq, gpa, len);
}
void *
vhost_alloc_copy_ind_table(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t desc_addr, uint64_t desc_len)
{
void *idesc;
uint64_t src, dst;
uint64_t len, remain = desc_len;
idesc = rte_malloc_socket(__func__, desc_len, 0, vq->numa_node);
if (unlikely(!idesc))
return NULL;
dst = (uint64_t)(uintptr_t)idesc;
while (remain) {
len = remain;
src = vhost_iova_to_vva(dev, vq, desc_addr, &len,
VHOST_ACCESS_RO);
if (unlikely(!src || !len)) {
rte_free(idesc);
return NULL;
}
rte_memcpy((void *)(uintptr_t)dst, (void *)(uintptr_t)src, len);
remain -= len;
dst += len;
desc_addr += len;
}
return idesc;
}
void
cleanup_vq(struct vhost_virtqueue *vq, int destroy)
{
if ((vq->callfd >= 0) && (destroy != 0))
close(vq->callfd);
if (vq->kickfd >= 0)
close(vq->kickfd);
}
void
cleanup_vq_inflight(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
if (!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD)))
return;
if (vq_is_packed(dev)) {
if (vq->inflight_packed)
vq->inflight_packed = NULL;
} else {
if (vq->inflight_split)
vq->inflight_split = NULL;
}
if (vq->resubmit_inflight) {
if (vq->resubmit_inflight->resubmit_list) {
rte_free(vq->resubmit_inflight->resubmit_list);
vq->resubmit_inflight->resubmit_list = NULL;
}
rte_free(vq->resubmit_inflight);
vq->resubmit_inflight = NULL;
}
}
/*
* Unmap any memory, close any file descriptors and
* free any memory owned by a device.
*/
void
cleanup_device(struct virtio_net *dev, int destroy)
{
uint32_t i;
vhost_backend_cleanup(dev);
for (i = 0; i < dev->nr_vring; i++) {
cleanup_vq(dev->virtqueue[i], destroy);
cleanup_vq_inflight(dev, dev->virtqueue[i]);
}
}
static void
vhost_free_async_mem(struct vhost_virtqueue *vq)
{
rte_free(vq->async_pkts_info);
rte_free(vq->async_buffers_packed);
vq->async_buffers_packed = NULL;
rte_free(vq->async_descs_split);
vq->async_descs_split = NULL;
rte_free(vq->it_pool);
rte_free(vq->vec_pool);
vq->async_pkts_info = NULL;
vq->it_pool = NULL;
vq->vec_pool = NULL;
}
void
free_vq(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
if (vq_is_packed(dev))
rte_free(vq->shadow_used_packed);
else
rte_free(vq->shadow_used_split);
vhost_free_async_mem(vq);
rte_free(vq->batch_copy_elems);
rte_mempool_free(vq->iotlb_pool);
rte_free(vq->log_cache);
rte_free(vq);
}
/*
* Release virtqueues and device memory.
*/
static void
free_device(struct virtio_net *dev)
{
uint32_t i;
for (i = 0; i < dev->nr_vring; i++)
free_vq(dev, dev->virtqueue[i]);
rte_free(dev);
}
static __rte_always_inline int
log_translate(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
if (likely(!(vq->ring_addrs.flags & (1 << VHOST_VRING_F_LOG))))
return 0;
vq->log_guest_addr = translate_log_addr(dev, vq,
vq->ring_addrs.log_guest_addr);
if (vq->log_guest_addr == 0)
return -1;
return 0;
}
/*
* Converts vring log address to GPA
* If IOMMU is enabled, the log address is IOVA
* If IOMMU not enabled, the log address is already GPA
*
* Caller should have iotlb_lock read-locked
*/
uint64_t
translate_log_addr(struct virtio_net *dev, struct vhost_virtqueue *vq,
uint64_t log_addr)
{
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)) {
const uint64_t exp_size = sizeof(uint64_t);
uint64_t hva, gpa;
uint64_t size = exp_size;
hva = vhost_iova_to_vva(dev, vq, log_addr,
&size, VHOST_ACCESS_RW);
if (size != exp_size)
return 0;
gpa = hva_to_gpa(dev, hva, exp_size);
if (!gpa) {
VHOST_LOG_CONFIG(ERR,
"VQ: Failed to find GPA for log_addr: 0x%"
PRIx64 " hva: 0x%" PRIx64 "\n",
log_addr, hva);
return 0;
}
return gpa;
} else
return log_addr;
}
/* Caller should have iotlb_lock read-locked */
static int
vring_translate_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
uint64_t req_size, size;
req_size = sizeof(struct vring_desc) * vq->size;
size = req_size;
vq->desc = (struct vring_desc *)(uintptr_t)vhost_iova_to_vva(dev, vq,
vq->ring_addrs.desc_user_addr,
&size, VHOST_ACCESS_RW);
if (!vq->desc || size != req_size)
return -1;
req_size = sizeof(struct vring_avail);
req_size += sizeof(uint16_t) * vq->size;
if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))
req_size += sizeof(uint16_t);
size = req_size;
vq->avail = (struct vring_avail *)(uintptr_t)vhost_iova_to_vva(dev, vq,
vq->ring_addrs.avail_user_addr,
&size, VHOST_ACCESS_RW);
