6491dbbece
Added support for AES CMAC hash algorithm with 128-bit key, which has been added in the v0.49 of the IPSec Multi-buffer lib. Signed-off-by: Marko Kovacevic <marko.kovacevic@intel.com> Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
955 lines
25 KiB
C
955 lines
25 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2015-2017 Intel Corporation
|
|
*/
|
|
|
|
#include <intel-ipsec-mb.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_hexdump.h>
|
|
#include <rte_cryptodev.h>
|
|
#include <rte_cryptodev_pmd.h>
|
|
#include <rte_bus_vdev.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_cpuflags.h>
|
|
|
|
#include "rte_aesni_mb_pmd_private.h"
|
|
|
|
static uint8_t cryptodev_driver_id;
|
|
|
|
typedef void (*hash_one_block_t)(const void *data, void *digest);
|
|
typedef void (*aes_keyexp_t)(const void *key, void *enc_exp_keys, void *dec_exp_keys);
|
|
|
|
/**
|
|
* Calculate the authentication pre-computes
|
|
*
|
|
* @param one_block_hash Function pointer to calculate digest on ipad/opad
|
|
* @param ipad Inner pad output byte array
|
|
* @param opad Outer pad output byte array
|
|
* @param hkey Authentication key
|
|
* @param hkey_len Authentication key length
|
|
* @param blocksize Block size of selected hash algo
|
|
*/
|
|
static void
|
|
calculate_auth_precomputes(hash_one_block_t one_block_hash,
|
|
uint8_t *ipad, uint8_t *opad,
|
|
uint8_t *hkey, uint16_t hkey_len,
|
|
uint16_t blocksize)
|
|
{
|
|
unsigned i, length;
|
|
|
|
uint8_t ipad_buf[blocksize] __rte_aligned(16);
|
|
uint8_t opad_buf[blocksize] __rte_aligned(16);
|
|
|
|
/* Setup inner and outer pads */
|
|
memset(ipad_buf, HMAC_IPAD_VALUE, blocksize);
|
|
memset(opad_buf, HMAC_OPAD_VALUE, blocksize);
|
|
|
|
/* XOR hash key with inner and outer pads */
|
|
length = hkey_len > blocksize ? blocksize : hkey_len;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
ipad_buf[i] ^= hkey[i];
|
|
opad_buf[i] ^= hkey[i];
|
|
}
|
|
|
|
/* Compute partial hashes */
|
|
(*one_block_hash)(ipad_buf, ipad);
|
|
(*one_block_hash)(opad_buf, opad);
|
|
|
|
/* Clean up stack */
|
|
memset(ipad_buf, 0, blocksize);
|
|
memset(opad_buf, 0, blocksize);
|
|
}
|
|
|
|
/** Get xform chain order */
|
|
static enum aesni_mb_operation
|
|
aesni_mb_get_chain_order(const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
if (xform == NULL)
|
|
return AESNI_MB_OP_NOT_SUPPORTED;
|
|
|
|
if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
|
|
if (xform->next == NULL)
|
|
return AESNI_MB_OP_CIPHER_ONLY;
|
|
if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
|
|
return AESNI_MB_OP_CIPHER_HASH;
|
|
}
|
|
|
|
if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
|
|
if (xform->next == NULL)
|
|
return AESNI_MB_OP_HASH_ONLY;
|
|
if (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER)
|
|
return AESNI_MB_OP_HASH_CIPHER;
|
|
}
|
|
|
|
if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD) {
|
|
if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM) {
|
|
if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
|
|
return AESNI_MB_OP_AEAD_CIPHER_HASH;
|
|
else
|
|
return AESNI_MB_OP_AEAD_HASH_CIPHER;
|
|
}
|
|
}
|
|
|
|
return AESNI_MB_OP_NOT_SUPPORTED;
|
|
}
|
|
|
|
/** Set session authentication parameters */
|
|
static int
|
|
aesni_mb_set_session_auth_parameters(const struct aesni_mb_op_fns *mb_ops,
|
|
struct aesni_mb_session *sess,
|
|
const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
hash_one_block_t hash_oneblock_fn;
|
|
|
|
if (xform == NULL) {
|
|
sess->auth.algo = NULL_HASH;
|
|
return 0;
|
|
}
|
|
|
|
if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH) {
|
|
MB_LOG_ERR("Crypto xform struct not of type auth");
|
|
return -1;
|
|
}
|
|
|
|
/* Select auth generate/verify */
|
|
sess->auth.operation = xform->auth.op;
|
|
|
|
/* Set Authentication Parameters */
|
|
if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_XCBC_MAC) {
