numam-dpdk/drivers/net/sfc/sfc_tx.c
Andrew Rybchenko a0147be547 net/sfc: add Xilinx copyright
Xilinx acquired Solarflare in 2019.

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Acked-by: James Fox <jamesfox@xilinx.com>
2020-04-21 13:57:06 +02:00

1161 lines
29 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright(c) 2019-2020 Xilinx, Inc.
* Copyright(c) 2016-2019 Solarflare Communications Inc.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_ev.h"
#include "sfc_tx.h"
#include "sfc_tweak.h"
#include "sfc_kvargs.h"
/*
* Maximum number of TX queue flush attempts in case of
* failure or flush timeout
*/
#define SFC_TX_QFLUSH_ATTEMPTS (3)
/*
* Time to wait between event queue polling attempts when waiting for TX
* queue flush done or flush failed events
*/
#define SFC_TX_QFLUSH_POLL_WAIT_MS (1)
/*
* Maximum number of event queue polling attempts when waiting for TX queue
* flush done or flush failed events; it defines TX queue flush attempt timeout
* together with SFC_TX_QFLUSH_POLL_WAIT_MS
*/
#define SFC_TX_QFLUSH_POLL_ATTEMPTS (2000)
static uint64_t
sfc_tx_get_offload_mask(struct sfc_adapter *sa)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
uint64_t no_caps = 0;
if (!encp->enc_hw_tx_insert_vlan_enabled)
no_caps |= DEV_TX_OFFLOAD_VLAN_INSERT;
if (!encp->enc_tunnel_encapsulations_supported)
no_caps |= DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM;
if (!sa->tso)
no_caps |= DEV_TX_OFFLOAD_TCP_TSO;
if (!sa->tso_encap)
no_caps |= (DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO);
return ~no_caps;
}
uint64_t
sfc_tx_get_dev_offload_caps(struct sfc_adapter *sa)
{
return sa->priv.dp_tx->dev_offload_capa & sfc_tx_get_offload_mask(sa);
}
uint64_t
sfc_tx_get_queue_offload_caps(struct sfc_adapter *sa)
{
return sa->priv.dp_tx->queue_offload_capa & sfc_tx_get_offload_mask(sa);
}
static int
sfc_tx_qcheck_conf(struct sfc_adapter *sa, unsigned int txq_max_fill_level,
const struct rte_eth_txconf *tx_conf,
uint64_t offloads)
{
int rc = 0;
if (tx_conf->tx_rs_thresh != 0) {
sfc_err(sa, "RS bit in transmit descriptor is not supported");
rc = EINVAL;
}
if (tx_conf->tx_free_thresh > txq_max_fill_level) {
sfc_err(sa,
"TxQ free threshold too large: %u vs maximum %u",
tx_conf->tx_free_thresh, txq_max_fill_level);
rc = EINVAL;
}
if (tx_conf->tx_thresh.pthresh != 0 ||
tx_conf->tx_thresh.hthresh != 0 ||
tx_conf->tx_thresh.wthresh != 0) {
sfc_warn(sa,
"prefetch/host/writeback thresholds are not supported");
}
/* We either perform both TCP and UDP offload, or no offload at all */
if (((offloads & DEV_TX_OFFLOAD_TCP_CKSUM) == 0) !=
((offloads & DEV_TX_OFFLOAD_UDP_CKSUM) == 0)) {
sfc_err(sa, "TCP and UDP offloads can't be set independently");
rc = EINVAL;
}
return rc;
}
void
sfc_tx_qflush_done(struct sfc_txq_info *txq_info)
{
txq_info->state |= SFC_TXQ_FLUSHED;
txq_info->state &= ~SFC_TXQ_FLUSHING;
}
int
sfc_tx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
uint16_t nb_tx_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
unsigned int txq_entries;
unsigned int evq_entries;
unsigned int txq_max_fill_level;
struct sfc_txq_info *txq_info;
struct sfc_evq *evq;
struct sfc_txq *txq;
int rc = 0;
struct sfc_dp_tx_qcreate_info info;
uint64_t offloads;
struct sfc_dp_tx_hw_limits hw_limits;
sfc_log_init(sa, "TxQ = %u", sw_index);
memset(&hw_limits, 0, sizeof(hw_limits));
hw_limits.txq_max_entries = sa->txq_max_entries;
hw_limits.txq_min_entries = sa->txq_min_entries;
rc = sa->priv.dp_tx->qsize_up_rings(nb_tx_desc, &hw_limits,
&txq_entries, &evq_entries,
&txq_max_fill_level);
if (rc != 0)
goto fail_size_up_rings;
SFC_ASSERT(txq_entries >= sa->txq_min_entries);
SFC_ASSERT(txq_entries <= sa->txq_max_entries);
SFC_ASSERT(txq_entries >= nb_tx_desc);
SFC_ASSERT(txq_max_fill_level <= nb_tx_desc);
offloads = tx_conf->offloads |
sa->eth_dev->data->dev_conf.txmode.offloads;
rc = sfc_tx_qcheck_conf(sa, txq_max_fill_level, tx_conf, offloads);
