numam-dpdk/examples/ipv4_frag/rte_ipv4_frag.h
2013-07-25 15:23:27 +02:00

253 lines
7.6 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2012 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef __INCLUDE_RTE_IPV4_FRAG_H__
#define __INCLUDE_RTE_IPV4_FRAG_H__
#include <rte_ip.h>
/**
* @file
* RTE IPv4 Fragmentation
*
* Implementation of IPv4 fragmentation.
*
*/
/*
* Default byte size for the IPv4 Maximum Transfer Unit (MTU).
* This value includes the size of IPv4 header.
*/
#define IPV4_MTU_DEFAULT ETHER_MTU
/*
* Default payload in bytes for the IPv4 packet.
*/
#define IPV4_DEFAULT_PAYLOAD (IPV4_MTU_DEFAULT - sizeof(struct ipv4_hdr))
/*
* MAX number of fragments per packet allowed.
*/
#define IPV4_MAX_FRAGS_PER_PACKET 0x80
/* Debug on/off */
#ifdef RTE_IPV4_FRAG_DEBUG
#define RTE_IPV4_FRAG_ASSERT(exp) \
if (!(exp)) { \
rte_panic("function %s, line%d\tassert \"" #exp "\" failed\n", \
__func__, __LINE__); \
}
#else /*RTE_IPV4_FRAG_DEBUG*/
#define RTE_IPV4_FRAG_ASSERT(exp) do { } while(0)
#endif /*RTE_IPV4_FRAG_DEBUG*/
/* Fragment Offset */
#define IPV4_HDR_DF_SHIFT 14
#define IPV4_HDR_MF_SHIFT 13
#define IPV4_HDR_FO_SHIFT 3
#define IPV4_HDR_DF_MASK (1 << IPV4_HDR_DF_SHIFT)
#define IPV4_HDR_MF_MASK (1 << IPV4_HDR_MF_SHIFT)
#define IPV4_HDR_FO_MASK ((1 << IPV4_HDR_FO_SHIFT) - 1)
static inline void __fill_ipv4hdr_frag(struct ipv4_hdr *dst,
const struct ipv4_hdr *src, uint16_t len, uint16_t fofs,
uint16_t dofs, uint32_t mf)
{
rte_memcpy(dst, src, sizeof(*dst));
fofs = (uint16_t)(fofs + (dofs >> IPV4_HDR_FO_SHIFT));
fofs = (uint16_t)(fofs | mf << IPV4_HDR_MF_SHIFT);
dst->fragment_offset = rte_cpu_to_be_16(fofs);
dst->total_length = rte_cpu_to_be_16(len);
dst->hdr_checksum = 0;
}
static inline void __free_fragments(struct rte_mbuf *mb[], uint32_t num)
{
uint32_t i;
for (i = 0; i != num; i++)
rte_pktmbuf_free(mb[i]);
}
/**
* IPv4 fragmentation.
*
* This function implements the fragmentation of IPv4 packets.
*
* @param pkt_in
* The input packet.
* @param pkts_out
* Array storing the output fragments.
* @param mtu_size
* Size in bytes of the Maximum Transfer Unit (MTU) for the outgoing IPv4
* datagrams. This value includes the size of the IPv4 header.
* @param pool_direct
* MBUF pool used for allocating direct buffers for the output fragments.
* @param pool_indirect
* MBUF pool used for allocating indirect buffers for the output fragments.
* @return
* Upon successful completion - number of output fragments placed
* in the pkts_out array.
* Otherwise - (-1) * <errno>.