|
|
sess->auth.algo = AES_XCBC;
|
|
(*mb_ops->aux.keyexp.aes_xcbc)(xform->auth.key.data,
|
|
sess->auth.xcbc.k1_expanded,
|
|
sess->auth.xcbc.k2, sess->auth.xcbc.k3);
|
|
return 0;
|
|
}
|
|
|
|
if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_CMAC) {
|
|
sess->auth.algo = AES_CMAC;
|
|
(*mb_ops->aux.keyexp.aes_cmac_expkey)(xform->auth.key.data,
|
|
sess->auth.cmac.expkey);
|
|
|
|
(*mb_ops->aux.keyexp.aes_cmac_subkey)(sess->auth.cmac.expkey,
|
|
sess->auth.cmac.skey1, sess->auth.cmac.skey2);
|
|
return 0;
|
|
}
|
|
|
|
|
|
switch (xform->auth.algo) {
|
|
case RTE_CRYPTO_AUTH_MD5_HMAC:
|
|
sess->auth.algo = MD5;
|
|
hash_oneblock_fn = mb_ops->aux.one_block.md5;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA1_HMAC:
|
|
sess->auth.algo = SHA1;
|
|
hash_oneblock_fn = mb_ops->aux.one_block.sha1;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA224_HMAC:
|
|
sess->auth.algo = SHA_224;
|
|
hash_oneblock_fn = mb_ops->aux.one_block.sha224;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA256_HMAC:
|
|
sess->auth.algo = SHA_256;
|
|
hash_oneblock_fn = mb_ops->aux.one_block.sha256;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA384_HMAC:
|
|
sess->auth.algo = SHA_384;
|
|
hash_oneblock_fn = mb_ops->aux.one_block.sha384;
|
|
break;
|
|
case RTE_CRYPTO_AUTH_SHA512_HMAC:
|
|
sess->auth.algo = SHA_512;
|
|
hash_oneblock_fn = mb_ops->aux.one_block.sha512;
|
|
break;
|
|
default:
|
|
MB_LOG_ERR("Unsupported authentication algorithm selection");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Calculate Authentication precomputes */
|
|
calculate_auth_precomputes(hash_oneblock_fn,
|
|
sess->auth.pads.inner, sess->auth.pads.outer,
|
|
xform->auth.key.data,
|
|
xform->auth.key.length,
|
|
get_auth_algo_blocksize(sess->auth.algo));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Set session cipher parameters */
|
|
static int
|
|
aesni_mb_set_session_cipher_parameters(const struct aesni_mb_op_fns *mb_ops,
|
|
struct aesni_mb_session *sess,
|
|
const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
uint8_t is_aes = 0;
|
|
aes_keyexp_t aes_keyexp_fn;
|
|
|
|
if (xform == NULL) {
|
|
sess->cipher.mode = NULL_CIPHER;
|
|
return 0;
|
|
}
|
|
|
|
if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) {
|
|
MB_LOG_ERR("Crypto xform struct not of type cipher");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Select cipher direction */
|
|
switch (xform->cipher.op) {
|
|
case RTE_CRYPTO_CIPHER_OP_ENCRYPT:
|
|
sess->cipher.direction = ENCRYPT;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_OP_DECRYPT:
|
|
sess->cipher.direction = DECRYPT;
|
|
break;
|
|
default:
|
|
MB_LOG_ERR("Invalid cipher operation parameter");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Select cipher mode */
|
|
switch (xform->cipher.algo) {
|
|
case RTE_CRYPTO_CIPHER_AES_CBC:
|
|
sess->cipher.mode = CBC;
|
|
is_aes = 1;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_AES_CTR:
|
|
sess->cipher.mode = CNTR;
|
|
is_aes = 1;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_AES_DOCSISBPI:
|
|
sess->cipher.mode = DOCSIS_SEC_BPI;
|
|
is_aes = 1;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_DES_CBC:
|
|
sess->cipher.mode = DES;
|
|
break;
|
|
case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
|
|
sess->cipher.mode = DOCSIS_DES;
|
|
break;
|
|
default:
|
|
MB_LOG_ERR("Unsupported cipher mode parameter");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Set IV parameters */
|
|
sess->iv.offset = xform->cipher.iv.offset;
|
|
sess->iv.length = xform->cipher.iv.length;
|
|
|
|
/* Check key length and choose key expansion function for AES */
|
|
if (is_aes) {
|
|
switch (xform->cipher.key.length) {
|
|
case AES_128_BYTES:
|
|
sess->cipher.key_length_in_bytes = AES_128_BYTES;
|
|
aes_keyexp_fn = mb_ops->aux.keyexp.aes128;
|
|
break;
|
|
case AES_192_BYTES:
|
|
