numam-dpdk/drivers/raw/ioat/rte_ioat_rawdev_fns.h
Kevin Laatz 2ae23f5647 raw/ioat: add fill operation
Add fill operation enqueue support for IOAT and IDXD. The fill enqueue is
similar to the copy enqueue, but takes a 'pattern' rather than a source
address to transfer to the destination address. This patch also includes an
additional test case for the new operation type.

Signed-off-by: Kevin Laatz <kevin.laatz@intel.com>
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: Radu Nicolau <radu.nicolau@intel.com>
2020-10-08 14:33:20 +02:00

596 lines
15 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019-2020 Intel Corporation
*/
#ifndef _RTE_IOAT_RAWDEV_FNS_H_
#define _RTE_IOAT_RAWDEV_FNS_H_
#include <x86intrin.h>
#include <rte_rawdev.h>
#include <rte_memzone.h>
#include <rte_prefetch.h>
/**
* @internal
* Structure representing a device descriptor
*/
struct rte_ioat_generic_hw_desc {
uint32_t size;
union {
uint32_t control_raw;
struct {
uint32_t int_enable: 1;
uint32_t src_snoop_disable: 1;
uint32_t dest_snoop_disable: 1;
uint32_t completion_update: 1;
uint32_t fence: 1;
uint32_t reserved2: 1;
uint32_t src_page_break: 1;
uint32_t dest_page_break: 1;
uint32_t bundle: 1;
uint32_t dest_dca: 1;
uint32_t hint: 1;
uint32_t reserved: 13;
uint32_t op: 8;
} control;
} u;
uint64_t src_addr;
uint64_t dest_addr;
uint64_t next;
uint64_t op_specific[4];
};
/**
* @internal
* Identify the data path to use.
* Must be first field of rte_ioat_rawdev and rte_idxd_rawdev structs
*/
enum rte_ioat_dev_type {
RTE_IOAT_DEV,
RTE_IDXD_DEV,
};
/**
* @internal
* some statistics for tracking, if added/changed update xstats fns
*/
struct rte_ioat_xstats {
uint64_t enqueue_failed;
uint64_t enqueued;
uint64_t started;
uint64_t completed;
};
/**
* @internal
* Structure representing an IOAT device instance
*/
struct rte_ioat_rawdev {
/* common fields at the top - match those in rte_idxd_rawdev */
enum rte_ioat_dev_type type;
struct rte_ioat_xstats xstats;
struct rte_rawdev *rawdev;
const struct rte_memzone *mz;
const struct rte_memzone *desc_mz;
volatile uint16_t *doorbell __rte_cache_aligned;
phys_addr_t status_addr;
phys_addr_t ring_addr;
unsigned short ring_size;
bool hdls_disable;
struct rte_ioat_generic_hw_desc *desc_ring;
__m128i *hdls; /* completion handles for returning to user */
unsigned short next_read;
unsigned short next_write;
/* to report completions, the device will write status back here */
volatile uint64_t status __rte_cache_aligned;
/* pointer to the register bar */
volatile struct rte_ioat_registers *regs;
};
#define RTE_IOAT_CHANSTS_IDLE 0x1
#define RTE_IOAT_CHANSTS_SUSPENDED 0x2
#define RTE_IOAT_CHANSTS_HALTED 0x3
#define RTE_IOAT_CHANSTS_ARMED 0x4
/*
* Defines used in the data path for interacting with hardware.
*/
#define IDXD_CMD_OP_SHIFT 24
enum rte_idxd_ops {
idxd_op_nop = 0,
idxd_op_batch,
idxd_op_drain,
idxd_op_memmove,
idxd_op_fill
};
#define IDXD_FLAG_FENCE (1 << 0)
#define IDXD_FLAG_COMPLETION_ADDR_VALID (1 << 2)
#define IDXD_FLAG_REQUEST_COMPLETION (1 << 3)
#define IDXD_FLAG_CACHE_CONTROL (1 << 8)
#define IOAT_COMP_UPDATE_SHIFT 3
#define IOAT_CMD_OP_SHIFT 24
enum rte_ioat_ops {
ioat_op_copy = 0, /* Standard DMA Operation */
ioat_op_fill /* Block Fill */
};
/**
* Hardware descriptor used by DSA hardware, for both bursts and
* for individual operations.
