numam-dpdk/drivers/net/enic/enic_main.c
John Daley 285fd7c446 net/enic: change Rx queue ordering to enable RSS action
Each RTE RQ is represented on enic as a Start Of Packet (SOP) queue
and overflow queue (DATA). There were arranged SOP0/DATA0, SOP1/DATA1,..
But need to be arranged SOP0, SOP1,..., DATA0, DATA1... so that
rte_flow RSS queue ranges work.

Signed-off-by: John Daley <johndale@cisco.com>
Reviewed-by: Hyong Youb Kim <hyonkim@cisco.com>
2020-04-21 13:57:08 +02:00

1883 lines
50 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2008-2017 Cisco Systems, Inc. All rights reserved.
* Copyright 2007 Nuova Systems, Inc. All rights reserved.
*/
#include <stdio.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_string_fns.h>
#include <rte_ethdev_driver.h>
#include "enic_compat.h"
#include "enic.h"
#include "wq_enet_desc.h"
#include "rq_enet_desc.h"
#include "cq_enet_desc.h"
#include "vnic_enet.h"
#include "vnic_dev.h"
#include "vnic_wq.h"
#include "vnic_rq.h"
#include "vnic_cq.h"
#include "vnic_intr.h"
#include "vnic_nic.h"
static inline int enic_is_sriov_vf(struct enic *enic)
{
return enic->pdev->id.device_id == PCI_DEVICE_ID_CISCO_VIC_ENET_VF;
}
static int is_zero_addr(uint8_t *addr)
{
return !(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]);
}
static int is_mcast_addr(uint8_t *addr)
{
return addr[0] & 1;
}
static int is_eth_addr_valid(uint8_t *addr)
{
return !is_mcast_addr(addr) && !is_zero_addr(addr);
}
static void
enic_rxmbuf_queue_release(__rte_unused struct enic *enic, struct vnic_rq *rq)
{
uint16_t i;
if (!rq || !rq->mbuf_ring) {
dev_debug(enic, "Pointer to rq or mbuf_ring is NULL");
return;
}
for (i = 0; i < rq->ring.desc_count; i++) {
if (rq->mbuf_ring[i]) {
rte_pktmbuf_free_seg(rq->mbuf_ring[i]);
rq->mbuf_ring[i] = NULL;
}
}
}
static void enic_free_wq_buf(struct rte_mbuf **buf)
{
struct rte_mbuf *mbuf = *buf;
rte_pktmbuf_free_seg(mbuf);
*buf = NULL;
}
static void enic_log_q_error(struct enic *enic)
{
unsigned int i;
uint32_t error_status;
for (i = 0; i < enic->wq_count; i++) {
error_status = vnic_wq_error_status(&enic->wq[i]);
if (error_status)
dev_err(enic, "WQ[%d] error_status %d\n", i,
error_status);
}
for (i = 0; i < enic_vnic_rq_count(enic); i++) {
if (!enic->rq[i].in_use)
continue;
error_status = vnic_rq_error_status(&enic->rq[i]);
if (error_status)
dev_err(enic, "RQ[%d] error_status %d\n", i,
error_status);
}
}
static void enic_clear_soft_stats(struct enic *enic)
{
struct enic_soft_stats *soft_stats = &enic->soft_stats;
rte_atomic64_clear(&soft_stats->rx_nombuf);
rte_atomic64_clear(&soft_stats->rx_packet_errors);
rte_atomic64_clear(&soft_stats->tx_oversized);
}
static void enic_init_soft_stats(struct enic *enic)
{
struct enic_soft_stats *soft_stats = &enic->soft_stats;
rte_atomic64_init(&soft_stats->rx_nombuf);
rte_atomic64_init(&soft_stats->rx_packet_errors);
rte_atomic64_init(&soft_stats->tx_oversized);
enic_clear_soft_stats(enic);
}
int enic_dev_stats_clear(struct enic *enic)
{
int ret;
ret = vnic_dev_stats_clear(enic->vdev);
if (ret != 0) {
dev_err(enic, "Error in clearing stats\n");
return ret;
}
enic_clear_soft_stats(enic);
return 0;
}
int enic_dev_stats_get(struct enic *enic, struct rte_eth_stats *r_stats)
{
struct vnic_stats *stats;
struct enic_soft_stats *soft_stats = &enic->soft_stats;
int64_t rx_truncated;
uint64_t rx_packet_errors;
int ret = vnic_dev_stats_dump(enic->vdev, &stats);
if (ret) {
dev_err(enic, "Error in getting stats\n");
return ret;
}
/* The number of truncated packets can only be calculated by
* subtracting a hardware counter from error packets received by
* the driver. Note: this causes transient inaccuracies in the
* ipackets count. Also, the length of truncated packets are
* counted in ibytes even though truncated packets are dropped
* which can make ibytes be slightly higher than it should be.
*/
rx_packet_errors = rte_atomic64_read(&soft_stats->rx_packet_errors);
rx_truncated = rx_packet_errors - stats->rx.rx_errors;
r_stats->ipackets = stats->rx.rx_frames_ok - rx_truncated;
r_stats->opackets = stats->tx.tx_frames_ok;
r_stats->ibytes = stats->rx.rx_bytes_ok;
r_stats->obytes = stats->tx.tx_bytes_ok;
r_stats->ierrors = stats->rx.rx_errors + stats->rx.rx_drop;
r_stats->oerrors = stats->tx.tx_errors
+ rte_atomic64_read(&soft_stats->tx_oversized);
r_stats->imissed = stats->rx.rx_no_bufs + rx_truncated;
r_stats->rx_nombuf = rte_atomic64_read(&soft_stats->rx_nombuf);
return 0;
}
int enic_del_mac_address(struct enic *enic, int mac_index)
{
struct rte_eth_dev *eth_dev = enic->rte_dev;
uint8_t *mac_addr = eth_dev->data->mac_addrs[mac_index].addr_bytes;
return vnic_dev_del_addr(enic->vdev, mac_addr);
}
int enic_set_mac_address(struct enic *enic, uint8_t *mac_addr)
{
int err;
if (!is_eth_addr_valid(mac_addr)) {
dev_err(enic, "invalid mac address\n");
return -EINVAL;
}
err = vnic_dev_add_addr(enic->vdev, mac_addr);
if (err)
dev_err(enic, "add mac addr failed\n");
return err;
}
static void
enic_free_rq_buf(struct rte_mbuf **mbuf)
{
if (*mbuf == NULL)
return;
rte_pktmbuf_free(*mbuf);
*mbuf = NULL;
}
void enic_init_vnic_resources(struct enic *enic)
{
unsigned int error_interrupt_enable = 1;
unsigned int error_interrupt_offset = 0;
unsigned int rxq_interrupt_enable = 0;
unsigned int rxq_interrupt_offset = ENICPMD_RXQ_INTR_OFFSET;
unsigned int index = 0;
unsigned int cq_idx;
struct vnic_rq *data_rq;
if (enic->rte_dev->data->dev_conf.intr_conf.rxq)
rxq_interrupt_enable = 1;
for (index = 0; index < enic->rq_count; index++) {
cq_idx = enic_cq_rq(enic, enic_rte_rq_idx_to_sop_idx(index));
vnic_rq_init(&enic->rq[enic_rte_rq_idx_to_sop_idx(index)],
cq_idx,
error_interrupt_enable,
error_interrupt_offset);
data_rq = &enic->rq[enic_rte_rq_idx_to_data_idx(index, enic)];
if (data_rq->in_use)
vnic_rq_init(data_rq,
cq_idx,
error_interrupt_enable,
error_interrupt_offset);
vnic_cq_init(&enic->cq[cq_idx],
0 /* flow_control_enable */,
1 /* color_enable */,
0 /* cq_head */,
0 /* cq_tail */,
1 /* cq_tail_color */,
rxq_interrupt_enable,
1 /* cq_entry_enable */,
0 /* cq_message_enable */,
rxq_interrupt_offset,
0 /* cq_message_addr */);
if (rxq_interrupt_enable)
rxq_interrupt_offset++;
}
for (index = 0; index < enic->wq_count; index++) {
vnic_wq_init(&enic->wq[index],
enic_cq_wq(enic, index),
error_interrupt_enable,
error_interrupt_offset);
/* Compute unsupported ol flags for enic_prep_pkts() */
enic->wq[index].tx_offload_notsup_mask =
PKT_TX_OFFLOAD_MASK ^ enic->tx_offload_mask;
cq_idx = enic_cq_wq(enic, index);
vnic_cq_init(&enic->cq[cq_idx],
0 /* flow_control_enable */,
1 /* color_enable */,
0 /* cq_head */,
0 /* cq_tail */,
1 /* cq_tail_color */,
0 /* interrupt_enable */,
0 /* cq_entry_enable */,
1 /* cq_message_enable */,
0 /* interrupt offset */,
(uint64_t)enic->wq[index].cqmsg_rz->iova);
}
for (index = 0; index < enic->intr_count; index++) {
vnic_intr_init(&enic->intr[index],
enic->config.intr_timer_usec,
enic->config.intr_timer_type,
/*mask_on_assertion*/1);
}
}
static int
enic_alloc_rx_queue_mbufs(struct enic *enic, struct vnic_rq *rq)
{
struct rte_mbuf *mb;
struct rq_enet_desc *rqd = rq->ring.descs;
unsigned i;
dma_addr_t dma_addr;
uint32_t max_rx_pkt_len;
uint16_t rq_buf_len;
if (!rq->in_use)
return 0;
dev_debug(enic, "queue %u, allocating %u rx queue mbufs\n", rq->index,
rq->ring.desc_count);
/*
* If *not* using scatter and the mbuf size is greater than the
* requested max packet size (max_rx_pkt_len), then reduce the
* posted buffer size to max_rx_pkt_len. HW still receives packets
* larger than max_rx_pkt_len, but they will be truncated, which we
* drop in the rx handler. Not ideal, but better than returning
* large packets when the user is not expecting them.