sess->cipher.key_length_in_bytes = AES_192_BYTES;
|
|
aes_keyexp_fn = mb_ops->aux.keyexp.aes192;
|
|
break;
|
|
case AES_256_BYTES:
|
|
sess->cipher.key_length_in_bytes = AES_256_BYTES;
|
|
aes_keyexp_fn = mb_ops->aux.keyexp.aes256;
|
|
break;
|
|
default:
|
|
MB_LOG_ERR("Invalid cipher key length");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Expanded cipher keys */
|
|
(*aes_keyexp_fn)(xform->cipher.key.data,
|
|
sess->cipher.expanded_aes_keys.encode,
|
|
sess->cipher.expanded_aes_keys.decode);
|
|
|
|
} else {
|
|
if (xform->cipher.key.length != 8) {
|
|
MB_LOG_ERR("Invalid cipher key length");
|
|
return -EINVAL;
|
|
}
|
|
sess->cipher.key_length_in_bytes = 8;
|
|
|
|
des_key_schedule((uint64_t *)sess->cipher.expanded_aes_keys.encode,
|
|
xform->cipher.key.data);
|
|
des_key_schedule((uint64_t *)sess->cipher.expanded_aes_keys.decode,
|
|
xform->cipher.key.data);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
aesni_mb_set_session_aead_parameters(const struct aesni_mb_op_fns *mb_ops,
|
|
struct aesni_mb_session *sess,
|
|
const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
aes_keyexp_t aes_keyexp_fn;
|
|
|
|
switch (xform->aead.op) {
|
|
case RTE_CRYPTO_AEAD_OP_ENCRYPT:
|
|
sess->cipher.direction = ENCRYPT;
|
|
sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
|
|
break;
|
|
case RTE_CRYPTO_AEAD_OP_DECRYPT:
|
|
sess->cipher.direction = DECRYPT;
|
|
sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
|
|
break;
|
|
default:
|
|
MB_LOG_ERR("Invalid aead operation parameter");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (xform->aead.algo) {
|
|
case RTE_CRYPTO_AEAD_AES_CCM:
|
|
sess->cipher.mode = CCM;
|
|
sess->auth.algo = AES_CCM;
|
|
break;
|
|
default:
|
|
MB_LOG_ERR("Unsupported aead mode parameter");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Set IV parameters */
|
|
sess->iv.offset = xform->aead.iv.offset;
|
|
sess->iv.length = xform->aead.iv.length;
|
|
|
|
/* Check key length and choose key expansion function for AES */
|
|
|
|
switch (xform->aead.key.length) {
|
|
case AES_128_BYTES:
|
|
sess->cipher.key_length_in_bytes = AES_128_BYTES;
|
|
aes_keyexp_fn = mb_ops->aux.keyexp.aes128;
|
|
break;
|
|
default:
|
|
MB_LOG_ERR("Invalid cipher key length");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Expanded cipher keys */
|
|
(*aes_keyexp_fn)(xform->aead.key.data,
|
|
sess->cipher.expanded_aes_keys.encode,
|
|
sess->cipher.expanded_aes_keys.decode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Parse crypto xform chain and set private session parameters */
|
|
int
|
|
aesni_mb_set_session_parameters(const struct aesni_mb_op_fns *mb_ops,
|
|
struct aesni_mb_session *sess,
|
|
const struct rte_crypto_sym_xform *xform)
|
|
{
|
|
const struct rte_crypto_sym_xform *auth_xform = NULL;
|
|
const struct rte_crypto_sym_xform *cipher_xform = NULL;
|
|
const struct rte_crypto_sym_xform *aead_xform = NULL;
|
|
int ret;
|
|
|
|
/* Select Crypto operation - hash then cipher / cipher then hash */
|
|
switch (aesni_mb_get_chain_order(xform)) {
|
|
case AESNI_MB_OP_HASH_CIPHER:
|
|
sess->chain_order = HASH_CIPHER;
|
|
auth_xform = xform;
|
|
cipher_xform = xform->next;
|
|
sess->auth.digest_len = xform->auth.digest_length;
|
|
break;
|
|
case AESNI_MB_OP_CIPHER_HASH:
|
|
sess->chain_order = CIPHER_HASH;
|
|
auth_xform = xform->next;
|
|
cipher_xform = xform;
|
|
sess->auth.digest_len = xform->auth.digest_length;
|
|
break;
|
|
case AESNI_MB_OP_HASH_ONLY:
|
|
sess->chain_order = HASH_CIPHER;
|
|
auth_xform = xform;
|
|
cipher_xform = NULL;
|
|
sess->auth.digest_len = xform->auth.digest_length;
|
|
break;
|
|
case AESNI_MB_OP_CIPHER_ONLY:
|
|
/*
|
|
* Multi buffer library operates only at two modes,
|
|
* CIPHER_HASH and HASH_CIPHER. When doing ciphering only,
|
|
* chain order depends on cipher operation: encryption is always
|
|
* the first operation and decryption the last one.
