Olivier Matz d1d914ebbc mempool: allocate in several memory chunks by default
Introduce rte_mempool_populate_default() which allocates
mempool objects in several memzones.

The mempool header is now always allocated in a specific memzone
(not with its objects). Thanks to this modification, we can remove
many specific behavior that was required when hugepages are not
enabled in case we are using rte_mempool_xmem_create().

This change requires to update how kni and mellanox drivers lookup for
mbuf memory. For now, this will only work if there is only one memory
chunk (like today), but we could make use of rte_mempool_mem_iter() to
support more memory chunks.

We can also remove RTE_MEMPOOL_OBJ_NAME that is not required anymore for
the lookup, as memory chunks are referenced by the mempool.

Note that rte_mempool_create() is still broken (it was the case before)
when there is no hugepages support (rte_mempool_create_xmem() has to be
used). This is fixed in next commit.

Signed-off-by: Olivier Matz <olivier.matz@6wind.com>
2016-05-19 14:40:13 +02:00

719 lines
19 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef RTE_EXEC_ENV_LINUXAPP
#error "KNI is not supported"
#endif
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <rte_spinlock.h>
#include <rte_string_fns.h>
#include <rte_ethdev.h>
#include <rte_malloc.h>
#include <rte_log.h>
#include <rte_kni.h>
#include <rte_memzone.h>
#include <exec-env/rte_kni_common.h>
#include "rte_kni_fifo.h"
#define MAX_MBUF_BURST_NUM 32
/* Maximum number of ring entries */
#define KNI_FIFO_COUNT_MAX 1024
#define KNI_FIFO_SIZE (KNI_FIFO_COUNT_MAX * sizeof(void *) + \
sizeof(struct rte_kni_fifo))
#define KNI_REQUEST_MBUF_NUM_MAX 32
#define KNI_MEM_CHECK(cond) do { if (cond) goto kni_fail; } while (0)
/**
* KNI context
*/
struct rte_kni {
char name[RTE_KNI_NAMESIZE]; /**< KNI interface name */
uint16_t group_id; /**< Group ID of KNI devices */
uint32_t slot_id; /**< KNI pool slot ID */
struct rte_mempool *pktmbuf_pool; /**< pkt mbuf mempool */
unsigned mbuf_size; /**< mbuf size */
struct rte_kni_fifo *tx_q; /**< TX queue */
struct rte_kni_fifo *rx_q; /**< RX queue */
struct rte_kni_fifo *alloc_q; /**< Allocated mbufs queue */
struct rte_kni_fifo *free_q; /**< To be freed mbufs queue */
/* For request & response */
struct rte_kni_fifo *req_q; /**< Request queue */
struct rte_kni_fifo *resp_q; /**< Response queue */
void * sync_addr; /**< Req/Resp Mem address */
struct rte_kni_ops ops; /**< operations for request */
uint8_t in_use : 1; /**< kni in use */
};
enum kni_ops_status {
KNI_REQ_NO_REGISTER = 0,
KNI_REQ_REGISTERED,
};
/**
* KNI memzone pool slot
*/
struct rte_kni_memzone_slot {
uint32_t id;
uint8_t in_use : 1; /**< slot in use */
/* Memzones */
const struct rte_memzone *m_ctx; /**< KNI ctx */
const struct rte_memzone *m_tx_q; /**< TX queue */
const struct rte_memzone *m_rx_q; /**< RX queue */
const struct rte_memzone *m_alloc_q; /**< Allocated mbufs queue */
const struct rte_memzone *m_free_q; /**< To be freed mbufs queue */
const struct rte_memzone *m_req_q; /**< Request queue */
const struct rte_memzone *m_resp_q; /**< Response queue */
const struct rte_memzone *m_sync_addr;
/* Free linked list */
struct rte_kni_memzone_slot *next; /**< Next slot link.list */
};
/**
* KNI memzone pool
*/
struct rte_kni_memzone_pool {
uint8_t initialized : 1; /**< Global KNI pool init flag */
uint32_t max_ifaces; /**< Max. num of KNI ifaces */