*/
max_rx_pkt_len = enic->rte_dev->data->dev_conf.rxmode.max_rx_pkt_len;
rq_buf_len = rte_pktmbuf_data_room_size(rq->mp) - RTE_PKTMBUF_HEADROOM;
if (max_rx_pkt_len < rq_buf_len && !rq->data_queue_enable)
rq_buf_len = max_rx_pkt_len;
for (i = 0; i < rq->ring.desc_count; i++, rqd++) {
mb = rte_mbuf_raw_alloc(rq->mp);
if (mb == NULL) {
dev_err(enic, "RX mbuf alloc failed queue_id=%u\n",
(unsigned)rq->index);
return -ENOMEM;
}
mb->data_off = RTE_PKTMBUF_HEADROOM;
dma_addr = (dma_addr_t)(mb->buf_iova
+ RTE_PKTMBUF_HEADROOM);
rq_enet_desc_enc(rqd, dma_addr,
(rq->is_sop ? RQ_ENET_TYPE_ONLY_SOP
: RQ_ENET_TYPE_NOT_SOP),
rq_buf_len);
rq->mbuf_ring[i] = mb;
}
/*
* Do not post the buffers to the NIC until we enable the RQ via
* enic_start_rq().
*/
rq->need_initial_post = true;
/* Initialize fetch index while RQ is disabled */
iowrite32(0, &rq->ctrl->fetch_index);
return 0;
}
/*
* Post the Rx buffers for the first time. enic_alloc_rx_queue_mbufs() has
* allocated the buffers and filled the RQ descriptor ring. Just need to push
* the post index to the NIC.
*/
static void
enic_initial_post_rx(struct enic *enic, struct vnic_rq *rq)
{
if (!rq->in_use || !rq->need_initial_post)
return;
/* make sure all prior writes are complete before doing the PIO write */
rte_rmb();
/* Post all but the last buffer to VIC. */
rq->posted_index = rq->ring.desc_count - 1;
rq->rx_nb_hold = 0;
dev_debug(enic, "port=%u, qidx=%u, Write %u posted idx, %u sw held\n",
enic->port_id, rq->index, rq->posted_index, rq->rx_nb_hold);
iowrite32(rq->posted_index, &rq->ctrl->posted_index);
rte_rmb();
rq->need_initial_post = false;
}
void *
enic_alloc_consistent(void *priv, size_t size,
dma_addr_t *dma_handle, uint8_t *name)
{
void *vaddr;
const struct rte_memzone *rz;
*dma_handle = 0;
struct enic *enic = (struct enic *)priv;
struct enic_memzone_entry *mze;
rz = rte_memzone_reserve_aligned((const char *)name, size,
SOCKET_ID_ANY, RTE_MEMZONE_IOVA_CONTIG, ENIC_PAGE_SIZE);
if (!rz) {
pr_err("%s : Failed to allocate memory requested for %s\n",
__func__, name);
return NULL;
}
vaddr = rz->addr;
*dma_handle = (dma_addr_t)rz->iova;
mze = rte_malloc("enic memzone entry",
sizeof(struct enic_memzone_entry), 0);
if (!mze) {
pr_err("%s : Failed to allocate memory for memzone list\n",
__func__);
rte_memzone_free(rz);
return NULL;
}
mze->rz = rz;
rte_spinlock_lock(&enic->memzone_list_lock);
LIST_INSERT_HEAD(&enic->memzone_list, mze, entries);
rte_spinlock_unlock(&enic->memzone_list_lock);
return vaddr;
}
void
enic_free_consistent(void *priv,
__rte_unused size_t size,
void *vaddr,
dma_addr_t dma_handle)
{
struct enic_memzone_entry *mze;
struct enic *enic = (struct enic *)priv;
rte_spinlock_lock(&enic->memzone_list_lock);
LIST_FOREACH(mze, &enic->memzone_list, entries) {
if (mze->rz->addr == vaddr &&
mze->rz->iova == dma_handle)
break;
}
if (mze == NULL) {
rte_spinlock_unlock(&enic->memzone_list_lock);
dev_warning(enic,
"Tried to free memory, but couldn't find it in the memzone list\n");
return;
}
LIST_REMOVE(mze, entries);
rte_spinlock_unlock(&enic->memzone_list_lock);
rte_memzone_free(mze->rz);
rte_free(mze);
}
int enic_link_update(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
struct rte_eth_link link;
memset(&link, 0, sizeof(link));
link.link_status = enic_get_link_status(enic);
link.link_duplex = ETH_LINK_FULL_DUPLEX;
link.link_speed = vnic_dev_port_speed(enic->vdev);
return rte_eth_linkstatus_set(eth_dev, &link);
}
static void
enic_intr_handler(void *arg)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)arg;
struct enic *enic = pmd_priv(dev);
vnic_intr_return_all_credits(&enic->intr[ENICPMD_LSC_INTR_OFFSET]);
enic_link_update(dev);
_rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
enic_log_q_error(enic);
/* Re-enable irq in case of INTx */
rte_intr_ack(&enic->pdev->intr_handle);
}
static int enic_rxq_intr_init(struct enic *enic)
{
struct rte_intr_handle *intr_handle;
uint32_t rxq_intr_count, i;
int err;
intr_handle = enic->rte_dev->intr_handle;
if (!enic->rte_dev->data->dev_conf.intr_conf.rxq)
return 0;
/*
* Rx queue interrupts only work when we have MSI-X interrupts,
* one per queue. Sharing one interrupt is technically
* possible with VIC, but it is not worth the complications it brings.
*/
if (!rte_intr_cap_multiple(intr_handle)) {
dev_err(enic, "Rx queue interrupts require MSI-X interrupts"
" (vfio-pci driver)\n");
return -ENOTSUP;
}
rxq_intr_count = enic->intr_count - ENICPMD_RXQ_INTR_OFFSET;
err = rte_intr_efd_enable(intr_handle, rxq_intr_count);
if (err) {
dev_err(enic, "Failed to enable event fds for Rx queue"
" interrupts\n");
return err;
}
intr_handle->intr_vec = rte_zmalloc("enic_intr_vec",
rxq_intr_count * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
dev_err(enic, "Failed to allocate intr_vec\n");
return -ENOMEM;
}
for (i = 0; i < rxq_intr_count; i++)
intr_handle->intr_vec[i] = i + ENICPMD_RXQ_INTR_OFFSET;
return 0;
}
static void enic_rxq_intr_deinit(struct enic *enic)
{
struct rte_intr_handle *intr_handle;
intr_handle = enic->rte_dev->intr_handle;
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec != NULL) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
}
static void enic_prep_wq_for_simple_tx(struct enic *enic, uint16_t queue_idx)
{
struct wq_enet_desc *desc;
struct vnic_wq *wq;
unsigned int i;
/*
* Fill WQ descriptor fields that never change. Every descriptor is
* one packet, so set EOP. Also set CQ_ENTRY every ENIC_WQ_CQ_THRESH
* descriptors (i.e. request one completion update every 32 packets).