|
|
*/
|
|
if (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
|
|
sess->chain_order = CIPHER_HASH;
|
|
else
|
|
sess->chain_order = HASH_CIPHER;
|
|
auth_xform = NULL;
|
|
cipher_xform = xform;
|
|
break;
|
|
case AESNI_MB_OP_AEAD_CIPHER_HASH:
|
|
sess->chain_order = CIPHER_HASH;
|
|
sess->aead.aad_len = xform->aead.aad_length;
|
|
sess->auth.digest_len = xform->aead.digest_length;
|
|
aead_xform = xform;
|
|
break;
|
|
case AESNI_MB_OP_AEAD_HASH_CIPHER:
|
|
sess->chain_order = HASH_CIPHER;
|
|
sess->aead.aad_len = xform->aead.aad_length;
|
|
sess->auth.digest_len = xform->aead.digest_length;
|
|
aead_xform = xform;
|
|
break;
|
|
case AESNI_MB_OP_NOT_SUPPORTED:
|
|
default:
|
|
MB_LOG_ERR("Unsupported operation chain order parameter");
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
/* Default IV length = 0 */
|
|
sess->iv.length = 0;
|
|
|
|
ret = aesni_mb_set_session_auth_parameters(mb_ops, sess, auth_xform);
|
|
if (ret != 0) {
|
|
MB_LOG_ERR("Invalid/unsupported authentication parameters");
|
|
return ret;
|
|
}
|
|
|
|
ret = aesni_mb_set_session_cipher_parameters(mb_ops, sess,
|
|
cipher_xform);
|
|
if (ret != 0) {
|
|
MB_LOG_ERR("Invalid/unsupported cipher parameters");
|
|
return ret;
|
|
}
|
|
|
|
if (aead_xform) {
|
|
ret = aesni_mb_set_session_aead_parameters(mb_ops, sess,
|
|
aead_xform);
|
|
if (ret != 0) {
|
|
MB_LOG_ERR("Invalid/unsupported aead parameters");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* burst enqueue, place crypto operations on ingress queue for processing.
|
|
*
|
|
* @param __qp Queue Pair to process
|
|
* @param ops Crypto operations for processing
|
|
* @param nb_ops Number of crypto operations for processing
|
|
*
|
|
* @return
|
|
* - Number of crypto operations enqueued
|
|
*/
|
|
static uint16_t
|
|
aesni_mb_pmd_enqueue_burst(void *__qp, struct rte_crypto_op **ops,
|
|
uint16_t nb_ops)
|
|
{
|
|
struct aesni_mb_qp *qp = __qp;
|
|
|
|
unsigned int nb_enqueued;
|
|
|
|
nb_enqueued = rte_ring_enqueue_burst(qp->ingress_queue,
|
|
(void **)ops, nb_ops, NULL);
|
|
|
|
qp->stats.enqueued_count += nb_enqueued;
|
|
|
|
return nb_enqueued;
|
|
}
|
|
|
|
/** Get multi buffer session */
|
|
static inline struct aesni_mb_session *
|
|
get_session(struct aesni_mb_qp *qp, struct rte_crypto_op *op)
|
|
{
|
|
struct aesni_mb_session *sess = NULL;
|
|
|
|
if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
|
|
if (likely(op->sym->session != NULL))
|
|
sess = (struct aesni_mb_session *)
|
|
get_session_private_data(
|
|
op->sym->session,
|
|
cryptodev_driver_id);
|
|
} else {
|
|
void *_sess = NULL;
|
|
void *_sess_private_data = NULL;
|
|
|
|
if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
|
|
return NULL;
|
|
|
|
if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data))
|
|
return NULL;
|
|
|
|
sess = (struct aesni_mb_session *)_sess_private_data;
|
|
|
|
if (unlikely(aesni_mb_set_session_parameters(qp->op_fns,
|
|
sess, op->sym->xform) != 0)) {
|
|
rte_mempool_put(qp->sess_mp, _sess);
|
|
rte_mempool_put(qp->sess_mp, _sess_private_data);
|
|
sess = NULL;
|
|
}
|
|
op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
|
|
set_session_private_data(op->sym->session, cryptodev_driver_id,
|
|
_sess_private_data);
|
|
}
|
|
|
|
if (unlikely(sess == NULL))
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
|
|
|
|
return sess;
|
|
}
|
|
|
|
/**
|
|
* Process a crypto operation and complete a JOB_AES_HMAC job structure for
|
|
* submission to the multi buffer library for processing.