*/
struct rte_idxd_hw_desc {
uint32_t pasid;
uint32_t op_flags;
rte_iova_t completion;
RTE_STD_C11
union {
rte_iova_t src; /* source address for copy ops etc. */
rte_iova_t desc_addr; /* descriptor pointer for batch */
};
rte_iova_t dst;
uint32_t size; /* length of data for op, or batch size */
/* 28 bytes of padding here */
} __rte_aligned(64);
/**
* Completion record structure written back by DSA
*/
struct rte_idxd_completion {
uint8_t status;
uint8_t result;
/* 16-bits pad here */
uint32_t completed_size; /* data length, or descriptors for batch */
rte_iova_t fault_address;
uint32_t invalid_flags;
} __rte_aligned(32);
#define BATCH_SIZE 64
/**
* Structure used inside the driver for building up and submitting
* a batch of operations to the DSA hardware.
*/
struct rte_idxd_desc_batch {
struct rte_idxd_completion comp; /* the completion record for batch */
uint16_t submitted;
uint16_t op_count;
uint16_t hdl_end;
struct rte_idxd_hw_desc batch_desc;
/* batches must always have 2 descriptors, so put a null at the start */
struct rte_idxd_hw_desc null_desc;
struct rte_idxd_hw_desc ops[BATCH_SIZE];
};
/**
* structure used to save the "handles" provided by the user to be
* returned to the user on job completion.
*/
struct rte_idxd_user_hdl {
uint64_t src;
uint64_t dst;
};
/**
* @internal
* Structure representing an IDXD device instance
*/
struct rte_idxd_rawdev {
enum rte_ioat_dev_type type;
struct rte_ioat_xstats xstats;
void *portal; /* address to write the batch descriptor */
/* counters to track the batches and the individual op handles */
uint16_t batch_ring_sz; /* size of batch ring */
uint16_t hdl_ring_sz; /* size of the user hdl ring */
uint16_t next_batch; /* where we write descriptor ops */
uint16_t next_completed; /* batch where we read completions */
uint16_t next_ret_hdl; /* the next user hdl to return */
uint16_t last_completed_hdl; /* the last user hdl that has completed */
uint16_t next_free_hdl; /* where the handle for next op will go */
uint16_t hdls_disable; /* disable tracking completion handles */
struct rte_idxd_user_hdl *hdl_ring;
struct rte_idxd_desc_batch *batch_ring;
};
static __rte_always_inline int
__ioat_write_desc(int dev_id, uint32_t op, uint64_t src, phys_addr_t dst,
unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
{
struct rte_ioat_rawdev *ioat =
(struct rte_ioat_rawdev *)rte_rawdevs[dev_id].dev_private;
unsigned short read = ioat->next_read;
unsigned short write = ioat->next_write;
unsigned short mask = ioat->ring_size - 1;
unsigned short space = mask + read - write;
struct rte_ioat_generic_hw_desc *desc;
if (space == 0) {
ioat->xstats.enqueue_failed++;
return 0;
}
ioat->next_write = write + 1;
write &= mask;
desc = &ioat->desc_ring[write];
desc->size = length;
/* set descriptor write-back every 16th descriptor */
desc->u.control_raw = (uint32_t)((op << IOAT_CMD_OP_SHIFT) |
(!(write & 0xF) << IOAT_COMP_UPDATE_SHIFT));
desc->src_addr = src;
desc->dest_addr = dst;
if (!ioat->hdls_disable)