*/
wq = &enic->wq[queue_idx];
desc = (struct wq_enet_desc *)wq->ring.descs;
for (i = 0; i < wq->ring.desc_count; i++, desc++) {
desc->header_length_flags = 1 << WQ_ENET_FLAGS_EOP_SHIFT;
if (i % ENIC_WQ_CQ_THRESH == ENIC_WQ_CQ_THRESH - 1)
desc->header_length_flags |=
(1 << WQ_ENET_FLAGS_CQ_ENTRY_SHIFT);
}
}
/*
* The 'strong' version is in enic_rxtx_vec_avx2.c. This weak version is used
* used when that file is not compiled.
*/
__rte_weak bool
enic_use_vector_rx_handler(__rte_unused struct rte_eth_dev *eth_dev)
{
return false;
}
void enic_pick_rx_handler(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
/*
* Preference order:
* 1. The vectorized handler if possible and requested.
* 2. The non-scatter, simplified handler if scatter Rx is not used.
* 3. The default handler as a fallback.
*/
if (enic_use_vector_rx_handler(eth_dev))
return;
if (enic->rq_count > 0 && enic->rq[0].data_queue_enable == 0) {
ENICPMD_LOG(DEBUG, " use the non-scatter Rx handler");
eth_dev->rx_pkt_burst = &enic_noscatter_recv_pkts;
} else {
ENICPMD_LOG(DEBUG, " use the normal Rx handler");
eth_dev->rx_pkt_burst = &enic_recv_pkts;
}
}
/* Secondary process uses this to set the Tx handler */
void enic_pick_tx_handler(struct rte_eth_dev *eth_dev)
{
struct enic *enic = pmd_priv(eth_dev);
if (enic->use_simple_tx_handler) {
ENICPMD_LOG(DEBUG, " use the simple tx handler");
eth_dev->tx_pkt_burst = &enic_simple_xmit_pkts;
} else {
ENICPMD_LOG(DEBUG, " use the default tx handler");
eth_dev->tx_pkt_burst = &enic_xmit_pkts;
}
}
int enic_enable(struct enic *enic)
{
unsigned int index;
int err;
struct rte_eth_dev *eth_dev = enic->rte_dev;
uint64_t simple_tx_offloads;
uintptr_t p;
if (enic->enable_avx2_rx) {
struct rte_mbuf mb_def = { .buf_addr = 0 };
/*
* mbuf_initializer contains const-after-init fields of
* receive mbufs (i.e. 64 bits of fields from rearm_data).
* It is currently used by the vectorized handler.
*/
mb_def.nb_segs = 1;
mb_def.data_off = RTE_PKTMBUF_HEADROOM;
mb_def.port = enic->port_id;
rte_mbuf_refcnt_set(&mb_def, 1);
rte_compiler_barrier();
p = (uintptr_t)&mb_def.rearm_data;
enic->mbuf_initializer = *(uint64_t *)p;
}
eth_dev->data->dev_link.link_speed = vnic_dev_port_speed(enic->vdev);
eth_dev->data->dev_link.link_duplex = ETH_LINK_FULL_DUPLEX;
/* vnic notification of link status has already been turned on in
* enic_dev_init() which is called during probe time. Here we are
* just turning on interrupt vector 0 if needed.
*/
if (eth_dev->data->dev_conf.intr_conf.lsc)
vnic_dev_notify_set(enic->vdev, 0);
err = enic_rxq_intr_init(enic);
if (err)
return err;
if (enic_clsf_init(enic))
dev_warning(enic, "Init of hash table for clsf failed."\
"Flow director feature will not work\n");
if (enic_fm_init(enic))
dev_warning(enic, "Init of flowman failed.\n");
for (index = 0; index < enic->rq_count; index++) {
err = enic_alloc_rx_queue_mbufs(enic,
&enic->rq[enic_rte_rq_idx_to_sop_idx(index)]);
if (err) {
dev_err(enic, "Failed to alloc sop RX queue mbufs\n");
return err;
}
err = enic_alloc_rx_queue_mbufs(enic,
&enic->rq[enic_rte_rq_idx_to_data_idx(index, enic)]);
if (err) {
/* release the allocated mbufs for the sop rq*/
enic_rxmbuf_queue_release(enic,
&enic->rq[enic_rte_rq_idx_to_sop_idx(index)]);
dev_err(enic, "Failed to alloc data RX queue mbufs\n");
return err;
}
}
/*
* Use the simple TX handler if possible. Only checksum offloads
* and vlan insertion are supported.
*/
simple_tx_offloads = enic->tx_offload_capa &
(DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM);
if ((eth_dev->data->dev_conf.txmode.offloads &
~simple_tx_offloads) == 0) {
ENICPMD_LOG(DEBUG, " use the simple tx handler");
eth_dev->tx_pkt_burst = &enic_simple_xmit_pkts;
for (index = 0; index < enic->wq_count; index++)
enic_prep_wq_for_simple_tx(enic, index);
enic->use_simple_tx_handler = 1;
} else {
ENICPMD_LOG(DEBUG, " use the default tx handler");
eth_dev->tx_pkt_burst = &enic_xmit_pkts;
}
enic_pick_rx_handler(eth_dev);
for (index = 0; index < enic->wq_count; index++)
enic_start_wq(enic, index);
for (index = 0; index < enic->rq_count; index++)
enic_start_rq(enic, index);
vnic_dev_add_addr(enic->vdev, enic->mac_addr);
vnic_dev_enable_wait(enic->vdev);
/* Register and enable error interrupt */
rte_intr_callback_register(&(enic->pdev->intr_handle),
enic_intr_handler, (void *)enic->rte_dev);
rte_intr_enable(&(enic->pdev->intr_handle));
/* Unmask LSC interrupt */
vnic_intr_unmask(&enic->intr[ENICPMD_LSC_INTR_OFFSET]);
return 0;
}
int enic_alloc_intr_resources(struct enic *enic)
{
int err;
unsigned int i;
dev_info(enic, "vNIC resources used: "\
"wq %d rq %d cq %d intr %d\n",
enic->wq_count, enic_vnic_rq_count(enic),
enic->cq_count, enic->intr_count);
for (i = 0; i < enic->intr_count; i++) {
err = vnic_intr_alloc(enic->vdev, &enic->intr[i], i);
if (err) {
enic_free_vnic_resources(enic);
return err;
}
}
return 0;
}
void enic_free_rq(void *rxq)
{
struct vnic_rq *rq_sop, *rq_data;
struct enic *enic;
if (rxq == NULL)
return;
rq_sop = (struct vnic_rq *)rxq;
enic = vnic_dev_priv(rq_sop->vdev);
rq_data = &enic->rq[rq_sop->data_queue_idx];
if (rq_sop->free_mbufs) {
struct rte_mbuf **mb;
int i;
mb = rq_sop->free_mbufs;
for (i = ENIC_RX_BURST_MAX - rq_sop->num_free_mbufs;
i < ENIC_RX_BURST_MAX; i++)
rte_pktmbuf_free(mb[i]);
rte_free(rq_sop->free_mbufs);
rq_sop->free_mbufs = NULL;
rq_sop->num_free_mbufs = 0;
}
enic_rxmbuf_queue_release(enic, rq_sop);
if (rq_data->in_use)
enic_rxmbuf_queue_release(enic, rq_data);
rte_free(rq_sop->mbuf_ring);
if (rq_data->in_use)
rte_free(rq_data->mbuf_ring);
rq_sop->mbuf_ring = NULL;
rq_data->mbuf_ring = NULL;
vnic_rq_free(rq_sop);
if (rq_data->in_use)
vnic_rq_free(rq_data);