*/
static inline int32_t rte_ipv4_fragmentation(struct rte_mbuf *pkt_in,
struct rte_mbuf **pkts_out,
uint16_t nb_pkts_out,
uint16_t mtu_size,
struct rte_mempool *pool_direct,
struct rte_mempool *pool_indirect)
{
struct rte_mbuf *in_seg = NULL;
struct ipv4_hdr *in_hdr;
uint32_t out_pkt_pos, in_seg_data_pos;
uint32_t more_in_segs;
uint16_t fragment_offset, flag_offset, frag_size;
frag_size = (uint16_t)(mtu_size - sizeof(struct ipv4_hdr));
/* Fragment size should be a multiply of 8. */
RTE_IPV4_FRAG_ASSERT((frag_size & IPV4_HDR_FO_MASK) == 0);
/* Fragment size should be a multiply of 8. */
RTE_IPV4_FRAG_ASSERT(IPV4_MAX_FRAGS_PER_PACKET * frag_size >=
(uint16_t)(pkt_in->pkt.pkt_len - sizeof (struct ipv4_hdr)));
in_hdr = (struct ipv4_hdr*) pkt_in->pkt.data;
flag_offset = rte_cpu_to_be_16(in_hdr->fragment_offset);
/* If Don't Fragment flag is set */
if (unlikely ((flag_offset & IPV4_HDR_DF_MASK) != 0))
return (-ENOTSUP);
/* Check that pkts_out is big enough to hold all fragments */
if (unlikely (frag_size * nb_pkts_out <
(uint16_t)(pkt_in->pkt.pkt_len - sizeof (struct ipv4_hdr))))
return (-EINVAL);
in_seg = pkt_in;
in_seg_data_pos = sizeof(struct ipv4_hdr);
out_pkt_pos = 0;
fragment_offset = 0;
more_in_segs = 1;
while (likely(more_in_segs)) {
struct rte_mbuf *out_pkt = NULL, *out_seg_prev = NULL;
uint32_t more_out_segs;
struct ipv4_hdr *out_hdr;
/* Allocate direct buffer */
out_pkt = rte_pktmbuf_alloc(pool_direct);
if (unlikely(out_pkt == NULL)) {
__free_fragments(pkts_out, out_pkt_pos);
return (-ENOMEM);
}
/* Reserve space for the IP header that will be built later */
out_pkt->pkt.data_len = sizeof(struct ipv4_hdr);
out_pkt->pkt.pkt_len = sizeof(struct ipv4_hdr);
out_seg_prev = out_pkt;
more_out_segs = 1;
while (likely(more_out_segs && more_in_segs)) {
struct rte_mbuf *out_seg = NULL;
uint32_t len;
/* Allocate indirect buffer */
out_seg = rte_pktmbuf_alloc(pool_indirect);
if (unlikely(out_seg == NULL)) {
rte_pktmbuf_free(out_pkt);
__free_fragments(pkts_out, out_pkt_pos);
return (-ENOMEM);
}
out_seg_prev->pkt.next = out_seg;
out_seg_prev = out_seg;
/* Prepare indirect buffer */
rte_pktmbuf_attach(out_seg, in_seg);
len = mtu_size - out_pkt->pkt.pkt_len;
if (len > (in_seg->pkt.data_len - in_seg_data_pos)) {
len = in_seg->pkt.data_len - in_seg_data_pos;
}
out_seg->pkt.data = (char*) in_seg->pkt.data + (uint16_t)in_seg_data_pos;
out_seg->pkt.data_len = (uint16_t)len;
out_pkt->pkt.pkt_len = (uint16_t)(len +
out_pkt->pkt.pkt_len);
out_pkt->pkt.nb_segs += 1;
in_seg_data_pos += len;
/* Current output packet (i.e. fragment) done ? */
if (unlikely(out_pkt->pkt.pkt_len >= mtu_size)) {
more_out_segs = 0;
}
/* Current input segment done ? */
if (unlikely(in_seg_data_pos == in_seg->pkt.data_len)) {
in_seg = in_seg->pkt.next;
in_seg_data_pos = 0;
if (unlikely(in_seg == NULL)) {
more_in_segs = 0;
}
}
}
/* Build the IP header */
out_hdr = (struct ipv4_hdr*) out_pkt->pkt.data;
__fill_ipv4hdr_frag(out_hdr, in_hdr,
(uint16_t)out_pkt->pkt.pkt_len,
flag_offset, fragment_offset, more_in_segs);
fragment_offset = (uint16_t)(fragment_offset +
out_pkt->pkt.pkt_len - sizeof(struct ipv4_hdr));
out_pkt->ol_flags |= PKT_TX_IP_CKSUM;
out_pkt->pkt.vlan_macip.f.l3_len = sizeof(struct ipv4_hdr);
/* Write the fragment to the output list */
pkts_out[out_pkt_pos] = out_pkt;
out_pkt_pos ++;
}
return (out_pkt_pos);
}
#endif