if (!vq->avail || size != req_size)
return -1;
req_size = sizeof(struct vring_used);
req_size += sizeof(struct vring_used_elem) * vq->size;
if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))
req_size += sizeof(uint16_t);
size = req_size;
vq->used = (struct vring_used *)(uintptr_t)vhost_iova_to_vva(dev, vq,
vq->ring_addrs.used_user_addr,
&size, VHOST_ACCESS_RW);
if (!vq->used || size != req_size)
return -1;
return 0;
}
/* Caller should have iotlb_lock read-locked */
static int
vring_translate_packed(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
uint64_t req_size, size;
req_size = sizeof(struct vring_packed_desc) * vq->size;
size = req_size;
vq->desc_packed = (struct vring_packed_desc *)(uintptr_t)
vhost_iova_to_vva(dev, vq, vq->ring_addrs.desc_user_addr,
&size, VHOST_ACCESS_RW);
if (!vq->desc_packed || size != req_size)
return -1;
req_size = sizeof(struct vring_packed_desc_event);
size = req_size;
vq->driver_event = (struct vring_packed_desc_event *)(uintptr_t)
vhost_iova_to_vva(dev, vq, vq->ring_addrs.avail_user_addr,
&size, VHOST_ACCESS_RW);
if (!vq->driver_event || size != req_size)
return -1;
req_size = sizeof(struct vring_packed_desc_event);
size = req_size;
vq->device_event = (struct vring_packed_desc_event *)(uintptr_t)
vhost_iova_to_vva(dev, vq, vq->ring_addrs.used_user_addr,
&size, VHOST_ACCESS_RW);
if (!vq->device_event || size != req_size)
return -1;
return 0;
}
int
vring_translate(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
if (!(dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM)))
return -1;
if (vq_is_packed(dev)) {
if (vring_translate_packed(dev, vq) < 0)
return -1;
} else {
if (vring_translate_split(dev, vq) < 0)
return -1;
}
if (log_translate(dev, vq) < 0)
return -1;
vq->access_ok = true;
return 0;
}
void
vring_invalidate(struct virtio_net *dev, struct vhost_virtqueue *vq)
{
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_wr_lock(vq);
vq->access_ok = false;
vq->desc = NULL;
vq->avail = NULL;
vq->used = NULL;
vq->log_guest_addr = 0;
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
vhost_user_iotlb_wr_unlock(vq);
}
static void
init_vring_queue(struct virtio_net *dev, uint32_t vring_idx)
{
struct vhost_virtqueue *vq;
int numa_node = SOCKET_ID_ANY;
if (vring_idx >= VHOST_MAX_VRING) {
VHOST_LOG_CONFIG(ERR,
"Failed not init vring, out of bound (%d)\n",
vring_idx);
return;
}
vq = dev->virtqueue[vring_idx];
if (!vq) {
VHOST_LOG_CONFIG(ERR, "Virtqueue not allocated (%d)\n",
vring_idx);
return;
}
memset(vq, 0, sizeof(struct vhost_virtqueue));
vq->kickfd = VIRTIO_UNINITIALIZED_EVENTFD;
vq->callfd = VIRTIO_UNINITIALIZED_EVENTFD;
vq->notif_enable = VIRTIO_UNINITIALIZED_NOTIF;
#ifdef RTE_LIBRTE_VHOST_NUMA
if (get_mempolicy(&numa_node, NULL, 0, vq, MPOL_F_NODE | MPOL_F_ADDR)) {
VHOST_LOG_CONFIG(ERR, "(%d) failed to query numa node: %s\n",
dev->vid, rte_strerror(errno));
numa_node = SOCKET_ID_ANY;
}
#endif
vq->numa_node = numa_node;
vhost_user_iotlb_init(dev, vring_idx);
}
static void
reset_vring_queue(struct virtio_net *dev, uint32_t vring_idx)
{
struct vhost_virtqueue *vq;
int callfd;
if (vring_idx >= VHOST_MAX_VRING) {
VHOST_LOG_CONFIG(ERR,
"Failed not init vring, out of bound (%d)\n",
vring_idx);
return;
}
vq = dev->virtqueue[vring_idx];
if (!vq) {
VHOST_LOG_CONFIG(ERR, "Virtqueue not allocated (%d)\n",
vring_idx);
return;
}
callfd = vq->callfd;
init_vring_queue(dev, vring_idx);
vq->callfd = callfd;
}
int
alloc_vring_queue(struct virtio_net *dev, uint32_t vring_idx)
{
struct vhost_virtqueue *vq;
uint32_t i;
/* Also allocate holes, if any, up to requested vring index. */
for (i = 0; i <= vring_idx; i++) {
if (dev->virtqueue[i])
continue;
vq = rte_zmalloc(NULL, sizeof(struct vhost_virtqueue), 0);
if (vq == NULL) {
VHOST_LOG_CONFIG(ERR,
"Failed to allocate memory for vring:%u.\n", i);
return -1;
}
dev->virtqueue[i] = vq;
init_vring_queue(dev, i);
rte_spinlock_init(&vq->access_lock);
vq->avail_wrap_counter = 1;
vq->used_wrap_counter = 1;
vq->signalled_used_valid = false;
}
dev->nr_vring = RTE_MAX(dev->nr_vring, vring_idx + 1);
return 0;
}
/*
* Reset some variables in device structure, while keeping few
* others untouched, such as vid, ifname, nr_vring: they
* should be same unless the device is removed.