vnic_cq_free(&enic->cq[enic_sop_rq_idx_to_cq_idx(rq_sop->index)]);
rq_sop->in_use = 0;
rq_data->in_use = 0;
}
void enic_start_wq(struct enic *enic, uint16_t queue_idx)
{
struct rte_eth_dev_data *data = enic->dev_data;
vnic_wq_enable(&enic->wq[queue_idx]);
data->tx_queue_state[queue_idx] = RTE_ETH_QUEUE_STATE_STARTED;
}
int enic_stop_wq(struct enic *enic, uint16_t queue_idx)
{
struct rte_eth_dev_data *data = enic->dev_data;
int ret;
ret = vnic_wq_disable(&enic->wq[queue_idx]);
if (ret)
return ret;
data->tx_queue_state[queue_idx] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
void enic_start_rq(struct enic *enic, uint16_t queue_idx)
{
struct rte_eth_dev_data *data = enic->dev_data;
struct vnic_rq *rq_sop;
struct vnic_rq *rq_data;
rq_sop = &enic->rq[enic_rte_rq_idx_to_sop_idx(queue_idx)];
rq_data = &enic->rq[rq_sop->data_queue_idx];
if (rq_data->in_use) {
vnic_rq_enable(rq_data);
enic_initial_post_rx(enic, rq_data);
}
rte_mb();
vnic_rq_enable(rq_sop);
enic_initial_post_rx(enic, rq_sop);
data->rx_queue_state[queue_idx] = RTE_ETH_QUEUE_STATE_STARTED;
}
int enic_stop_rq(struct enic *enic, uint16_t queue_idx)
{
struct rte_eth_dev_data *data = enic->dev_data;
int ret1 = 0, ret2 = 0;
struct vnic_rq *rq_sop;
struct vnic_rq *rq_data;
rq_sop = &enic->rq[enic_rte_rq_idx_to_sop_idx(queue_idx)];
rq_data = &enic->rq[rq_sop->data_queue_idx];
ret2 = vnic_rq_disable(rq_sop);
rte_mb();
if (rq_data->in_use)
ret1 = vnic_rq_disable(rq_data);
if (ret2)
return ret2;
else if (ret1)
return ret1;
data->rx_queue_state[queue_idx] = RTE_ETH_QUEUE_STATE_STOPPED;
return 0;
}
int enic_alloc_rq(struct enic *enic, uint16_t queue_idx,
unsigned int socket_id, struct rte_mempool *mp,
uint16_t nb_desc, uint16_t free_thresh)
{
int rc;
uint16_t sop_queue_idx = enic_rte_rq_idx_to_sop_idx(queue_idx);
uint16_t data_queue_idx = enic_rte_rq_idx_to_data_idx(queue_idx, enic);
struct vnic_rq *rq_sop = &enic->rq[sop_queue_idx];
struct vnic_rq *rq_data = &enic->rq[data_queue_idx];
unsigned int mbuf_size, mbufs_per_pkt;
unsigned int nb_sop_desc, nb_data_desc;
uint16_t min_sop, max_sop, min_data, max_data;
uint32_t max_rx_pkt_len;
rq_sop->is_sop = 1;
rq_sop->data_queue_idx = data_queue_idx;
rq_data->is_sop = 0;
rq_data->data_queue_idx = 0;
rq_sop->socket_id = socket_id;
rq_sop->mp = mp;
rq_data->socket_id = socket_id;
rq_data->mp = mp;
rq_sop->in_use = 1;
rq_sop->rx_free_thresh = free_thresh;
rq_data->rx_free_thresh = free_thresh;
dev_debug(enic, "Set queue_id:%u free thresh:%u\n", queue_idx,
free_thresh);
mbuf_size = (uint16_t)(rte_pktmbuf_data_room_size(mp) -
RTE_PKTMBUF_HEADROOM);
/* max_rx_pkt_len includes the ethernet header and CRC. */
max_rx_pkt_len = enic->rte_dev->data->dev_conf.rxmode.max_rx_pkt_len;
if (enic->rte_dev->data->dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_SCATTER) {
dev_info(enic, "Rq %u Scatter rx mode enabled\n", queue_idx);
/* ceil((max pkt len)/mbuf_size) */
mbufs_per_pkt = (max_rx_pkt_len + mbuf_size - 1) / mbuf_size;
} else {
dev_info(enic, "Scatter rx mode disabled\n");
mbufs_per_pkt = 1;
if (max_rx_pkt_len > mbuf_size) {
dev_warning(enic, "The maximum Rx packet size (%u) is"
" larger than the mbuf size (%u), and"
" scatter is disabled. Larger packets will"
" be truncated.\n",
max_rx_pkt_len, mbuf_size);
}
}
if (mbufs_per_pkt > 1) {
dev_info(enic, "Rq %u Scatter rx mode in use\n", queue_idx);
rq_sop->data_queue_enable = 1;
rq_data->in_use = 1;
/*
* HW does not directly support rxmode.max_rx_pkt_len. HW always
* receives packet sizes up to the "max" MTU.
* If not using scatter, we can achieve the effect of dropping
* larger packets by reducing the size of posted buffers.
* See enic_alloc_rx_queue_mbufs().
*/
if (max_rx_pkt_len <
enic_mtu_to_max_rx_pktlen(enic->max_mtu)) {
dev_warning(enic, "rxmode.max_rx_pkt_len is ignored"
" when scatter rx mode is in use.\n");
}
} else {
dev_info(enic, "Rq %u Scatter rx mode not being used\n",
queue_idx);
rq_sop->data_queue_enable = 0;
rq_data->in_use = 0;
}
/* number of descriptors have to be a multiple of 32 */
nb_sop_desc = (nb_desc / mbufs_per_pkt) & ENIC_ALIGN_DESCS_MASK;
nb_data_desc = (nb_desc - nb_sop_desc) & ENIC_ALIGN_DESCS_MASK;
rq_sop->max_mbufs_per_pkt = mbufs_per_pkt;
rq_data->max_mbufs_per_pkt = mbufs_per_pkt;
if (mbufs_per_pkt > 1) {
min_sop = ENIC_RX_BURST_MAX;
max_sop = ((enic->config.rq_desc_count /
(mbufs_per_pkt - 1)) & ENIC_ALIGN_DESCS_MASK);
min_data = min_sop * (mbufs_per_pkt - 1);
max_data = enic->config.rq_desc_count;
} else {
min_sop = ENIC_RX_BURST_MAX;
max_sop = enic->config.rq_desc_count;
min_data = 0;
max_data = 0;
}
if (nb_desc < (min_sop + min_data)) {
dev_warning(enic,
"Number of rx descs too low, adjusting to minimum\n");
nb_sop_desc = min_sop;
nb_data_desc = min_data;
} else if (nb_desc > (max_sop + max_data)) {
dev_warning(enic,
"Number of rx_descs too high, adjusting to maximum\n");
nb_sop_desc = max_sop;
nb_data_desc = max_data;
}
if (mbufs_per_pkt > 1) {
dev_info(enic, "For max packet size %u and mbuf size %u valid"
" rx descriptor range is %u to %u\n",
max_rx_pkt_len, mbuf_size, min_sop + min_data,
max_sop + max_data);
}
dev_info(enic, "Using %d rx descriptors (sop %d, data %d)\n",
nb_sop_desc + nb_data_desc, nb_sop_desc, nb_data_desc);
/* Allocate sop queue resources */
rc = vnic_rq_alloc(enic->vdev, rq_sop, sop_queue_idx,
nb_sop_desc, sizeof(struct rq_enet_desc));
if (rc) {
dev_err(enic, "error in allocation of sop rq\n");
goto err_exit;
}
nb_sop_desc = rq_sop->ring.desc_count;
if (rq_data->in_use) {
/* Allocate data queue resources */
rc = vnic_rq_alloc(enic->vdev, rq_data, data_queue_idx,
nb_data_desc,
sizeof(struct rq_enet_desc));
if (rc) {
dev_err(enic, "error in allocation of data rq\n");