struct rte_kni_memzone_slot *slots; /**< Pool slots */
rte_spinlock_t mutex; /**< alloc/relase mutex */
/* Free memzone slots linked-list */
struct rte_kni_memzone_slot *free; /**< First empty slot */
struct rte_kni_memzone_slot *free_tail; /**< Last empty slot */
};
static void kni_free_mbufs(struct rte_kni *kni);
static void kni_allocate_mbufs(struct rte_kni *kni);
static volatile int kni_fd = -1;
static struct rte_kni_memzone_pool kni_memzone_pool = {
.initialized = 0,
};
static const struct rte_memzone *
kni_memzone_reserve(const char *name, size_t len, int socket_id,
unsigned flags)
{
const struct rte_memzone *mz = rte_memzone_lookup(name);
if (mz == NULL)
mz = rte_memzone_reserve(name, len, socket_id, flags);
return mz;
}
/* Pool mgmt */
static struct rte_kni_memzone_slot*
kni_memzone_pool_alloc(void)
{
struct rte_kni_memzone_slot *slot;
rte_spinlock_lock(&kni_memzone_pool.mutex);
if (!kni_memzone_pool.free) {
rte_spinlock_unlock(&kni_memzone_pool.mutex);
return NULL;
}
slot = kni_memzone_pool.free;
kni_memzone_pool.free = slot->next;
slot->in_use = 1;
if (!kni_memzone_pool.free)
kni_memzone_pool.free_tail = NULL;
rte_spinlock_unlock(&kni_memzone_pool.mutex);
return slot;
}
static void
kni_memzone_pool_release(struct rte_kni_memzone_slot *slot)
{
rte_spinlock_lock(&kni_memzone_pool.mutex);
if (kni_memzone_pool.free)
kni_memzone_pool.free_tail->next = slot;
else
kni_memzone_pool.free = slot;
kni_memzone_pool.free_tail = slot;
slot->next = NULL;
slot->in_use = 0;
rte_spinlock_unlock(&kni_memzone_pool.mutex);
}
/* Shall be called before any allocation happens */
void
rte_kni_init(unsigned int max_kni_ifaces)
{
uint32_t i;
struct rte_kni_memzone_slot *it;
const struct rte_memzone *mz;
#define OBJNAMSIZ 32
char obj_name[OBJNAMSIZ];
char mz_name[RTE_MEMZONE_NAMESIZE];
/* Immediately return if KNI is already initialized */
if (kni_memzone_pool.initialized) {
RTE_LOG(WARNING, KNI, "Double call to rte_kni_init()");
return;
}
if (max_kni_ifaces == 0) {
RTE_LOG(ERR, KNI, "Invalid number of max_kni_ifaces %d\n",
max_kni_ifaces);
rte_panic("Unable to initialize KNI\n");
}
/* Check FD and open */
if (kni_fd < 0) {
kni_fd = open("/dev/" KNI_DEVICE, O_RDWR);
if (kni_fd < 0)
rte_panic("Can not open /dev/%s\n", KNI_DEVICE);
}
/* Allocate slot objects */
kni_memzone_pool.slots = (struct rte_kni_memzone_slot *)
rte_malloc(NULL,
sizeof(struct rte_kni_memzone_slot) *
max_kni_ifaces,
0);
KNI_MEM_CHECK(kni_memzone_pool.slots == NULL);
/* Initialize general pool variables */
kni_memzone_pool.initialized = 1;
kni_memzone_pool.max_ifaces = max_kni_ifaces;
kni_memzone_pool.free = &kni_memzone_pool.slots[0];
rte_spinlock_init(&kni_memzone_pool.mutex);
/* Pre-allocate all memzones of all the slots; panic on error */
for (i = 0; i < max_kni_ifaces; i++) {
/* Recover current slot */
it = &kni_memzone_pool.slots[i];
it->id = i;
/* Allocate KNI context */
snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "KNI_INFO_%d", i);
mz = kni_memzone_reserve(mz_name, sizeof(struct rte_kni),
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_ctx = mz;
/* TX RING */
snprintf(obj_name, OBJNAMSIZ, "kni_tx_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_tx_q = mz;
/* RX RING */
snprintf(obj_name, OBJNAMSIZ, "kni_rx_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_rx_q = mz;
/* ALLOC RING */
snprintf(obj_name, OBJNAMSIZ, "kni_alloc_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_alloc_q = mz;
/* FREE RING */