*/
void
reset_device(struct virtio_net *dev)
{
uint32_t i;
dev->features = 0;
dev->protocol_features = 0;
dev->flags &= VIRTIO_DEV_BUILTIN_VIRTIO_NET;
for (i = 0; i < dev->nr_vring; i++)
reset_vring_queue(dev, i);
}
/*
* Invoked when there is a new vhost-user connection established (when
* there is a new virtio device being attached).
*/
int
vhost_new_device(void)
{
struct virtio_net *dev;
int i;
pthread_mutex_lock(&vhost_dev_lock);
for (i = 0; i < MAX_VHOST_DEVICE; i++) {
if (vhost_devices[i] == NULL)
break;
}
if (i == MAX_VHOST_DEVICE) {
VHOST_LOG_CONFIG(ERR,
"Failed to find a free slot for new device.\n");
pthread_mutex_unlock(&vhost_dev_lock);
return -1;
}
dev = rte_zmalloc(NULL, sizeof(struct virtio_net), 0);
if (dev == NULL) {
VHOST_LOG_CONFIG(ERR,
"Failed to allocate memory for new dev.\n");
pthread_mutex_unlock(&vhost_dev_lock);
return -1;
}
vhost_devices[i] = dev;
pthread_mutex_unlock(&vhost_dev_lock);
dev->vid = i;
dev->flags = VIRTIO_DEV_BUILTIN_VIRTIO_NET;
dev->slave_req_fd = -1;
dev->postcopy_ufd = -1;
rte_spinlock_init(&dev->slave_req_lock);
return i;
}
void
vhost_destroy_device_notify(struct virtio_net *dev)
{
struct rte_vdpa_device *vdpa_dev;
if (dev->flags & VIRTIO_DEV_RUNNING) {
vdpa_dev = dev->vdpa_dev;
if (vdpa_dev)
vdpa_dev->ops->dev_close(dev->vid);
dev->flags &= ~VIRTIO_DEV_RUNNING;
dev->notify_ops->destroy_device(dev->vid);
}
}
/*
* Invoked when there is the vhost-user connection is broken (when
* the virtio device is being detached).
*/
void
vhost_destroy_device(int vid)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return;
vhost_destroy_device_notify(dev);
cleanup_device(dev, 1);
free_device(dev);
vhost_devices[vid] = NULL;
}
void
vhost_attach_vdpa_device(int vid, struct rte_vdpa_device *vdpa_dev)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return;
dev->vdpa_dev = vdpa_dev;
}
void
vhost_set_ifname(int vid, const char *if_name, unsigned int if_len)
{
struct virtio_net *dev;
unsigned int len;
dev = get_device(vid);
if (dev == NULL)
return;
len = if_len > sizeof(dev->ifname) ?