|
|
*
|
|
* @param qp queue pair
|
|
* @param job JOB_AES_HMAC structure to fill
|
|
* @param m mbuf to process
|
|
*
|
|
* @return
|
|
* - Completed JOB_AES_HMAC structure pointer on success
|
|
* - NULL pointer if completion of JOB_AES_HMAC structure isn't possible
|
|
*/
|
|
static inline int
|
|
set_mb_job_params(JOB_AES_HMAC *job, struct aesni_mb_qp *qp,
|
|
struct rte_crypto_op *op, uint8_t *digest_idx)
|
|
{
|
|
struct rte_mbuf *m_src = op->sym->m_src, *m_dst;
|
|
struct aesni_mb_session *session;
|
|
uint16_t m_offset = 0;
|
|
|
|
session = get_session(qp, op);
|
|
if (session == NULL) {
|
|
op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
|
|
return -1;
|
|
}
|
|
|
|
/* Set crypto operation */
|
|
job->chain_order = session->chain_order;
|
|
|
|
/* Set cipher parameters */
|
|
job->cipher_direction = session->cipher.direction;
|
|
job->cipher_mode = session->cipher.mode;
|
|
|
|
job->aes_key_len_in_bytes = session->cipher.key_length_in_bytes;
|
|
job->aes_enc_key_expanded = session->cipher.expanded_aes_keys.encode;
|
|
job->aes_dec_key_expanded = session->cipher.expanded_aes_keys.decode;
|
|
|
|
|
|
/* Set authentication parameters */
|
|
job->hash_alg = session->auth.algo;
|
|
if (job->hash_alg == AES_XCBC) {
|
|
job->u.XCBC._k1_expanded = session->auth.xcbc.k1_expanded;
|
|
job->u.XCBC._k2 = session->auth.xcbc.k2;
|
|
job->u.XCBC._k3 = session->auth.xcbc.k3;
|
|
} else if (job->hash_alg == AES_CCM) {
|
|
job->u.CCM.aad = op->sym->aead.aad.data + 18;
|
|
job->u.CCM.aad_len_in_bytes = session->aead.aad_len;
|
|
} else if (job->hash_alg == AES_CMAC) {
|
|
job->u.CMAC._key_expanded = session->auth.cmac.expkey;
|
|
job->u.CMAC._skey1 = session->auth.cmac.skey1;
|
|
job->u.CMAC._skey2 = session->auth.cmac.skey2;
|
|
|
|
} else {
|
|
job->u.HMAC._hashed_auth_key_xor_ipad = session->auth.pads.inner;
|
|
job->u.HMAC._hashed_auth_key_xor_opad = session->auth.pads.outer;
|
|
}
|
|
|
|
/* Mutable crypto operation parameters */
|
|
if (op->sym->m_dst) {
|
|
m_src = m_dst = op->sym->m_dst;
|
|
|
|
/* append space for output data to mbuf */
|
|
char *odata = rte_pktmbuf_append(m_dst,
|
|
rte_pktmbuf_data_len(op->sym->m_src));
|
|
if (odata == NULL) {
|
|
MB_LOG_ERR("failed to allocate space in destination "
|
|
"mbuf for source data");
|
|
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
|
|
return -1;
|
|
}
|
|
|
|
memcpy(odata, rte_pktmbuf_mtod(op->sym->m_src, void*),
|
|
rte_pktmbuf_data_len(op->sym->m_src));
|
|
} else {
|
|
m_dst = m_src;
|
|
if (job->hash_alg == AES_CCM)
|
|
m_offset = op->sym->aead.data.offset;
|
|
else
|
|
m_offset = op->sym->cipher.data.offset;
|
|
}
|
|
|
|
/* Set digest output location */
|
|
if (job->hash_alg != NULL_HASH &&
|
|
session->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
|
|
job->auth_tag_output = qp->temp_digests[*digest_idx];
|
|
*digest_idx = (*digest_idx + 1) % MAX_JOBS;
|
|
} else {
|
|
if (job->hash_alg == AES_CCM)
|
|
job->auth_tag_output = op->sym->aead.digest.data;
|
|
else
|
|
job->auth_tag_output = op->sym->auth.digest.data;
|
|
}
|
|
|
|
/*
|
|
* Multi-buffer library current only support returning a truncated
|
|
* digest length as specified in the relevant IPsec RFCs
|
|
*/
|
|
if (job->hash_alg != AES_CCM && job->hash_alg != AES_CMAC)
|
|
job->auth_tag_output_len_in_bytes =
|
|
get_truncated_digest_byte_length(job->hash_alg);
|
|
else
|
|
job->auth_tag_output_len_in_bytes = session->auth.digest_len;
|
|
|
|
|
|
/* Set IV parameters */