goto err_free_rq_sop;
}
nb_data_desc = rq_data->ring.desc_count;
}
rc = vnic_cq_alloc(enic->vdev, &enic->cq[queue_idx], queue_idx,
socket_id, nb_sop_desc + nb_data_desc,
sizeof(struct cq_enet_rq_desc));
if (rc) {
dev_err(enic, "error in allocation of cq for rq\n");
goto err_free_rq_data;
}
/* Allocate the mbuf rings */
rq_sop->mbuf_ring = (struct rte_mbuf **)
rte_zmalloc_socket("rq->mbuf_ring",
sizeof(struct rte_mbuf *) * nb_sop_desc,
RTE_CACHE_LINE_SIZE, rq_sop->socket_id);
if (rq_sop->mbuf_ring == NULL)
goto err_free_cq;
if (rq_data->in_use) {
rq_data->mbuf_ring = (struct rte_mbuf **)
rte_zmalloc_socket("rq->mbuf_ring",
sizeof(struct rte_mbuf *) * nb_data_desc,
RTE_CACHE_LINE_SIZE, rq_sop->socket_id);
if (rq_data->mbuf_ring == NULL)
goto err_free_sop_mbuf;
}
rq_sop->free_mbufs = (struct rte_mbuf **)
rte_zmalloc_socket("rq->free_mbufs",
sizeof(struct rte_mbuf *) *
ENIC_RX_BURST_MAX,
RTE_CACHE_LINE_SIZE, rq_sop->socket_id);
if (rq_sop->free_mbufs == NULL)
goto err_free_data_mbuf;
rq_sop->num_free_mbufs = 0;
rq_sop->tot_nb_desc = nb_desc; /* squirl away for MTU update function */
return 0;
err_free_data_mbuf:
rte_free(rq_data->mbuf_ring);
err_free_sop_mbuf:
rte_free(rq_sop->mbuf_ring);
err_free_cq:
/* cleanup on error */
vnic_cq_free(&enic->cq[queue_idx]);
err_free_rq_data:
if (rq_data->in_use)
vnic_rq_free(rq_data);
err_free_rq_sop:
vnic_rq_free(rq_sop);
err_exit:
return -ENOMEM;
}
void enic_free_wq(void *txq)
{
struct vnic_wq *wq;
struct enic *enic;
if (txq == NULL)
return;
wq = (struct vnic_wq *)txq;
enic = vnic_dev_priv(wq->vdev);
rte_memzone_free(wq->cqmsg_rz);
vnic_wq_free(wq);
vnic_cq_free(&enic->cq[enic->rq_count + wq->index]);
}
int enic_alloc_wq(struct enic *enic, uint16_t queue_idx,
unsigned int socket_id, uint16_t nb_desc)
{
int err;
struct vnic_wq *wq = &enic->wq[queue_idx];
unsigned int cq_index = enic_cq_wq(enic, queue_idx);
char name[RTE_MEMZONE_NAMESIZE];
static int instance;
wq->socket_id = socket_id;
/*
* rte_eth_tx_queue_setup() checks min, max, and alignment. So just
* print an info message for diagnostics.
*/
dev_info(enic, "TX Queues - effective number of descs:%d\n", nb_desc);
/* Allocate queue resources */
err = vnic_wq_alloc(enic->vdev, &enic->wq[queue_idx], queue_idx,
nb_desc,
sizeof(struct wq_enet_desc));
if (err) {
dev_err(enic, "error in allocation of wq\n");
return err;
}
err = vnic_cq_alloc(enic->vdev, &enic->cq[cq_index], cq_index,
socket_id, nb_desc,
sizeof(struct cq_enet_wq_desc));
if (err) {
vnic_wq_free(wq);
dev_err(enic, "error in allocation of cq for wq\n");
}
/* setup up CQ message */
snprintf((char *)name, sizeof(name),
"vnic_cqmsg-%s-%d-%d", enic->bdf_name, queue_idx,
instance++);
wq->cqmsg_rz = rte_memzone_reserve_aligned((const char *)name,
sizeof(uint32_t), SOCKET_ID_ANY,
RTE_MEMZONE_IOVA_CONTIG, ENIC_PAGE_SIZE);
if (!wq->cqmsg_rz)
return -ENOMEM;
return err;
}
int enic_disable(struct enic *enic)
{
unsigned int i;
int err;
for (i = 0; i < enic->intr_count; i++) {
vnic_intr_mask(&enic->intr[i]);
(void)vnic_intr_masked(&enic->intr[i]); /* flush write */
}
enic_rxq_intr_deinit(enic);
rte_intr_disable(&enic->pdev->intr_handle);
rte_intr_callback_unregister(&enic->pdev->intr_handle,
enic_intr_handler,
(void *)enic->rte_dev);
vnic_dev_disable(enic->vdev);
enic_clsf_destroy(enic);
enic_fm_destroy(enic);
if (!enic_is_sriov_vf(enic))
vnic_dev_del_addr(enic->vdev, enic->mac_addr);
for (i = 0; i < enic->wq_count; i++) {
err = vnic_wq_disable(&enic->wq[i]);
if (err)
return err;
}
for (i = 0; i < enic_vnic_rq_count(enic); i++) {
if (enic->rq[i].in_use) {
err = vnic_rq_disable(&enic->rq[i]);
if (err)
return err;
}
}
/* If we were using interrupts, set the interrupt vector to -1
* to disable interrupts. We are not disabling link notifcations,
* though, as we want the polling of link status to continue working.
*/
if (enic->rte_dev->data->dev_conf.intr_conf.lsc)
vnic_dev_notify_set(enic->vdev, -1);
vnic_dev_set_reset_flag(enic->vdev, 1);
for (i = 0; i < enic->wq_count; i++)
vnic_wq_clean(&enic->wq[i], enic_free_wq_buf);
for (i = 0; i < enic_vnic_rq_count(enic); i++)
if (enic->rq[i].in_use)
vnic_rq_clean(&enic->rq[i], enic_free_rq_buf);
for (i = 0; i < enic->cq_count; i++)
vnic_cq_clean(&enic->cq[i]);
for (i = 0; i < enic->intr_count; i++)
vnic_intr_clean(&enic->intr[i]);
return 0;
}
static int enic_dev_wait(struct vnic_dev *vdev,
int (*start)(struct vnic_dev *, int),
int (*finished)(struct vnic_dev *, int *),
int arg)
{
int done;
int err;
int i;
err = start(vdev, arg);
if (err)
return err;
/* Wait for func to complete...2 seconds max */
for (i = 0; i < 2000; i++) {
err = finished(vdev, &done);
if (err)
return err;
if (done)
return 0;
usleep(1000);
}
return -ETIMEDOUT;
}
static int enic_dev_open(struct enic *enic)
{
int err;
int flags = CMD_OPENF_IG_DESCCACHE;
err = enic_dev_wait(enic->vdev, vnic_dev_open,
vnic_dev_open_done, flags);
if (err)
dev_err(enic_get_dev(enic),
"vNIC device open failed, err %d\n", err);
return err;
}
static int enic_set_rsskey(struct enic *enic, uint8_t *user_key)
{
dma_addr_t rss_key_buf_pa;
union vnic_rss_key *rss_key_buf_va = NULL;
int err, i;
uint8_t name[RTE_MEMZONE_NAMESIZE];
RTE_ASSERT(user_key != NULL);
snprintf((char *)name, sizeof(name), "rss_key-%s", enic->bdf_name);
rss_key_buf_va = enic_alloc_consistent(enic, sizeof(union vnic_rss_key),
&rss_key_buf_pa, name);
if (!rss_key_buf_va)
return -ENOMEM;
for (i = 0; i < ENIC_RSS_HASH_KEY_SIZE; i++)
rss_key_buf_va->key[i / 10].b[i % 10] = user_key[i];
err = enic_set_rss_key(enic,
rss_key_buf_pa,
sizeof(union vnic_rss_key));
/* Save for later queries */
if (!err) {
rte_memcpy(&enic->rss_key, rss_key_buf_va,