sizeof(dev->ifname) : if_len;
strncpy(dev->ifname, if_name, len);
dev->ifname[sizeof(dev->ifname) - 1] = '\0';
}
void
vhost_setup_virtio_net(int vid, bool enable, bool compliant_ol_flags)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return;
if (enable)
dev->flags |= VIRTIO_DEV_BUILTIN_VIRTIO_NET;
else
dev->flags &= ~VIRTIO_DEV_BUILTIN_VIRTIO_NET;
if (!compliant_ol_flags)
dev->flags |= VIRTIO_DEV_LEGACY_OL_FLAGS;
else
dev->flags &= ~VIRTIO_DEV_LEGACY_OL_FLAGS;
}
void
vhost_enable_extbuf(int vid)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return;
dev->extbuf = 1;
}
void
vhost_enable_linearbuf(int vid)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return;
dev->linearbuf = 1;
}
int
rte_vhost_get_mtu(int vid, uint16_t *mtu)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL || mtu == NULL)
return -ENODEV;
if (!(dev->flags & VIRTIO_DEV_READY))
return -EAGAIN;
if (!(dev->features & (1ULL << VIRTIO_NET_F_MTU)))
return -ENOTSUP;
*mtu = dev->mtu;
return 0;
}
int
rte_vhost_get_numa_node(int vid)
{
#ifdef RTE_LIBRTE_VHOST_NUMA
struct virtio_net *dev = get_device(vid);
int numa_node;
int ret;
if (dev == NULL || numa_available() != 0)
return -1;
ret = get_mempolicy(&numa_node, NULL, 0, dev,
MPOL_F_NODE | MPOL_F_ADDR);
if (ret < 0) {
VHOST_LOG_CONFIG(ERR,
"(%d) failed to query numa node: %s\n",
vid, rte_strerror(errno));
return -1;
}
return numa_node;
#else
RTE_SET_USED(vid);
return -1;
#endif
}
uint32_t
rte_vhost_get_queue_num(int vid)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return 0;
return dev->nr_vring / 2;
}
uint16_t
rte_vhost_get_vring_num(int vid)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return 0;
return dev->nr_vring;
}
int
rte_vhost_get_ifname(int vid, char *buf, size_t len)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL || buf == NULL)
return -1;
len = RTE_MIN(len, sizeof(dev->ifname));
strncpy(buf, dev->ifname, len);
buf[len - 1] = '\0';
return 0;
}
int
rte_vhost_get_negotiated_features(int vid, uint64_t *features)
{
struct virtio_net *dev;
dev = get_device(vid);
if (dev == NULL || features == NULL)
return -1;
*features = dev->features;
return 0;
}
int
rte_vhost_get_negotiated_protocol_features(int vid,
uint64_t *protocol_features)
{
struct virtio_net *dev;
dev = get_device(vid);
if (dev == NULL || protocol_features == NULL)
return -1;
*protocol_features = dev->protocol_features;
return 0;
}
int
rte_vhost_get_mem_table(int vid, struct rte_vhost_memory **mem)
{
struct virtio_net *dev;
struct rte_vhost_memory *m;
size_t size;
dev = get_device(vid);
if (dev == NULL || mem == NULL)
return -1;
size = dev->mem->nregions * sizeof(struct rte_vhost_mem_region);
m = malloc(sizeof(struct rte_vhost_memory) + size);
if (!m)
return -1;
m->nregions = dev->mem->nregions;
memcpy(m->regions, dev->mem->regions, size);
*mem = m;
return 0;
}
int
rte_vhost_get_vhost_vring(int vid, uint16_t vring_idx,
struct rte_vhost_vring *vring)
{
struct virtio_net *dev;
struct vhost_virtqueue *vq;
dev = get_device(vid);
if (dev == NULL || vring == NULL)
return -1;
if (vring_idx >= VHOST_MAX_VRING)
return -1;
vq = dev->virtqueue[vring_idx];
if (!vq)
return -1;
if (vq_is_packed(dev)) {
vring->desc_packed = vq->desc_packed;
vring->driver_event = vq->driver_event;
vring->device_event = vq->device_event;
} else {
vring->desc = vq->desc;
vring->avail = vq->avail;
vring->used = vq->used;
}
vring->log_guest_addr = vq->log_guest_addr;
vring->callfd = vq->callfd;
vring->kickfd = vq->kickfd;
vring->size = vq->size;
return 0;
}
int
rte_vhost_get_vhost_ring_inflight(int vid, uint16_t vring_idx,
struct rte_vhost_ring_inflight *vring)
{
struct virtio_net *dev;
struct vhost_virtqueue *vq;
dev = get_device(vid);
if (unlikely(!dev))
return -1;
if (vring_idx >= VHOST_MAX_VRING)
return -1;
vq = dev->virtqueue[vring_idx];
if (unlikely(!vq))
return -1;
if (vq_is_packed(dev)) {
if (unlikely(!vq->inflight_packed))