|
|
|
|
job->iv_len_in_bytes = session->iv.length;
|
|
|
|
/* Data Parameter */
|
|
job->src = rte_pktmbuf_mtod(m_src, uint8_t *);
|
|
job->dst = rte_pktmbuf_mtod_offset(m_dst, uint8_t *, m_offset);
|
|
|
|
if (job->hash_alg == AES_CCM) {
|
|
job->cipher_start_src_offset_in_bytes =
|
|
op->sym->aead.data.offset;
|
|
job->msg_len_to_cipher_in_bytes = op->sym->aead.data.length;
|
|
job->hash_start_src_offset_in_bytes = op->sym->aead.data.offset;
|
|
job->msg_len_to_hash_in_bytes = op->sym->aead.data.length;
|
|
|
|
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
|
|
session->iv.offset + 1);
|
|
} else {
|
|
job->cipher_start_src_offset_in_bytes =
|
|
op->sym->cipher.data.offset;
|
|
job->msg_len_to_cipher_in_bytes = op->sym->cipher.data.length;
|
|
|
|
job->hash_start_src_offset_in_bytes = op->sym->auth.data.offset;
|
|
job->msg_len_to_hash_in_bytes = op->sym->auth.data.length;
|
|
|
|
job->iv = rte_crypto_op_ctod_offset(op, uint8_t *,
|
|
session->iv.offset);
|
|
}
|
|
|
|
/* Set user data to be crypto operation data struct */
|
|
job->user_data = op;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
verify_digest(struct aesni_mb_qp *qp __rte_unused, JOB_AES_HMAC *job,
|
|
struct rte_crypto_op *op) {
|
|
/* Verify digest if required */
|
|
if (job->hash_alg == AES_CCM) {
|
|
if (memcmp(job->auth_tag_output, op->sym->aead.digest.data,
|
|
job->auth_tag_output_len_in_bytes) != 0)
|
|
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
|
|
} else {
|
|
if (memcmp(job->auth_tag_output, op->sym->auth.digest.data,
|
|
job->auth_tag_output_len_in_bytes) != 0)
|
|
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Process a completed job and return rte_mbuf which job processed
|
|
*
|
|
* @param qp Queue Pair to process
|
|
* @param job JOB_AES_HMAC job to process
|
|
*
|
|
* @return
|
|
* - Returns processed crypto operation.
|
|
* - Returns NULL on invalid job
|
|
*/
|
|
static inline struct rte_crypto_op *
|
|
post_process_mb_job(struct aesni_mb_qp *qp, JOB_AES_HMAC *job)
|
|
{
|
|
struct rte_crypto_op *op = (struct rte_crypto_op *)job->user_data;
|
|
struct aesni_mb_session *sess = get_session_private_data(
|
|
op->sym->session,
|
|
cryptodev_driver_id);
|
|
|
|
if (likely(op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)) {
|
|
switch (job->status) {
|
|
case STS_COMPLETED:
|
|
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
|
|
|
|
if (job->hash_alg != NULL_HASH) {
|
|
if (sess->auth.operation ==
|
|
RTE_CRYPTO_AUTH_OP_VERIFY)
|
|
verify_digest(qp, job, op);
|
|
}
|
|
break;
|
|
default:
|
|
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
|
|
}
|
|
}
|
|
|
|
/* Free session if a session-less crypto op */
|
|
if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
|
|
memset(sess, 0, sizeof(struct aesni_mb_session));
|
|
memset(op->sym->session, 0,
|
|
rte_cryptodev_get_header_session_size());
|
|
rte_mempool_put(qp->sess_mp, sess);
|
|
rte_mempool_put(qp->sess_mp, op->sym->session);
|
|
op->sym->session = NULL;
|
|
}
|
|
|
|
return op;
|
|
}
|
|
|
|
/**
|
|
* Process a completed JOB_AES_HMAC job and keep processing jobs until
|
|
* get_completed_job return NULL
|
|
*
|
|
* @param qp Queue Pair to process
|
|
* @param job JOB_AES_HMAC job
|
|
*
|
|
* @return
|
|
* - Number of processed jobs
|
|
*/
|
|
static unsigned
|
|
handle_completed_jobs(struct aesni_mb_qp *qp, JOB_AES_HMAC *job,
|
|
struct rte_crypto_op **ops, uint16_t nb_ops)
|
|
{
|
|
struct rte_crypto_op *op = NULL;
|