snprintf(obj_name, OBJNAMSIZ, "kni_free_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_free_q = mz;
/* Request RING */
snprintf(obj_name, OBJNAMSIZ, "kni_req_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_req_q = mz;
/* Response RING */
snprintf(obj_name, OBJNAMSIZ, "kni_resp_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_resp_q = mz;
/* Req/Resp sync mem area */
snprintf(obj_name, OBJNAMSIZ, "kni_sync_%d", i);
mz = kni_memzone_reserve(obj_name, KNI_FIFO_SIZE,
SOCKET_ID_ANY, 0);
KNI_MEM_CHECK(mz == NULL);
it->m_sync_addr = mz;
if ((i+1) == max_kni_ifaces) {
it->next = NULL;
kni_memzone_pool.free_tail = it;
} else
it->next = &kni_memzone_pool.slots[i+1];
}
return;
kni_fail:
rte_panic("Unable to allocate memory for max_kni_ifaces:%d. Increase the amount of hugepages memory\n",
max_kni_ifaces);
}
struct rte_kni *
rte_kni_alloc(struct rte_mempool *pktmbuf_pool,
const struct rte_kni_conf *conf,
struct rte_kni_ops *ops)
{
int ret;
struct rte_kni_device_info dev_info;
struct rte_kni *ctx;
char intf_name[RTE_KNI_NAMESIZE];
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
const struct rte_mempool *mp;
struct rte_kni_memzone_slot *slot = NULL;
if (!pktmbuf_pool || !conf || !conf->name[0])
return NULL;
/* Check if KNI subsystem has been initialized */
if (kni_memzone_pool.initialized != 1) {
RTE_LOG(ERR, KNI, "KNI subsystem has not been initialized. Invoke rte_kni_init() first\n");
return NULL;
}
/* Get an available slot from the pool */
slot = kni_memzone_pool_alloc();
if (!slot) {
RTE_LOG(ERR, KNI, "Cannot allocate more KNI interfaces; increase the number of max_kni_ifaces(current %d) or release unusued ones.\n",
kni_memzone_pool.max_ifaces);
return NULL;
}
/* Recover ctx */
ctx = slot->m_ctx->addr;
snprintf(intf_name, RTE_KNI_NAMESIZE, "%s", conf->name);
if (ctx->in_use) {
RTE_LOG(ERR, KNI, "KNI %s is in use\n", ctx->name);
return NULL;
}
memset(ctx, 0, sizeof(struct rte_kni));
if (ops)
memcpy(&ctx->ops, ops, sizeof(struct rte_kni_ops));
memset(&dev_info, 0, sizeof(dev_info));
dev_info.bus = conf->addr.bus;
dev_info.devid = conf->addr.devid;
dev_info.function = conf->addr.function;
dev_info.vendor_id = conf->id.vendor_id;
dev_info.device_id = conf->id.device_id;
dev_info.core_id = conf->core_id;
dev_info.force_bind = conf->force_bind;
dev_info.group_id = conf->group_id;
dev_info.mbuf_size = conf->mbuf_size;
snprintf(ctx->name, RTE_KNI_NAMESIZE, "%s", intf_name);
snprintf(dev_info.name, RTE_KNI_NAMESIZE, "%s", intf_name);
RTE_LOG(INFO, KNI, "pci: %02x:%02x:%02x \t %02x:%02x\n",
dev_info.bus, dev_info.devid, dev_info.function,
dev_info.vendor_id, dev_info.device_id);
/* TX RING */
mz = slot->m_tx_q;
ctx->tx_q = mz->addr;
kni_fifo_init(ctx->tx_q, KNI_FIFO_COUNT_MAX);
dev_info.tx_phys = mz->phys_addr;
/* RX RING */
mz = slot->m_rx_q;
ctx->rx_q = mz->addr;
kni_fifo_init(ctx->rx_q, KNI_FIFO_COUNT_MAX);
dev_info.rx_phys = mz->phys_addr;
/* ALLOC RING */
mz = slot->m_alloc_q;
ctx->alloc_q = mz->addr;
kni_fifo_init(ctx->alloc_q, KNI_FIFO_COUNT_MAX);
dev_info.alloc_phys = mz->phys_addr;
/* FREE RING */
mz = slot->m_free_q;
ctx->free_q = mz->addr;
kni_fifo_init(ctx->free_q, KNI_FIFO_COUNT_MAX);
dev_info.free_phys = mz->phys_addr;
/* Request RING */
mz = slot->m_req_q;
ctx->req_q = mz->addr;
kni_fifo_init(ctx->req_q, KNI_FIFO_COUNT_MAX);
dev_info.req_phys = mz->phys_addr;
/* Response RING */
mz = slot->m_resp_q;
ctx->resp_q = mz->addr;
kni_fifo_init(ctx->resp_q, KNI_FIFO_COUNT_MAX);
