76d794566d
The maximum number of queues for hns3 PF and VF driver is 64 based on hns3 network engine with revision_id equals 0x21. Based on hns3 network engine with revision_id equals 0x30, the hns3 PF PMD driver can support up to 1280 queues, and hns3 VF PMD driver can support up to 128 queues. The following points need to be modified to support maximizing queue number and maintain better compatibility: 1) Maximizing the number of queues for hns3 PF and VF PMD driver In current version, VF is not supported when PF is driven by hns3 PMD driver. If maximum queue numbers allocated to PF PMD driver is less than total tqps_num allocated to this port, all remaining number of queues are mapped to VF function, which is unreasonable. So we fix that all remaining number of queues are mapped to PF function. Using RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF which comes from configuration file to limit the queue number allocated to PF device based on hns3 network engine with revision_id greater than 0x30. And PF device still keep the maximum 64 queues based on hns3 network engine with revision_id equals 0x21. Remove restriction of the macro HNS3_MAX_TQP_NUM_PER_FUNC on the maximum number of queues in hns3 VF PMD driver and use the value allocated by hns3 PF kernel netdev driver. 2) According to the queue number allocated to PF device, a variable array for Rx and Tx queue is dynamically allocated to record the statistics of Rx and Tx queues during the .dev_init ops implementation function. 3) Add an extended field in hns3_pf_res_cmd to support the case that numbers of queue are greater than 1024. 4) Use new base address of Rx or Tx queue if QUEUE_ID of Rx or Tx queue is greater than 1024. 5) Remove queue id mask and use all bits of actual queue_id as the queue_id to configure hardware. 6) Currently, 0~9 bits of qset_id in hns3_nq_to_qs_link_cmd used to record actual qset id and 10 bit as VLD bit are configured to hardware. So we also need to use 11~15 bits when actual qset_id is greater than 1024. 7) The number of queue sets based on different network engine are different. We use it to calculate group number and configure to hardware in the backpressure configuration. 8) Adding check operations for number of Rx and Tx queue user configured when mapping queue to tc Rx queue numbers under a single TC must be less than rss_size_max supported by a single TC. Rx and Tx queue numbers are allocated to every TC by average. So Rx and Tx queue numbers must be an integer multiple of 2, or redundant queues are not available. 9) We can specify which packets enter the queue with a specific queue number, when creating flow table rules by rte_flow API. Currently, driver uses 0~9 bits to record the queue_id. So it is necessary to extend one bit field to record queue_id and configure to hardware, if the queue_id is greater than 1024. Signed-off-by: Huisong Li <lihuisong@huawei.com> Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com> |
||
---|---|---|
.ci | ||
app | ||
buildtools | ||
config | ||
devtools | ||
doc | ||
drivers | ||
examples | ||
kernel | ||
lib | ||
license | ||
usertools | ||
.editorconfig | ||
.gitattributes | ||
.gitignore | ||
.travis.yml | ||
ABI_VERSION | ||
MAINTAINERS | ||
Makefile | ||
meson_options.txt | ||
meson.build | ||
README | ||
VERSION |
DPDK is a set of libraries and drivers for fast packet processing. It supports many processor architectures and both FreeBSD and Linux. The DPDK uses the Open Source BSD-3-Clause license for the core libraries and drivers. The kernel components are GPL-2.0 licensed. Please check the doc directory for release notes, API documentation, and sample application information. For questions and usage discussions, subscribe to: users@dpdk.org Report bugs and issues to the development mailing list: dev@dpdk.org