ioat->hdls[write] = _mm_set_epi64x((int64_t)dst_hdl,
(int64_t)src_hdl);
rte_prefetch0(&ioat->desc_ring[ioat->next_write & mask]);
ioat->xstats.enqueued++;
return 1;
}
static __rte_always_inline int
__ioat_enqueue_fill(int dev_id, uint64_t pattern, phys_addr_t dst,
unsigned int length, uintptr_t dst_hdl)
{
static const uintptr_t null_hdl;
return __ioat_write_desc(dev_id, ioat_op_fill, pattern, dst, length,
null_hdl, dst_hdl);
}
/*
* Enqueue a copy operation onto the ioat device
*/
static __rte_always_inline int
__ioat_enqueue_copy(int dev_id, phys_addr_t src, phys_addr_t dst,
unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
{
return __ioat_write_desc(dev_id, ioat_op_copy, src, dst, length,
src_hdl, dst_hdl);
}
/* add fence to last written descriptor */
static __rte_always_inline int
__ioat_fence(int dev_id)
{
struct rte_ioat_rawdev *ioat =
(struct rte_ioat_rawdev *)rte_rawdevs[dev_id].dev_private;
unsigned short write = ioat->next_write;
unsigned short mask = ioat->ring_size - 1;
struct rte_ioat_generic_hw_desc *desc;
write = (write - 1) & mask;
desc = &ioat->desc_ring[write];
desc->u.control.fence = 1;
return 0;
}
/*
* Trigger hardware to begin performing enqueued operations
*/
static __rte_always_inline void
__ioat_perform_ops(int dev_id)
{
struct rte_ioat_rawdev *ioat =
(struct rte_ioat_rawdev *)rte_rawdevs[dev_id].dev_private;
ioat->desc_ring[(ioat->next_write - 1) & (ioat->ring_size - 1)].u
.control.completion_update = 1;
rte_compiler_barrier();
*ioat->doorbell = ioat->next_write;
ioat->xstats.started = ioat->xstats.enqueued;
}
/**
* @internal
* Returns the index of the last completed operation.
*/
static __rte_always_inline int
__ioat_get_last_completed(struct rte_ioat_rawdev *ioat, int *error)
{
uint64_t status = ioat->status;
/* lower 3 bits indicate "transfer status" : active, idle, halted.
* We can ignore bit 0.
*/
*error = status & (RTE_IOAT_CHANSTS_SUSPENDED | RTE_IOAT_CHANSTS_ARMED);
return (status - ioat->ring_addr) >> 6;
}
/*
* Returns details of operations that have been completed
*/
static __rte_always_inline int
__ioat_completed_ops(int dev_id, uint8_t max_copies,
uintptr_t *src_hdls, uintptr_t *dst_hdls)
{
struct rte_ioat_rawdev *ioat =
(struct rte_ioat_rawdev *)rte_rawdevs[dev_id].dev_private;
unsigned short mask = (ioat->ring_size - 1);
unsigned short read = ioat->next_read;
unsigned short end_read, count;
int error;
int i = 0;
end_read = (__ioat_get_last_completed(ioat, &error) + 1) & mask;
count = (end_read - (read & mask)) & mask;
if (error) {
rte_errno = EIO;
return -1;
}
if (ioat->hdls_disable) {
read += count;
goto end;
}
if (count > max_copies)
count = max_copies;
for (; i < count - 1; i += 2, read += 2) {
__m128i hdls0 = _mm_load_si128(&ioat->hdls[read & mask]);
__m128i hdls1 = _mm_load_si128(&ioat->hdls[(read + 1) & mask]);
_mm_storeu_si128((__m128i *)&src_hdls[i],
_mm_unpacklo_epi64(hdls0, hdls1));
_mm_storeu_si128((__m128i *)&dst_hdls[i],
_mm_unpackhi_epi64(hdls0, hdls1));
}
for (; i < count; i++, read++) {