return -1;
vring->inflight_packed = vq->inflight_packed;
} else {
if (unlikely(!vq->inflight_split))
return -1;
vring->inflight_split = vq->inflight_split;
}
vring->resubmit_inflight = vq->resubmit_inflight;
return 0;
}
int
rte_vhost_set_inflight_desc_split(int vid, uint16_t vring_idx,
uint16_t idx)
{
struct vhost_virtqueue *vq;
struct virtio_net *dev;
dev = get_device(vid);
if (unlikely(!dev))
return -1;
if (unlikely(!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
return 0;
if (unlikely(vq_is_packed(dev)))
return -1;
if (unlikely(vring_idx >= VHOST_MAX_VRING))
return -1;
vq = dev->virtqueue[vring_idx];
if (unlikely(!vq))
return -1;
if (unlikely(!vq->inflight_split))
return -1;
if (unlikely(idx >= vq->size))
return -1;
vq->inflight_split->desc[idx].counter = vq->global_counter++;
vq->inflight_split->desc[idx].inflight = 1;
return 0;
}
int
rte_vhost_set_inflight_desc_packed(int vid, uint16_t vring_idx,
uint16_t head, uint16_t last,
uint16_t *inflight_entry)
{
struct rte_vhost_inflight_info_packed *inflight_info;
struct virtio_net *dev;
struct vhost_virtqueue *vq;
struct vring_packed_desc *desc;
uint16_t old_free_head, free_head;
dev = get_device(vid);
if (unlikely(!dev))
return -1;
if (unlikely(!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
return 0;
if (unlikely(!vq_is_packed(dev)))
return -1;
if (unlikely(vring_idx >= VHOST_MAX_VRING))
return -1;
vq = dev->virtqueue[vring_idx];
if (unlikely(!vq))
return -1;
inflight_info = vq->inflight_packed;
if (unlikely(!inflight_info))
return -1;
if (unlikely(head >= vq->size))
return -1;
desc = vq->desc_packed;
old_free_head = inflight_info->old_free_head;
if (unlikely(old_free_head >= vq->size))
return -1;
free_head = old_free_head;
/* init header descriptor */
inflight_info->desc[old_free_head].num = 0;
inflight_info->desc[old_free_head].counter = vq->global_counter++;
inflight_info->desc[old_free_head].inflight = 1;
/* save desc entry in flight entry */
while (head != ((last + 1) % vq->size)) {
inflight_info->desc[old_free_head].num++;
inflight_info->desc[free_head].addr = desc[head].addr;
inflight_info->desc[free_head].len = desc[head].len;
inflight_info->desc[free_head].flags = desc[head].flags;
inflight_info->desc[free_head].id = desc[head].id;
inflight_info->desc[old_free_head].last = free_head;
free_head = inflight_info->desc[free_head].next;
inflight_info->free_head = free_head;
head = (head + 1) % vq->size;
}
inflight_info->old_free_head = free_head;
*inflight_entry = old_free_head;
return 0;
}
int
rte_vhost_clr_inflight_desc_split(int vid, uint16_t vring_idx,
uint16_t last_used_idx, uint16_t idx)
{
struct virtio_net *dev;
struct vhost_virtqueue *vq;
dev = get_device(vid);
if (unlikely(!dev))
return -1;
if (unlikely(!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
return 0;
if (unlikely(vq_is_packed(dev)))
return -1;
if (unlikely(vring_idx >= VHOST_MAX_VRING))
return -1;
vq = dev->virtqueue[vring_idx];
if (unlikely(!vq))
return -1;
if (unlikely(!vq->inflight_split))
return -1;
if (unlikely(idx >= vq->size))
return -1;
rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
vq->inflight_split->desc[idx].inflight = 0;
rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
vq->inflight_split->used_idx = last_used_idx;
return 0;
}
int
rte_vhost_clr_inflight_desc_packed(int vid, uint16_t vring_idx,
uint16_t head)
{
struct rte_vhost_inflight_info_packed *inflight_info;
struct virtio_net *dev;
struct vhost_virtqueue *vq;
dev = get_device(vid);
if (unlikely(!dev))
return -1;
if (unlikely(!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
return 0;
if (unlikely(!vq_is_packed(dev)))
return -1;
if (unlikely(vring_idx >= VHOST_MAX_VRING))
return -1;
vq = dev->virtqueue[vring_idx];
if (unlikely(!vq))
return -1;
inflight_info = vq->inflight_packed;
if (unlikely(!inflight_info))
return -1;
if (unlikely(head >= vq->size))
return -1;
rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
inflight_info->desc[head].inflight = 0;
rte_atomic_thread_fence(__ATOMIC_SEQ_CST);
inflight_info->old_free_head = inflight_info->free_head;
inflight_info->old_used_idx = inflight_info->used_idx;
inflight_info->old_used_wrap_counter = inflight_info->used_wrap_counter;
return 0;
}
int
rte_vhost_set_last_inflight_io_split(int vid, uint16_t vring_idx,
uint16_t idx)
{
struct virtio_net *dev;
struct vhost_virtqueue *vq;
dev = get_device(vid);
if (unlikely(!dev))
return -1;
if (unlikely(!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
return 0;
if (unlikely(vq_is_packed(dev)))
return -1;
if (unlikely(vring_idx >= VHOST_MAX_VRING))
return -1;
vq = dev->virtqueue[vring_idx];
if (unlikely(!vq))
return -1;
if (unlikely(!vq->inflight_split))
return -1;
vq->inflight_split->last_inflight_io = idx;
return 0;
}
int
rte_vhost_set_last_inflight_io_packed(int vid, uint16_t vring_idx,
uint16_t head)
{
struct rte_vhost_inflight_info_packed *inflight_info;
struct virtio_net *dev;
struct vhost_virtqueue *vq;
uint16_t last;
dev = get_device(vid);
if (unlikely(!dev))
return -1;
if (unlikely(!(dev->protocol_features &
(1ULL << VHOST_USER_PROTOCOL_F_INFLIGHT_SHMFD))))
return 0;
if (unlikely(!vq_is_packed(dev)))
return -1;
if (unlikely(vring_idx >= VHOST_MAX_VRING))
return -1;
vq = dev->virtqueue[vring_idx];
if (unlikely(!vq))
return -1;
inflight_info = vq->inflight_packed;
if (unlikely(!inflight_info))
return -1;
if (unlikely(head >= vq->size))
return -1;
last = inflight_info->desc[head].last;
if (unlikely(last >= vq->size))
return -1;
inflight_info->desc[last].next = inflight_info->free_head;
inflight_info->free_head = head;
inflight_info->used_idx += inflight_info->desc[head].num;
if (inflight_info->used_idx >= inflight_info->desc_num) {
inflight_info->used_idx -= inflight_info->desc_num;
inflight_info->used_wrap_counter =
!inflight_info->used_wrap_counter;
}
return 0;
}
int
rte_vhost_vring_call(int vid, uint16_t vring_idx)
{
struct virtio_net *dev;
struct vhost_virtqueue *vq;
dev = get_device(vid);
if (!dev)
return -1;
if (vring_idx >= VHOST_MAX_VRING)
return -1;
vq = dev->virtqueue[vring_idx];
if (!vq)
return -1;
if (vq_is_packed(dev))
vhost_vring_call_packed(dev, vq);
else
vhost_vring_call_split(dev, vq);
return 0;
}
uint16_t
rte_vhost_avail_entries(int vid, uint16_t queue_id)
{
struct virtio_net *dev;
struct vhost_virtqueue *vq;
uint16_t ret = 0;
dev = get_device(vid);
if (!dev)
return 0;
if (queue_id >= VHOST_MAX_VRING)
return 0;
vq = dev->virtqueue[queue_id];
if (!vq)
return 0;
rte_spinlock_lock(&vq->access_lock);
if (unlikely(!vq->enabled || vq->avail == NULL))
goto out;
ret = *(volatile uint16_t *)&vq->avail->idx - vq->last_used_idx;
out:
rte_spinlock_unlock(&vq->access_lock);
return ret;
}
static inline int
vhost_enable_notify_split(struct virtio_net *dev,
struct vhost_virtqueue *vq, int enable)
{
if (vq->used == NULL)
return -1;
if (!(dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX))) {
if (enable)
vq->used->flags &= ~VRING_USED_F_NO_NOTIFY;
else
vq->used->flags |= VRING_USED_F_NO_NOTIFY;
} else {
if (enable)
vhost_avail_event(vq) = vq->last_avail_idx;
}
return 0;
}
static inline int
vhost_enable_notify_packed(struct virtio_net *dev,
struct vhost_virtqueue *vq, int enable)
{
uint16_t flags;
if (vq->device_event == NULL)
return -1;
if (!enable) {
vq->device_event->flags = VRING_EVENT_F_DISABLE;
return 0;
}
flags = VRING_EVENT_F_ENABLE;
if (dev->features & (1ULL << VIRTIO_RING_F_EVENT_IDX)) {
flags = VRING_EVENT_F_DESC;
vq->device_event->off_wrap = vq->last_avail_idx |
vq->avail_wrap_counter << 15;
}
rte_atomic_thread_fence(__ATOMIC_RELEASE);
vq->device_event->flags = flags;
return 0;
}
int
vhost_enable_guest_notification(struct virtio_net *dev,
struct vhost_virtqueue *vq, int enable)
{
/*
* If the virtqueue is not ready yet, it will be applied
* when it will become ready.