|
unsigned processed_jobs = 0;
|
|
|
|
while (job != NULL) {
|
|
op = post_process_mb_job(qp, job);
|
|
|
|
if (op) {
|
|
ops[processed_jobs++] = op;
|
|
qp->stats.dequeued_count++;
|
|
} else {
|
|
qp->stats.dequeue_err_count++;
|
|
break;
|
|
}
|
|
if (processed_jobs == nb_ops)
|
|
break;
|
|
|
|
job = (*qp->op_fns->job.get_completed_job)(&qp->mb_mgr);
|
|
}
|
|
|
|
return processed_jobs;
|
|
}
|
|
|
|
static inline uint16_t
|
|
flush_mb_mgr(struct aesni_mb_qp *qp, struct rte_crypto_op **ops,
|
|
uint16_t nb_ops)
|
|
{
|
|
int processed_ops = 0;
|
|
|
|
/* Flush the remaining jobs */
|
|
JOB_AES_HMAC *job = (*qp->op_fns->job.flush_job)(&qp->mb_mgr);
|
|
|
|
if (job)
|
|
processed_ops += handle_completed_jobs(qp, job,
|
|
&ops[processed_ops], nb_ops - processed_ops);
|
|
|
|
return processed_ops;
|
|
}
|
|
|
|
static inline JOB_AES_HMAC *
|
|
set_job_null_op(JOB_AES_HMAC *job, struct rte_crypto_op *op)
|
|
{
|
|
job->chain_order = HASH_CIPHER;
|
|
job->cipher_mode = NULL_CIPHER;
|
|
job->hash_alg = NULL_HASH;
|
|
job->cipher_direction = DECRYPT;
|
|
|
|
/* Set user data to be crypto operation data struct */
|
|
job->user_data = op;
|
|
|
|
return job;
|
|
}
|
|
|
|
static uint16_t
|
|
aesni_mb_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
|
|
uint16_t nb_ops)
|
|
{
|
|
struct aesni_mb_qp *qp = queue_pair;
|
|
|
|
struct rte_crypto_op *op;
|
|
JOB_AES_HMAC *job;
|
|
|
|
int retval, processed_jobs = 0;
|
|
|
|
if (unlikely(nb_ops == 0))
|
|
return 0;
|
|
|
|
uint8_t digest_idx = qp->digest_idx;
|
|
do {
|
|
/* Get next operation to process from ingress queue */
|
|
retval = rte_ring_dequeue(qp->ingress_queue, (void **)&op);
|
|
if (retval < 0)
|
|
break;
|
|
|
|
/* Get next free mb job struct from mb manager */
|
|
job = (*qp->op_fns->job.get_next)(&qp->mb_mgr);
|
|
if (unlikely(job == NULL)) {
|
|
/* if no free mb job structs we need to flush mb_mgr */
|
|
processed_jobs += flush_mb_mgr(qp,
|
|
&ops[processed_jobs],
|
|
(nb_ops - processed_jobs) - 1);
|
|
|
|
job = (*qp->op_fns->job.get_next)(&qp->mb_mgr);
|
|
}
|
|
|
|
retval = set_mb_job_params(job, qp, op, &digest_idx);
|
|
if (unlikely(retval != 0)) {
|
|
qp->stats.dequeue_err_count++;
|
|
set_job_null_op(job, op);
|
|
}
|
|
|
|
/* Submit job to multi-buffer for processing */
|
|
job = (*qp->op_fns->job.submit)(&qp->mb_mgr);
|
|
|
|
/*
|
|
* If submit returns a processed job then handle it,
|
|
* before submitting subsequent jobs
|
|
*/
|
|
if (job)
|
|
processed_jobs += handle_completed_jobs(qp, job,
|
|
&ops[processed_jobs],
|
|
nb_ops - processed_jobs);
|
|
|
|
} while (processed_jobs < nb_ops);
|
|
|
|
qp->digest_idx = digest_idx;
|
|
|
|
if (processed_jobs < 1)
|
|
processed_jobs += flush_mb_mgr(qp,
|
|
&ops[processed_jobs],
|
|
nb_ops - processed_jobs);
|
|
|
|
return processed_jobs;
|
|
}
|
|
|
|
static int cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev);
|
|
|
|
static int
|
|
cryptodev_aesni_mb_create(const char *name,
|
|
struct rte_vdev_device *vdev,
|
|
struct rte_cryptodev_pmd_init_params *init_params)
|
|
{
|
|
struct rte_cryptodev *dev;
|
|
struct aesni_mb_private *internals;
|
|
enum aesni_mb_vector_mode vector_mode;
|
|
|
|
/* Check CPU for support for AES instruction set */
|
|
if (!rte_cpu_get_flag_enabled(RTE_CPUFLAG_AES)) {
|
|
MB_LOG_ERR("AES instructions not supported by CPU");
|
|
return -EFAULT;
|
|
}
|
|
|
|
dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
|
|
if (dev == NULL) {
|
|