dev_info.resp_phys = mz->phys_addr;
/* Req/Resp sync mem area */
mz = slot->m_sync_addr;
ctx->sync_addr = mz->addr;
dev_info.sync_va = mz->addr;
dev_info.sync_phys = mz->phys_addr;
/* MBUF mempool */
snprintf(mz_name, sizeof(mz_name), RTE_MEMPOOL_MZ_FORMAT,
pktmbuf_pool->name);
mz = rte_memzone_lookup(mz_name);
KNI_MEM_CHECK(mz == NULL);
mp = (struct rte_mempool *)mz->addr;
/* KNI currently requires to have only one memory chunk */
if (mp->nb_mem_chunks != 1)
goto kni_fail;
dev_info.mbuf_va = STAILQ_FIRST(&mp->mem_list)->addr;
dev_info.mbuf_phys = STAILQ_FIRST(&mp->mem_list)->phys_addr;
ctx->pktmbuf_pool = pktmbuf_pool;
ctx->group_id = conf->group_id;
ctx->slot_id = slot->id;
ctx->mbuf_size = conf->mbuf_size;
ret = ioctl(kni_fd, RTE_KNI_IOCTL_CREATE, &dev_info);
KNI_MEM_CHECK(ret < 0);
ctx->in_use = 1;
/* Allocate mbufs and then put them into alloc_q */
kni_allocate_mbufs(ctx);
return ctx;
kni_fail:
if (slot)
kni_memzone_pool_release(&kni_memzone_pool.slots[slot->id]);
return NULL;
}
static void
kni_free_fifo(struct rte_kni_fifo *fifo)
{
int ret;
struct rte_mbuf *pkt;
do {
ret = kni_fifo_get(fifo, (void **)&pkt, 1);
if (ret)
rte_pktmbuf_free(pkt);
} while (ret);
}
int
rte_kni_release(struct rte_kni *kni)
{
struct rte_kni_device_info dev_info;
uint32_t slot_id;
if (!kni || !kni->in_use)
return -1;
snprintf(dev_info.name, sizeof(dev_info.name), "%s", kni->name);
if (ioctl(kni_fd, RTE_KNI_IOCTL_RELEASE, &dev_info) < 0) {
RTE_LOG(ERR, KNI, "Fail to release kni device\n");
return -1;
}
/* mbufs in all fifo should be released, except request/response */
kni_free_fifo(kni->tx_q);
kni_free_fifo(kni->rx_q);
kni_free_fifo(kni->alloc_q);
kni_free_fifo(kni->free_q);
slot_id = kni->slot_id;
/* Memset the KNI struct */
memset(kni, 0, sizeof(struct rte_kni));
/* Release memzone */
if (slot_id > kni_memzone_pool.max_ifaces) {
rte_panic("KNI pool: corrupted slot ID: %d, max: %d\n",
slot_id, kni_memzone_pool.max_ifaces);
}
kni_memzone_pool_release(&kni_memzone_pool.slots[slot_id]);
return 0;
}
int
rte_kni_handle_request(struct rte_kni *kni)
{
unsigned ret;
struct rte_kni_request *req;
if (kni == NULL)
return -1;
/* Get request mbuf */
ret = kni_fifo_get(kni->req_q, (void **)&req, 1);
if (ret != 1)
return 0; /* It is OK of can not getting the request mbuf */
if (req != kni->sync_addr) {
rte_panic("Wrong req pointer %p\n", req);
}
/* Analyze the request and call the relevant actions for it */
switch (req->req_id) {
case RTE_KNI_REQ_CHANGE_MTU: /* Change MTU */
if (kni->ops.change_mtu)
req->result = kni->ops.change_mtu(kni->ops.port_id,
req->new_mtu);
break;
case RTE_KNI_REQ_CFG_NETWORK_IF: /* Set network interface up/down */
if (kni->ops.config_network_if)
req->result = kni->ops.config_network_if(\
kni->ops.port_id, req->if_up);
break;
default:
RTE_LOG(ERR, KNI, "Unknown request id %u\n", req->req_id);
req->result = -EINVAL;
break;
}
/* Construct response mbuf and put it back to resp_q */
ret = kni_fifo_put(kni->resp_q, (void **)&req, 1);
if (ret != 1) {
RTE_LOG(ERR, KNI, "Fail to put the muf back to resp_q\n");
return -1; /* It is an error of can't putting the mbuf back */
}
return 0;
}
unsigned
rte_kni_tx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned num)
{
unsigned ret = kni_fifo_put(kni->rx_q, (void **)mbufs, num);
/* Get mbufs from free_q and then free them */
kni_free_mbufs(kni);
return ret;
}
unsigned
rte_kni_rx_burst(struct rte_kni *kni, struct rte_mbuf **mbufs, unsigned num)
{