*/
if (!vq->ready)
return 0;
if (vq_is_packed(dev))
return vhost_enable_notify_packed(dev, vq, enable);
else
return vhost_enable_notify_split(dev, vq, enable);
}
int
rte_vhost_enable_guest_notification(int vid, uint16_t queue_id, int enable)
{
struct virtio_net *dev = get_device(vid);
struct vhost_virtqueue *vq;
int ret;
if (!dev)
return -1;
if (queue_id >= VHOST_MAX_VRING)
return -1;
vq = dev->virtqueue[queue_id];
if (!vq)
return -1;
rte_spinlock_lock(&vq->access_lock);
vq->notif_enable = enable;
ret = vhost_enable_guest_notification(dev, vq, enable);
rte_spinlock_unlock(&vq->access_lock);
return ret;
}
void
rte_vhost_log_write(int vid, uint64_t addr, uint64_t len)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return;
vhost_log_write(dev, addr, len);
}
void
rte_vhost_log_used_vring(int vid, uint16_t vring_idx,
uint64_t offset, uint64_t len)
{
struct virtio_net *dev;
struct vhost_virtqueue *vq;
dev = get_device(vid);
if (dev == NULL)
return;
if (vring_idx >= VHOST_MAX_VRING)
return;
vq = dev->virtqueue[vring_idx];
if (!vq)
return;
vhost_log_used_vring(dev, vq, offset, len);
}
uint32_t
rte_vhost_rx_queue_count(int vid, uint16_t qid)
{
struct virtio_net *dev;
struct vhost_virtqueue *vq;
uint32_t ret = 0;
dev = get_device(vid);
if (dev == NULL)
return 0;
if (unlikely(qid >= dev->nr_vring || (qid & 1) == 0)) {
VHOST_LOG_DATA(ERR, "(%d) %s: invalid virtqueue idx %d.\n",
dev->vid, __func__, qid);
return 0;
}
vq = dev->virtqueue[qid];
if (vq == NULL)
return 0;
rte_spinlock_lock(&vq->access_lock);
if (unlikely(!vq->enabled || vq->avail == NULL))
goto out;
ret = *((volatile uint16_t *)&vq->avail->idx) - vq->last_avail_idx;
out:
rte_spinlock_unlock(&vq->access_lock);
return ret;
}
struct rte_vdpa_device *
rte_vhost_get_vdpa_device(int vid)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL)
return NULL;
return dev->vdpa_dev;
}
int rte_vhost_get_log_base(int vid, uint64_t *log_base,
uint64_t *log_size)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL || log_base == NULL || log_size == NULL)
return -1;
*log_base = dev->log_base;
*log_size = dev->log_size;
return 0;
}
int rte_vhost_get_vring_base(int vid, uint16_t queue_id,
uint16_t *last_avail_idx, uint16_t *last_used_idx)
{
struct vhost_virtqueue *vq;
struct virtio_net *dev = get_device(vid);
if (dev == NULL || last_avail_idx == NULL || last_used_idx == NULL)
return -1;
if (queue_id >= VHOST_MAX_VRING)
return -1;
vq = dev->virtqueue[queue_id];
if (!vq)
return -1;
if (vq_is_packed(dev)) {
*last_avail_idx = (vq->avail_wrap_counter << 15) |
vq->last_avail_idx;
*last_used_idx = (vq->used_wrap_counter << 15) |
vq->last_used_idx;
} else {
*last_avail_idx = vq->last_avail_idx;
*last_used_idx = vq->last_used_idx;
}
return 0;
}
int rte_vhost_set_vring_base(int vid, uint16_t queue_id,
uint16_t last_avail_idx, uint16_t last_used_idx)
{
struct vhost_virtqueue *vq;
struct virtio_net *dev = get_device(vid);
if (!dev)
return -1;
if (queue_id >= VHOST_MAX_VRING)
return -1;
vq = dev->virtqueue[queue_id];
if (!vq)
return -1;
if (vq_is_packed(dev)) {
vq->last_avail_idx = last_avail_idx & 0x7fff;
vq->avail_wrap_counter = !!(last_avail_idx & (1 << 15));
vq->last_used_idx = last_used_idx & 0x7fff;
vq->used_wrap_counter = !!(last_used_idx & (1 << 15));
} else {
vq->last_avail_idx = last_avail_idx;
vq->last_used_idx = last_used_idx;
}
return 0;
}
int
rte_vhost_get_vring_base_from_inflight(int vid,
uint16_t queue_id,
uint16_t *last_avail_idx,
uint16_t *last_used_idx)
{
struct rte_vhost_inflight_info_packed *inflight_info;
struct vhost_virtqueue *vq;
struct virtio_net *dev = get_device(vid);
if (dev == NULL || last_avail_idx == NULL || last_used_idx == NULL)
return -1;
if (queue_id >= VHOST_MAX_VRING)
return -1;
vq = dev->virtqueue[queue_id];
if (!vq)
return -1;
if (!vq_is_packed(dev))
return -1;
inflight_info = vq->inflight_packed;
if (!inflight_info)
return -1;
*last_avail_idx = (inflight_info->old_used_wrap_counter << 15) |
inflight_info->old_used_idx;
*last_used_idx = *last_avail_idx;
return 0;
}
int rte_vhost_extern_callback_register(int vid,