sizeof(union vnic_rss_key));
}
enic_free_consistent(enic, sizeof(union vnic_rss_key),
rss_key_buf_va, rss_key_buf_pa);
return err;
}
int enic_set_rss_reta(struct enic *enic, union vnic_rss_cpu *rss_cpu)
{
dma_addr_t rss_cpu_buf_pa;
union vnic_rss_cpu *rss_cpu_buf_va = NULL;
int err;
uint8_t name[RTE_MEMZONE_NAMESIZE];
snprintf((char *)name, sizeof(name), "rss_cpu-%s", enic->bdf_name);
rss_cpu_buf_va = enic_alloc_consistent(enic, sizeof(union vnic_rss_cpu),
&rss_cpu_buf_pa, name);
if (!rss_cpu_buf_va)
return -ENOMEM;
rte_memcpy(rss_cpu_buf_va, rss_cpu, sizeof(union vnic_rss_cpu));
err = enic_set_rss_cpu(enic,
rss_cpu_buf_pa,
sizeof(union vnic_rss_cpu));
enic_free_consistent(enic, sizeof(union vnic_rss_cpu),
rss_cpu_buf_va, rss_cpu_buf_pa);
/* Save for later queries */
if (!err)
rte_memcpy(&enic->rss_cpu, rss_cpu, sizeof(union vnic_rss_cpu));
return err;
}
static int enic_set_niccfg(struct enic *enic, uint8_t rss_default_cpu,
uint8_t rss_hash_type, uint8_t rss_hash_bits, uint8_t rss_base_cpu,
uint8_t rss_enable)
{
const uint8_t tso_ipid_split_en = 0;
int err;
err = enic_set_nic_cfg(enic,
rss_default_cpu, rss_hash_type,
rss_hash_bits, rss_base_cpu,
rss_enable, tso_ipid_split_en,
enic->ig_vlan_strip_en);
return err;
}
/* Initialize RSS with defaults, called from dev_configure */
int enic_init_rss_nic_cfg(struct enic *enic)
{
static uint8_t default_rss_key[] = {
85, 67, 83, 97, 119, 101, 115, 111, 109, 101,
80, 65, 76, 79, 117, 110, 105, 113, 117, 101,
76, 73, 78, 85, 88, 114, 111, 99, 107, 115,
69, 78, 73, 67, 105, 115, 99, 111, 111, 108,
};
struct rte_eth_rss_conf rss_conf;
union vnic_rss_cpu rss_cpu;
int ret, i;
rss_conf = enic->rte_dev->data->dev_conf.rx_adv_conf.rss_conf;
/*
* If setting key for the first time, and the user gives us none, then
* push the default key to NIC.
*/
if (rss_conf.rss_key == NULL) {
rss_conf.rss_key = default_rss_key;
rss_conf.rss_key_len = ENIC_RSS_HASH_KEY_SIZE;
}
ret = enic_set_rss_conf(enic, &rss_conf);
if (ret) {
dev_err(enic, "Failed to configure RSS\n");
return ret;
}
if (enic->rss_enable) {
/* If enabling RSS, use the default reta */
for (i = 0; i < ENIC_RSS_RETA_SIZE; i++) {
rss_cpu.cpu[i / 4].b[i % 4] =
enic_rte_rq_idx_to_sop_idx(i % enic->rq_count);
}
ret = enic_set_rss_reta(enic, &rss_cpu);
if (ret)
dev_err(enic, "Failed to set RSS indirection table\n");
}
return ret;
}
int enic_setup_finish(struct enic *enic)
{
enic_init_soft_stats(enic);
/* Default conf */
vnic_dev_packet_filter(enic->vdev,
1 /* directed */,
1 /* multicast */,
1 /* broadcast */,
0 /* promisc */,
1 /* allmulti */);
enic->promisc = 0;
enic->allmulti = 1;
return 0;
}
static int enic_rss_conf_valid(struct enic *enic,
struct rte_eth_rss_conf *rss_conf)
{
/* RSS is disabled per VIC settings. Ignore rss_conf. */
if (enic->flow_type_rss_offloads == 0)
return 0;
if (rss_conf->rss_key != NULL &&
rss_conf->rss_key_len != ENIC_RSS_HASH_KEY_SIZE) {
dev_err(enic, "Given rss_key is %d bytes, it must be %d\n",
rss_conf->rss_key_len, ENIC_RSS_HASH_KEY_SIZE);
return -EINVAL;
}
if (rss_conf->rss_hf != 0 &&
(rss_conf->rss_hf & enic->flow_type_rss_offloads) == 0) {
dev_err(enic, "Given rss_hf contains none of the supported"
" types\n");
return -EINVAL;
}
return 0;
}
/* Set hash type and key according to rss_conf */
int enic_set_rss_conf(struct enic *enic, struct rte_eth_rss_conf *rss_conf)
{
struct rte_eth_dev *eth_dev;
uint64_t rss_hf;
uint8_t rss_hash_type;
uint8_t rss_enable;
int ret;
RTE_ASSERT(rss_conf != NULL);
ret = enic_rss_conf_valid(enic, rss_conf);
if (ret) {
dev_err(enic, "RSS configuration (rss_conf) is invalid\n");
return ret;
}
eth_dev = enic->rte_dev;
rss_hash_type = 0;
rss_hf = rss_conf->rss_hf & enic->flow_type_rss_offloads;
if (enic->rq_count > 1 &&
(eth_dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG) &&
rss_hf != 0) {
rss_enable = 1;
if (rss_hf & (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
ETH_RSS_NONFRAG_IPV4_OTHER))
rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_IPV4;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_TCP_IPV4;
if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP) {
rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_UDP_IPV4;
if (enic->udp_rss_weak) {
/*
* 'TCP' is not a typo. The "weak" version of
* UDP RSS requires both the TCP and UDP bits
* be set. It does enable TCP RSS as well.
*/
rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_TCP_IPV4;
}
}
if (rss_hf & (ETH_RSS_IPV6 | ETH_RSS_IPV6_EX |
ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER))
rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_IPV6;
if (rss_hf & (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX))
rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_TCP_IPV6;
if (rss_hf & (ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX)) {
rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_UDP_IPV6;
if (enic->udp_rss_weak)
rss_hash_type |= NIC_CFG_RSS_HASH_TYPE_TCP_IPV6;
}
} else {
rss_enable = 0;
rss_hf = 0;
}
/* Set the hash key if provided */
if (rss_enable && rss_conf->rss_key) {
ret = enic_set_rsskey(enic, rss_conf->rss_key);
if (ret) {
dev_err(enic, "Failed to set RSS key\n");
return ret;
}
}
ret = enic_set_niccfg(enic, ENIC_RSS_DEFAULT_CPU, rss_hash_type,
ENIC_RSS_HASH_BITS, ENIC_RSS_BASE_CPU,
rss_enable);
if (!ret) {
enic->rss_hf = rss_hf;
enic->rss_hash_type = rss_hash_type;
enic->rss_enable = rss_enable;
} else {
dev_err(enic, "Failed to update RSS configurations."
" hash=0x%x\n", rss_hash_type);
}
return ret;
}
int enic_set_vlan_strip(struct enic *enic)
{
/*
* Unfortunately, VLAN strip on/off and RSS on/off are configured
* together. So, re-do niccfg, preserving the current RSS settings.