MB_LOG_ERR("failed to create cryptodev vdev");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Check CPU for supported vector instruction set */
|
|
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F))
|
|
vector_mode = RTE_AESNI_MB_AVX512;
|
|
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
|
|
vector_mode = RTE_AESNI_MB_AVX2;
|
|
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX))
|
|
vector_mode = RTE_AESNI_MB_AVX;
|
|
else
|
|
vector_mode = RTE_AESNI_MB_SSE;
|
|
|
|
dev->driver_id = cryptodev_driver_id;
|
|
dev->dev_ops = rte_aesni_mb_pmd_ops;
|
|
|
|
/* register rx/tx burst functions for data path */
|
|
dev->dequeue_burst = aesni_mb_pmd_dequeue_burst;
|
|
dev->enqueue_burst = aesni_mb_pmd_enqueue_burst;
|
|
|
|
dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
|
|
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
|
|
RTE_CRYPTODEV_FF_CPU_AESNI;
|
|
|
|
switch (vector_mode) {
|
|
case RTE_AESNI_MB_SSE:
|
|
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_SSE;
|
|
break;
|
|
case RTE_AESNI_MB_AVX:
|
|
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX;
|
|
break;
|
|
case RTE_AESNI_MB_AVX2:
|
|
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX2;
|
|
break;
|
|
case RTE_AESNI_MB_AVX512:
|
|
dev->feature_flags |= RTE_CRYPTODEV_FF_CPU_AVX512;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Set vector instructions mode supported */
|
|
internals = dev->data->dev_private;
|
|
|
|
internals->vector_mode = vector_mode;
|
|
internals->max_nb_queue_pairs = init_params->max_nb_queue_pairs;
|
|
internals->max_nb_sessions = init_params->max_nb_sessions;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cryptodev_aesni_mb_probe(struct rte_vdev_device *vdev)
|
|
{
|
|
struct rte_cryptodev_pmd_init_params init_params = {
|
|
"",
|
|
sizeof(struct aesni_mb_private),
|
|
rte_socket_id(),
|
|
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS,
|
|
RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_SESSIONS
|
|
};
|
|
const char *name, *args;
|
|
int retval;
|
|
|
|
name = rte_vdev_device_name(vdev);
|
|
if (name == NULL)
|
|
return -EINVAL;
|
|
|
|
args = rte_vdev_device_args(vdev);
|
|
|
|
retval = rte_cryptodev_pmd_parse_input_args(&init_params, args);
|
|
if (retval) {
|
|
MB_LOG_ERR("Failed to parse initialisation arguments[%s]\n",
|
|
args);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return cryptodev_aesni_mb_create(name, vdev, &init_params);
|
|
}
|
|
|
|
static int
|
|
cryptodev_aesni_mb_remove(struct rte_vdev_device *vdev)
|
|
{
|
|
struct rte_cryptodev *cryptodev;
|
|
const char *name;
|
|
|
|
name = rte_vdev_device_name(vdev);
|
|
if (name == NULL)
|
|
return -EINVAL;
|
|
|
|
cryptodev = rte_cryptodev_pmd_get_named_dev(name);
|
|
if (cryptodev == NULL)
|
|
return -ENODEV;
|
|
|
|
return rte_cryptodev_pmd_destroy(cryptodev);
|
|
}
|
|
|
|
static struct rte_vdev_driver cryptodev_aesni_mb_pmd_drv = {
|
|
.probe = cryptodev_aesni_mb_probe,
|
|
.remove = cryptodev_aesni_mb_remove
|
|
};
|
|
|
|
static struct cryptodev_driver aesni_mb_crypto_drv;
|
|
|
|
RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd_drv);
|
|
RTE_PMD_REGISTER_ALIAS(CRYPTODEV_NAME_AESNI_MB_PMD, cryptodev_aesni_mb_pmd);
|
|
RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_AESNI_MB_PMD,
|
|
"max_nb_queue_pairs=<int> "
|
|
"max_nb_sessions=<int> "
|
|
"socket_id=<int>");
|
|
RTE_PMD_REGISTER_CRYPTO_DRIVER(aesni_mb_crypto_drv,
|
|
cryptodev_aesni_mb_pmd_drv.driver,
|
|
cryptodev_driver_id);
|