struct rte_vhost_user_extern_ops const * const ops, void *ctx)
{
struct virtio_net *dev = get_device(vid);
if (dev == NULL || ops == NULL)
return -1;
dev->extern_ops = *ops;
dev->extern_data = ctx;
return 0;
}
int rte_vhost_async_channel_register(int vid, uint16_t queue_id,
uint32_t features,
struct rte_vhost_async_channel_ops *ops)
{
struct vhost_virtqueue *vq;
struct virtio_net *dev = get_device(vid);
struct rte_vhost_async_features f;
if (dev == NULL || ops == NULL)
return -1;
f.intval = features;
if (queue_id >= VHOST_MAX_VRING)
return -1;
vq = dev->virtqueue[queue_id];
if (unlikely(vq == NULL || !dev->async_copy))
return -1;
if (unlikely(!f.async_inorder)) {
VHOST_LOG_CONFIG(ERR,
"async copy is not supported on non-inorder mode "
"(vid %d, qid: %d)\n", vid, queue_id);
return -1;
}
if (unlikely(ops->check_completed_copies == NULL ||
ops->transfer_data == NULL))
return -1;
rte_spinlock_lock(&vq->access_lock);
if (unlikely(vq->async_registered)) {
VHOST_LOG_CONFIG(ERR,
"async register failed: channel already registered "
"(vid %d, qid: %d)\n", vid, queue_id);
goto reg_out;
}
vq->async_pkts_info = rte_malloc_socket(NULL,
vq->size * sizeof(struct async_inflight_info),
RTE_CACHE_LINE_SIZE, vq->numa_node);
if (!vq->async_pkts_info) {
vhost_free_async_mem(vq);
VHOST_LOG_CONFIG(ERR,
"async register failed: cannot allocate memory for async_pkts_info "
"(vid %d, qid: %d)\n", vid, queue_id);
goto reg_out;
}
vq->it_pool = rte_malloc_socket(NULL,
VHOST_MAX_ASYNC_IT * sizeof(struct rte_vhost_iov_iter),
RTE_CACHE_LINE_SIZE, vq->numa_node);
if (!vq->it_pool) {
vhost_free_async_mem(vq);
VHOST_LOG_CONFIG(ERR,
"async register failed: cannot allocate memory for it_pool "
"(vid %d, qid: %d)\n", vid, queue_id);
goto reg_out;
}
vq->vec_pool = rte_malloc_socket(NULL,
VHOST_MAX_ASYNC_VEC * sizeof(struct iovec),
RTE_CACHE_LINE_SIZE, vq->numa_node);
if (!vq->vec_pool) {
vhost_free_async_mem(vq);
VHOST_LOG_CONFIG(ERR,
"async register failed: cannot allocate memory for vec_pool "
"(vid %d, qid: %d)\n", vid, queue_id);
goto reg_out;
}
if (vq_is_packed(dev)) {
vq->async_buffers_packed = rte_malloc_socket(NULL,
vq->size * sizeof(struct vring_used_elem_packed),
RTE_CACHE_LINE_SIZE, vq->numa_node);
if (!vq->async_buffers_packed) {
vhost_free_async_mem(vq);
VHOST_LOG_CONFIG(ERR,
"async register failed: cannot allocate memory for async buffers "
"(vid %d, qid: %d)\n", vid, queue_id);
goto reg_out;
}
} else {
vq->async_descs_split = rte_malloc_socket(NULL,
vq->size * sizeof(struct vring_used_elem),
RTE_CACHE_LINE_SIZE, vq->numa_node);
if (!vq->async_descs_split) {
vhost_free_async_mem(vq);
VHOST_LOG_CONFIG(ERR,
"async register failed: cannot allocate memory for async descs "
"(vid %d, qid: %d)\n", vid, queue_id);
goto reg_out;
}
}
vq->async_ops.check_completed_copies = ops->check_completed_copies;
vq->async_ops.transfer_data = ops->transfer_data;
vq->async_inorder = f.async_inorder;
vq->async_threshold = f.async_threshold;
vq->async_registered = true;
reg_out:
rte_spinlock_unlock(&vq->access_lock);
return 0;
}
int rte_vhost_async_channel_unregister(int vid, uint16_t queue_id)
{
struct vhost_virtqueue *vq;
struct virtio_net *dev = get_device(vid);
int ret = -1;
if (dev == NULL)
return ret;
if (queue_id >= VHOST_MAX_VRING)
return ret;
vq = dev->virtqueue[queue_id];
if (vq == NULL)
return ret;
ret = 0;
if (!vq->async_registered)
return ret;
if (!rte_spinlock_trylock(&vq->access_lock)) {
VHOST_LOG_CONFIG(ERR, "Failed to unregister async channel. "
"virt queue busy.\n");
return -1;
}
if (vq->async_pkts_inflight_n) {
VHOST_LOG_CONFIG(ERR, "Failed to unregister async channel. "
"async inflight packets must be completed before unregistration.\n");
ret = -1;
goto out;
}
vhost_free_async_mem(vq);
vq->async_ops.transfer_data = NULL;
vq->async_ops.check_completed_copies = NULL;
vq->async_registered = false;
out:
rte_spinlock_unlock(&vq->access_lock);
return ret;
}
RTE_LOG_REGISTER_SUFFIX(vhost_config_log_level, config, INFO);
RTE_LOG_REGISTER_SUFFIX(vhost_data_log_level, data, WARNING);