unsigned ret = kni_fifo_get(kni->tx_q, (void **)mbufs, num);
/* If buffers removed, allocate mbufs and then put them into alloc_q */
if (ret)
kni_allocate_mbufs(kni);
return ret;
}
static void
kni_free_mbufs(struct rte_kni *kni)
{
int i, ret;
struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM];
ret = kni_fifo_get(kni->free_q, (void **)pkts, MAX_MBUF_BURST_NUM);
if (likely(ret > 0)) {
for (i = 0; i < ret; i++)
rte_pktmbuf_free(pkts[i]);
}
}
static void
kni_allocate_mbufs(struct rte_kni *kni)
{
int i, ret;
struct rte_mbuf *pkts[MAX_MBUF_BURST_NUM];
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pool) !=
offsetof(struct rte_kni_mbuf, pool));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_addr) !=
offsetof(struct rte_kni_mbuf, buf_addr));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, next) !=
offsetof(struct rte_kni_mbuf, next));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_off) !=
offsetof(struct rte_kni_mbuf, data_off));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
offsetof(struct rte_kni_mbuf, data_len));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
offsetof(struct rte_kni_mbuf, pkt_len));
RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
offsetof(struct rte_kni_mbuf, ol_flags));
/* Check if pktmbuf pool has been configured */
if (kni->pktmbuf_pool == NULL) {
RTE_LOG(ERR, KNI, "No valid mempool for allocating mbufs\n");
return;
}
for (i = 0; i < MAX_MBUF_BURST_NUM; i++) {
pkts[i] = rte_pktmbuf_alloc(kni->pktmbuf_pool);
if (unlikely(pkts[i] == NULL)) {
/* Out of memory */
RTE_LOG(ERR, KNI, "Out of memory\n");
break;
}
}
/* No pkt mbuf alocated */
if (i <= 0)
return;
ret = kni_fifo_put(kni->alloc_q, (void **)pkts, i);
/* Check if any mbufs not put into alloc_q, and then free them */
if (ret >= 0 && ret < i && ret < MAX_MBUF_BURST_NUM) {
int j;
for (j = ret; j < i; j++)
rte_pktmbuf_free(pkts[j]);
}
}
struct rte_kni *
rte_kni_get(const char *name)
{
uint32_t i;
struct rte_kni_memzone_slot *it;
struct rte_kni *kni;
/* Note: could be improved perf-wise if necessary */
for (i = 0; i < kni_memzone_pool.max_ifaces; i++) {
it = &kni_memzone_pool.slots[i];
if (it->in_use == 0)
continue;
kni = it->m_ctx->addr;
if (strncmp(kni->name, name, RTE_KNI_NAMESIZE) == 0)
return kni;
}
return NULL;
}
const char *
rte_kni_get_name(const struct rte_kni *kni)
{
return kni->name;
}
static enum kni_ops_status
kni_check_request_register(struct rte_kni_ops *ops)
{
/* check if KNI request ops has been registered*/
if( NULL == ops )
return KNI_REQ_NO_REGISTER;
if((NULL == ops->change_mtu) && (NULL == ops->config_network_if))
return KNI_REQ_NO_REGISTER;
return KNI_REQ_REGISTERED;
}
int
rte_kni_register_handlers(struct rte_kni *kni,struct rte_kni_ops *ops)
{
enum kni_ops_status req_status;
if (NULL == ops) {
RTE_LOG(ERR, KNI, "Invalid KNI request operation.\n");
return -1;
}
if (NULL == kni) {
RTE_LOG(ERR, KNI, "Invalid kni info.\n");
return -1;
}
req_status = kni_check_request_register(&kni->ops);
if ( KNI_REQ_REGISTERED == req_status) {
RTE_LOG(ERR, KNI, "The KNI request operation has already registered.\n");
return -1;
}
memcpy(&kni->ops, ops, sizeof(struct rte_kni_ops));
return 0;
}
int
rte_kni_unregister_handlers(struct rte_kni *kni)
{
if (NULL == kni) {
RTE_LOG(ERR, KNI, "Invalid kni info.\n");
return -1;
}
kni->ops.change_mtu = NULL;
kni->ops.config_network_if = NULL;
return 0;
}
void
rte_kni_close(void)
{
if (kni_fd < 0)
return;
close(kni_fd);
kni_fd = -1;
}