uintptr_t *hdls = (uintptr_t *)&ioat->hdls[read & mask];
src_hdls[i] = hdls[0];
dst_hdls[i] = hdls[1];
}
end:
ioat->next_read = read;
ioat->xstats.completed += count;
return count;
}
static __rte_always_inline int
__idxd_write_desc(int dev_id, const struct rte_idxd_hw_desc *desc,
const struct rte_idxd_user_hdl *hdl)
{
struct rte_idxd_rawdev *idxd =
(struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
struct rte_idxd_desc_batch *b = &idxd->batch_ring[idxd->next_batch];
/* check for room in the handle ring */
if (((idxd->next_free_hdl + 1) & (idxd->hdl_ring_sz - 1)) == idxd->next_ret_hdl)
goto failed;
/* check for space in current batch */
if (b->op_count >= BATCH_SIZE)
goto failed;
/* check that we can actually use the current batch */
if (b->submitted)
goto failed;
/* write the descriptor */
b->ops[b->op_count++] = *desc;
/* store the completion details */
if (!idxd->hdls_disable)
idxd->hdl_ring[idxd->next_free_hdl] = *hdl;
if (++idxd->next_free_hdl == idxd->hdl_ring_sz)
idxd->next_free_hdl = 0;
idxd->xstats.enqueued++;
return 1;
failed:
idxd->xstats.enqueue_failed++;
rte_errno = ENOSPC;
return 0;
}
static __rte_always_inline int
__idxd_enqueue_fill(int dev_id, uint64_t pattern, rte_iova_t dst,
unsigned int length, uintptr_t dst_hdl)
{
const struct rte_idxd_hw_desc desc = {
.op_flags = (idxd_op_fill << IDXD_CMD_OP_SHIFT) |
IDXD_FLAG_CACHE_CONTROL,
.src = pattern,
.dst = dst,
.size = length
};
const struct rte_idxd_user_hdl hdl = {
.dst = dst_hdl
};
return __idxd_write_desc(dev_id, &desc, &hdl);
}
static __rte_always_inline int
__idxd_enqueue_copy(int dev_id, rte_iova_t src, rte_iova_t dst,
unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
{
const struct rte_idxd_hw_desc desc = {
.op_flags = (idxd_op_memmove << IDXD_CMD_OP_SHIFT) |
IDXD_FLAG_CACHE_CONTROL,
.src = src,
.dst = dst,
.size = length
};
const struct rte_idxd_user_hdl hdl = {
.src = src_hdl,
.dst = dst_hdl
};
return __idxd_write_desc(dev_id, &desc, &hdl);
}
static __rte_always_inline int
__idxd_fence(int dev_id)
{
static const struct rte_idxd_hw_desc fence = {
.op_flags = IDXD_FLAG_FENCE
};
static const struct rte_idxd_user_hdl null_hdl;
return __idxd_write_desc(dev_id, &fence, &null_hdl);
}
static __rte_always_inline void
__idxd_movdir64b(volatile void *dst, const void *src)
{
asm volatile (".byte 0x66, 0x0f, 0x38, 0xf8, 0x02"
:
: "a" (dst), "d" (src));
}
static __rte_always_inline void
__idxd_perform_ops(int dev_id)
{
struct rte_idxd_rawdev *idxd =
(struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
struct rte_idxd_desc_batch *b = &idxd->batch_ring[idxd->next_batch];
if (b->submitted || b->op_count == 0)
return;
b->hdl_end = idxd->next_free_hdl;
b->comp.status = 0;
b->submitted = 1;
b->batch_desc.size = b->op_count + 1;
__idxd_movdir64b(idxd->portal, &b->batch_desc);
if (++idxd->next_batch == idxd->batch_ring_sz)
idxd->next_batch = 0;
idxd->xstats.started = idxd->xstats.enqueued;
}
static __rte_always_inline int