*/
return enic_set_niccfg(enic, ENIC_RSS_DEFAULT_CPU, enic->rss_hash_type,
ENIC_RSS_HASH_BITS, ENIC_RSS_BASE_CPU,
enic->rss_enable);
}
int enic_add_packet_filter(struct enic *enic)
{
/* Args -> directed, multicast, broadcast, promisc, allmulti */
return vnic_dev_packet_filter(enic->vdev, 1, 1, 1,
enic->promisc, enic->allmulti);
}
int enic_get_link_status(struct enic *enic)
{
return vnic_dev_link_status(enic->vdev);
}
static void enic_dev_deinit(struct enic *enic)
{
/* stop link status checking */
vnic_dev_notify_unset(enic->vdev);
/* mac_addrs is freed by rte_eth_dev_release_port() */
rte_free(enic->cq);
rte_free(enic->intr);
rte_free(enic->rq);
rte_free(enic->wq);
}
int enic_set_vnic_res(struct enic *enic)
{
struct rte_eth_dev *eth_dev = enic->rte_dev;
int rc = 0;
unsigned int required_rq, required_wq, required_cq, required_intr;
/* Always use two vNIC RQs per eth_dev RQ, regardless of Rx scatter. */
required_rq = eth_dev->data->nb_rx_queues * 2;
required_wq = eth_dev->data->nb_tx_queues;
required_cq = eth_dev->data->nb_rx_queues + eth_dev->data->nb_tx_queues;
required_intr = 1; /* 1 for LSC even if intr_conf.lsc is 0 */
if (eth_dev->data->dev_conf.intr_conf.rxq) {
required_intr += eth_dev->data->nb_rx_queues;
}
if (enic->conf_rq_count < required_rq) {
dev_err(dev, "Not enough Receive queues. Requested:%u which uses %d RQs on VIC, Configured:%u\n",
eth_dev->data->nb_rx_queues,
required_rq, enic->conf_rq_count);
rc = -EINVAL;
}
if (enic->conf_wq_count < required_wq) {
dev_err(dev, "Not enough Transmit queues. Requested:%u, Configured:%u\n",
eth_dev->data->nb_tx_queues, enic->conf_wq_count);
rc = -EINVAL;
}
if (enic->conf_cq_count < required_cq) {
dev_err(dev, "Not enough Completion queues. Required:%u, Configured:%u\n",
required_cq, enic->conf_cq_count);
rc = -EINVAL;
}
if (enic->conf_intr_count < required_intr) {
dev_err(dev, "Not enough Interrupts to support Rx queue"
" interrupts. Required:%u, Configured:%u\n",
required_intr, enic->conf_intr_count);
rc = -EINVAL;
}
if (rc == 0) {
enic->rq_count = eth_dev->data->nb_rx_queues;
enic->wq_count = eth_dev->data->nb_tx_queues;
enic->cq_count = enic->rq_count + enic->wq_count;
enic->intr_count = required_intr;
}
return rc;
}
/* Initialize the completion queue for an RQ */
static int
enic_reinit_rq(struct enic *enic, unsigned int rq_idx)
{
struct vnic_rq *sop_rq, *data_rq;
unsigned int cq_idx;
int rc = 0;
sop_rq = &enic->rq[enic_rte_rq_idx_to_sop_idx(rq_idx)];
data_rq = &enic->rq[enic_rte_rq_idx_to_data_idx(rq_idx, enic)];
cq_idx = rq_idx;
vnic_cq_clean(&enic->cq[cq_idx]);
vnic_cq_init(&enic->cq[cq_idx],
0 /* flow_control_enable */,
1 /* color_enable */,
0 /* cq_head */,
0 /* cq_tail */,
1 /* cq_tail_color */,
0 /* interrupt_enable */,
1 /* cq_entry_enable */,
0 /* cq_message_enable */,
0 /* interrupt offset */,
0 /* cq_message_addr */);
vnic_rq_init_start(sop_rq, enic_cq_rq(enic,
enic_rte_rq_idx_to_sop_idx(rq_idx)), 0,
sop_rq->ring.desc_count - 1, 1, 0);
if (data_rq->in_use) {
vnic_rq_init_start(data_rq,
enic_cq_rq(enic,
enic_rte_rq_idx_to_data_idx(rq_idx, enic)),
0, data_rq->ring.desc_count - 1, 1, 0);
}
rc = enic_alloc_rx_queue_mbufs(enic, sop_rq);
if (rc)
return rc;
if (data_rq->in_use) {
rc = enic_alloc_rx_queue_mbufs(enic, data_rq);
if (rc) {
enic_rxmbuf_queue_release(enic, sop_rq);
return rc;
}
}
return 0;
}
/* The Cisco NIC can send and receive packets up to a max packet size
* determined by the NIC type and firmware. There is also an MTU
* configured into the NIC via the CIMC/UCSM management interface
* which can be overridden by this function (up to the max packet size).
* Depending on the network setup, doing so may cause packet drops
* and unexpected behavior.
*/
int enic_set_mtu(struct enic *enic, uint16_t new_mtu)
{
unsigned int rq_idx;
struct vnic_rq *rq;
int rc = 0;
uint16_t old_mtu; /* previous setting */
uint16_t config_mtu; /* Value configured into NIC via CIMC/UCSM */
struct rte_eth_dev *eth_dev = enic->rte_dev;
old_mtu = eth_dev->data->mtu;
config_mtu = enic->config.mtu;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -E_RTE_SECONDARY;
if (new_mtu > enic->max_mtu) {
dev_err(enic,
"MTU not updated: requested (%u) greater than max (%u)\n",
new_mtu, enic->max_mtu);
return -EINVAL;
}
if (new_mtu < ENIC_MIN_MTU) {
dev_info(enic,
"MTU not updated: requested (%u) less than min (%u)\n",
new_mtu, ENIC_MIN_MTU);
return -EINVAL;
}
if (new_mtu > config_mtu)
dev_warning(enic,
"MTU (%u) is greater than value configured in NIC (%u)\n",
new_mtu, config_mtu);
/* Update the MTU and maximum packet length */
eth_dev->data->mtu = new_mtu;
eth_dev->data->dev_conf.rxmode.max_rx_pkt_len =
enic_mtu_to_max_rx_pktlen(new_mtu);
/*
* If the device has not started (enic_enable), nothing to do.
* Later, enic_enable() will set up RQs reflecting the new maximum
* packet length.
*/
if (!eth_dev->data->dev_started)
goto set_mtu_done;
/*
* The device has started, re-do RQs on the fly. In the process, we
* pick up the new maximum packet length.
*
* Some applications rely on the ability to change MTU without stopping
* the device. So keep this behavior for now.