__idxd_completed_ops(int dev_id, uint8_t max_ops,
uintptr_t *src_hdls, uintptr_t *dst_hdls)
{
struct rte_idxd_rawdev *idxd =
(struct rte_idxd_rawdev *)rte_rawdevs[dev_id].dev_private;
struct rte_idxd_desc_batch *b = &idxd->batch_ring[idxd->next_completed];
uint16_t h_idx = idxd->next_ret_hdl;
int n = 0;
while (b->submitted && b->comp.status != 0) {
idxd->last_completed_hdl = b->hdl_end;
b->submitted = 0;
b->op_count = 0;
if (++idxd->next_completed == idxd->batch_ring_sz)
idxd->next_completed = 0;
b = &idxd->batch_ring[idxd->next_completed];
}
if (!idxd->hdls_disable)
for (n = 0; n < max_ops && h_idx != idxd->last_completed_hdl; n++) {
src_hdls[n] = idxd->hdl_ring[h_idx].src;
dst_hdls[n] = idxd->hdl_ring[h_idx].dst;
if (++h_idx == idxd->hdl_ring_sz)
h_idx = 0;
}
else
while (h_idx != idxd->last_completed_hdl) {
n++;
if (++h_idx == idxd->hdl_ring_sz)
h_idx = 0;
}
idxd->next_ret_hdl = h_idx;
idxd->xstats.completed += n;
return n;
}
static inline int
rte_ioat_enqueue_fill(int dev_id, uint64_t pattern, phys_addr_t dst,
unsigned int len, uintptr_t dst_hdl)
{
enum rte_ioat_dev_type *type =
(enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
if (*type == RTE_IDXD_DEV)
return __idxd_enqueue_fill(dev_id, pattern, dst, len, dst_hdl);
else
return __ioat_enqueue_fill(dev_id, pattern, dst, len, dst_hdl);
}
static inline int
rte_ioat_enqueue_copy(int dev_id, phys_addr_t src, phys_addr_t dst,
unsigned int length, uintptr_t src_hdl, uintptr_t dst_hdl)
{
enum rte_ioat_dev_type *type =
(enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
if (*type == RTE_IDXD_DEV)
return __idxd_enqueue_copy(dev_id, src, dst, length,
src_hdl, dst_hdl);
else
return __ioat_enqueue_copy(dev_id, src, dst, length,
src_hdl, dst_hdl);
}
static inline int
rte_ioat_fence(int dev_id)
{
enum rte_ioat_dev_type *type =
(enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
if (*type == RTE_IDXD_DEV)
return __idxd_fence(dev_id);
else
return __ioat_fence(dev_id);
}
static inline void
rte_ioat_perform_ops(int dev_id)
{
enum rte_ioat_dev_type *type =
(enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
if (*type == RTE_IDXD_DEV)
return __idxd_perform_ops(dev_id);
else
return __ioat_perform_ops(dev_id);
}
static inline int
rte_ioat_completed_ops(int dev_id, uint8_t max_copies,
uintptr_t *src_hdls, uintptr_t *dst_hdls)
{
enum rte_ioat_dev_type *type =
(enum rte_ioat_dev_type *)rte_rawdevs[dev_id].dev_private;
if (*type == RTE_IDXD_DEV)
return __idxd_completed_ops(dev_id, max_copies,
src_hdls, dst_hdls);
else
return __ioat_completed_ops(dev_id, max_copies,
src_hdls, dst_hdls);
}
static inline void
__rte_deprecated_msg("use rte_ioat_perform_ops() instead")
rte_ioat_do_copies(int dev_id) { rte_ioat_perform_ops(dev_id); }
static inline int
__rte_deprecated_msg("use rte_ioat_completed_ops() instead")
rte_ioat_completed_copies(int dev_id, uint8_t max_copies,
uintptr_t *src_hdls, uintptr_t *dst_hdls)
{
return rte_ioat_completed_ops(dev_id, max_copies, src_hdls, dst_hdls);
}
#endif /* _RTE_IOAT_RAWDEV_FNS_H_ */