*/
rte_spinlock_lock(&enic->mtu_lock);
/* Stop traffic on all RQs */
for (rq_idx = 0; rq_idx < enic->rq_count * 2; rq_idx++) {
rq = &enic->rq[rq_idx];
if (rq->is_sop && rq->in_use) {
rc = enic_stop_rq(enic,
enic_sop_rq_idx_to_rte_idx(rq_idx));
if (rc) {
dev_err(enic, "Failed to stop Rq %u\n", rq_idx);
goto set_mtu_done;
}
}
}
/* replace Rx function with a no-op to avoid getting stale pkts */
eth_dev->rx_pkt_burst = enic_dummy_recv_pkts;
rte_mb();
/* Allow time for threads to exit the real Rx function. */
usleep(100000);
/* now it is safe to reconfigure the RQs */
/* free and reallocate RQs with the new MTU */
for (rq_idx = 0; rq_idx < enic->rq_count; rq_idx++) {
rq = &enic->rq[enic_rte_rq_idx_to_sop_idx(rq_idx)];
if (!rq->in_use)
continue;
enic_free_rq(rq);
rc = enic_alloc_rq(enic, rq_idx, rq->socket_id, rq->mp,
rq->tot_nb_desc, rq->rx_free_thresh);
if (rc) {
dev_err(enic,
"Fatal MTU alloc error- No traffic will pass\n");
goto set_mtu_done;
}
rc = enic_reinit_rq(enic, rq_idx);
if (rc) {
dev_err(enic,
"Fatal MTU RQ reinit- No traffic will pass\n");
goto set_mtu_done;
}
}
/* put back the real receive function */
rte_mb();
enic_pick_rx_handler(eth_dev);
rte_mb();
/* restart Rx traffic */
for (rq_idx = 0; rq_idx < enic->rq_count; rq_idx++) {
rq = &enic->rq[enic_rte_rq_idx_to_sop_idx(rq_idx)];
if (rq->is_sop && rq->in_use)
enic_start_rq(enic, rq_idx);
}
set_mtu_done:
dev_info(enic, "MTU changed from %u to %u\n", old_mtu, new_mtu);
rte_spinlock_unlock(&enic->mtu_lock);
return rc;
}
static int enic_dev_init(struct enic *enic)
{
int err;
struct rte_eth_dev *eth_dev = enic->rte_dev;
vnic_dev_intr_coal_timer_info_default(enic->vdev);
/* Get vNIC configuration
*/
err = enic_get_vnic_config(enic);
if (err) {
dev_err(dev, "Get vNIC configuration failed, aborting\n");
return err;
}
/* Get available resource counts */
enic_get_res_counts(enic);
if (enic->conf_rq_count == 1) {
dev_err(enic, "Running with only 1 RQ configured in the vNIC is not supported.\n");
dev_err(enic, "Please configure 2 RQs in the vNIC for each Rx queue used by DPDK.\n");
dev_err(enic, "See the ENIC PMD guide for more information.\n");
return -EINVAL;
}
/* Queue counts may be zeros. rte_zmalloc returns NULL in that case. */
enic->cq = rte_zmalloc("enic_vnic_cq", sizeof(struct vnic_cq) *
enic->conf_cq_count, 8);
enic->intr = rte_zmalloc("enic_vnic_intr", sizeof(struct vnic_intr) *
enic->conf_intr_count, 8);
enic->rq = rte_zmalloc("enic_vnic_rq", sizeof(struct vnic_rq) *
enic->conf_rq_count, 8);
enic->wq = rte_zmalloc("enic_vnic_wq", sizeof(struct vnic_wq) *
enic->conf_wq_count, 8);
if (enic->conf_cq_count > 0 && enic->cq == NULL) {
dev_err(enic, "failed to allocate vnic_cq, aborting.\n");
return -1;
}
if (enic->conf_intr_count > 0 && enic->intr == NULL) {
dev_err(enic, "failed to allocate vnic_intr, aborting.\n");
return -1;
}
if (enic->conf_rq_count > 0 && enic->rq == NULL) {
dev_err(enic, "failed to allocate vnic_rq, aborting.\n");
return -1;
}
if (enic->conf_wq_count > 0 && enic->wq == NULL) {
dev_err(enic, "failed to allocate vnic_wq, aborting.\n");
return -1;
}
/* Get the supported filters */
enic_fdir_info(enic);
eth_dev->data->mac_addrs = rte_zmalloc("enic_mac_addr",
sizeof(struct rte_ether_addr) *
ENIC_UNICAST_PERFECT_FILTERS, 0);
if (!eth_dev->data->mac_addrs) {
dev_err(enic, "mac addr storage alloc failed, aborting.\n");
return -1;
}
rte_ether_addr_copy((struct rte_ether_addr *)enic->mac_addr,
eth_dev->data->mac_addrs);
vnic_dev_set_reset_flag(enic->vdev, 0);
LIST_INIT(&enic->flows);
/* set up link status checking */
vnic_dev_notify_set(enic->vdev, -1); /* No Intr for notify */
/*
* When Geneve with options offload is available, always disable it
* first as it can interfere with user flow rules.
*/
if (enic->geneve_opt_avail) {
/*
* Disabling fails if the feature is provisioned but
* not enabled. So ignore result and do not log error.
*/
vnic_dev_overlay_offload_ctrl(enic->vdev,
OVERLAY_FEATURE_GENEVE,
OVERLAY_OFFLOAD_DISABLE);
}
enic->overlay_offload = false;
if (enic->disable_overlay && enic->vxlan) {
/*
* Explicitly disable overlay offload as the setting is
* sticky, and resetting vNIC does not disable it.
*/
if (vnic_dev_overlay_offload_ctrl(enic->vdev,
OVERLAY_FEATURE_VXLAN,
OVERLAY_OFFLOAD_DISABLE)) {
dev_err(enic, "failed to disable overlay offload\n");
} else {
dev_info(enic, "Overlay offload is disabled\n");
}
}
if (!enic->disable_overlay && enic->vxlan &&
/* 'VXLAN feature' enables VXLAN, NVGRE, and GENEVE. */
vnic_dev_overlay_offload_ctrl(enic->vdev,
OVERLAY_FEATURE_VXLAN,
OVERLAY_OFFLOAD_ENABLE) == 0) {
enic->tx_offload_capa |=
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO;
enic->tx_offload_mask |=
PKT_TX_OUTER_IPV6 |
PKT_TX_OUTER_IPV4 |
PKT_TX_OUTER_IP_CKSUM |
PKT_TX_TUNNEL_MASK;
enic->overlay_offload = true;
dev_info(enic, "Overlay offload is enabled\n");
}
/* Geneve with options offload requires overlay offload */
if (enic->overlay_offload && enic->geneve_opt_avail &&
enic->geneve_opt_request) {
if (vnic_dev_overlay_offload_ctrl(enic->vdev,
OVERLAY_FEATURE_GENEVE,
OVERLAY_OFFLOAD_ENABLE)) {
dev_err(enic, "failed to enable geneve+option\n");
} else {
enic->geneve_opt_enabled = 1;
dev_info(enic, "Geneve with options is enabled\n");
}
}
/*
* Reset the vxlan port if HW vxlan parsing is available. It
* is always enabled regardless of overlay offload
* enable/disable.
*/
if (enic->vxlan) {
enic->vxlan_port = RTE_VXLAN_DEFAULT_PORT;
/*
* Reset the vxlan port to the default, as the NIC firmware
* does not reset it automatically and keeps the old setting.
*/
if (vnic_dev_overlay_offload_cfg(enic->vdev,
OVERLAY_CFG_VXLAN_PORT_UPDATE,
RTE_VXLAN_DEFAULT_PORT)) {
dev_err(enic, "failed to update vxlan port\n");
return -EINVAL;
}
}
return 0;
}
int enic_probe(struct enic *enic)
{
struct rte_pci_device *pdev = enic->pdev;
int err = -1;
dev_debug(enic, "Initializing ENIC PMD\n");
/* if this is a secondary process the hardware is already initialized */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
enic->bar0.vaddr = (void *)pdev->mem_resource[0].addr;
enic->bar0.len = pdev->mem_resource[0].len;
/* Register vNIC device */
enic->vdev = vnic_dev_register(NULL, enic, enic->pdev, &enic->bar0, 1);
if (!enic->vdev) {
dev_err(enic, "vNIC registration failed, aborting\n");
goto err_out;
}
LIST_INIT(&enic->memzone_list);
rte_spinlock_init(&enic->memzone_list_lock);
vnic_register_cbacks(enic->vdev,
enic_alloc_consistent,
enic_free_consistent);
/*
* Allocate the consistent memory for stats upfront so both primary and
* secondary processes can dump stats.
*/
err = vnic_dev_alloc_stats_mem(enic->vdev);
if (err) {
dev_err(enic, "Failed to allocate cmd memory, aborting\n");
goto err_out_unregister;
}
/* Issue device open to get device in known state */
err = enic_dev_open(enic);
if (err) {
dev_err(enic, "vNIC dev open failed, aborting\n");
goto err_out_unregister;
}
/* Set ingress vlan rewrite mode before vnic initialization */
dev_debug(enic, "Set ig_vlan_rewrite_mode=%u\n",
enic->ig_vlan_rewrite_mode);
err = vnic_dev_set_ig_vlan_rewrite_mode(enic->vdev,
enic->ig_vlan_rewrite_mode);
if (err) {
dev_err(enic,
"Failed to set ingress vlan rewrite mode, aborting.\n");
goto err_out_dev_close;
}
/* Issue device init to initialize the vnic-to-switch link.
* We'll start with carrier off and wait for link UP
* notification later to turn on carrier. We don't need
* to wait here for the vnic-to-switch link initialization
* to complete; link UP notification is the indication that
* the process is complete.
*/
err = vnic_dev_init(enic->vdev, 0);
if (err) {
dev_err(enic, "vNIC dev init failed, aborting\n");
goto err_out_dev_close;
}
err = enic_dev_init(enic);
if (err) {
dev_err(enic, "Device initialization failed, aborting\n");
goto err_out_dev_close;
}
return 0;
err_out_dev_close:
vnic_dev_close(enic->vdev);
err_out_unregister:
vnic_dev_unregister(enic->vdev);
err_out:
return err;
}
void enic_remove(struct enic *enic)
{
enic_dev_deinit(enic);
vnic_dev_close(enic->vdev);
vnic_dev_unregister(enic->vdev);
}