if (rc != 0)
goto fail_bad_conf;
SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
txq_info->entries = txq_entries;
rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_TX, sw_index,
evq_entries, socket_id, &evq);
if (rc != 0)
goto fail_ev_qinit;
txq = &sa->txq_ctrl[sw_index];
txq->hw_index = sw_index;
txq->evq = evq;
txq_info->free_thresh =
(tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh :
SFC_TX_DEFAULT_FREE_THRESH;
txq_info->offloads = offloads;
rc = sfc_dma_alloc(sa, "txq", sw_index,
efx_txq_size(sa->nic, txq_info->entries),
socket_id, &txq->mem);
if (rc != 0)
goto fail_dma_alloc;
memset(&info, 0, sizeof(info));
info.max_fill_level = txq_max_fill_level;
info.free_thresh = txq_info->free_thresh;
info.offloads = offloads;
info.txq_entries = txq_info->entries;
info.dma_desc_size_max = encp->enc_tx_dma_desc_size_max;
info.txq_hw_ring = txq->mem.esm_base;
info.evq_entries = evq_entries;
info.evq_hw_ring = evq->mem.esm_base;
info.hw_index = txq->hw_index;
info.mem_bar = sa->mem_bar.esb_base;
info.vi_window_shift = encp->enc_vi_window_shift;
info.tso_tcp_header_offset_limit =
encp->enc_tx_tso_tcp_header_offset_limit;
rc = sa->priv.dp_tx->qcreate(sa->eth_dev->data->port_id, sw_index,
&RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
socket_id, &info, &txq_info->dp);
if (rc != 0)
goto fail_dp_tx_qinit;
evq->dp_txq = txq_info->dp;
txq_info->state = SFC_TXQ_INITIALIZED;
txq_info->deferred_start = (tx_conf->tx_deferred_start != 0);
return 0;
fail_dp_tx_qinit:
sfc_dma_free(sa, &txq->mem);
fail_dma_alloc:
sfc_ev_qfini(evq);
fail_ev_qinit:
txq_info->entries = 0;
fail_bad_conf:
fail_size_up_rings:
sfc_log_init(sa, "failed (TxQ = %u, rc = %d)", sw_index, rc);
return rc;
}
void
sfc_tx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_txq_info *txq_info;
struct sfc_txq *txq;
sfc_log_init(sa, "TxQ = %u", sw_index);
SFC_ASSERT(sw_index < sfc_sa2shared(sa)->txq_count);
sa->eth_dev->data->tx_queues[sw_index] = NULL;
txq_info = &sfc_sa2shared(sa)->txq_info[sw_index];
SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
sa->priv.dp_tx->qdestroy(txq_info->dp);
txq_info->dp = NULL;
txq_info->state &= ~SFC_TXQ_INITIALIZED;
txq_info->entries = 0;
txq = &sa->txq_ctrl[sw_index];
sfc_dma_free(sa, &txq->mem);
sfc_ev_qfini(txq->evq);
txq->evq = NULL;
}
static int
sfc_tx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
{
sfc_log_init(sa, "TxQ = %u", sw_index);
return 0;
}
static int
sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode)
{
int rc = 0;
switch (txmode->mq_mode) {
case ETH_MQ_TX_NONE:
break;
default:
sfc_err(sa, "Tx multi-queue mode %u not supported",
txmode->mq_mode);
rc = EINVAL;
}
/*
* These features are claimed to be i40e-specific,
* but it does make sense to double-check their absence
*/
if (txmode->hw_vlan_reject_tagged) {
sfc_err(sa, "Rejecting tagged packets not supported");
rc = EINVAL;
}
if (txmode->hw_vlan_reject_untagged) {
sfc_err(sa, "Rejecting untagged packets not supported");
rc = EINVAL;
}
if (txmode->hw_vlan_insert_pvid) {
sfc_err(sa, "Port-based VLAN insertion not supported");
rc = EINVAL;
}
return rc;
}
/**
* Destroy excess queues that are no longer needed after reconfiguration
* or complete close.
*/
static void
sfc_tx_fini_queues(struct sfc_adapter *sa, unsigned int nb_tx_queues)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
int sw_index;
SFC_ASSERT(nb_tx_queues <= sas->txq_count);
sw_index = sas->txq_count;
while (--sw_index >= (int)nb_tx_queues) {
if (sas->txq_info[sw_index].state & SFC_TXQ_INITIALIZED)
sfc_tx_qfini(sa, sw_index);
}
sas->txq_count = nb_tx_queues;
}
int
sfc_tx_configure(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
const unsigned int nb_tx_queues = sa->eth_dev->data->nb_tx_queues;
int rc = 0;
sfc_log_init(sa, "nb_tx_queues=%u (old %u)",
nb_tx_queues, sas->txq_count);
/*
* The datapath implementation assumes absence of boundary
* limits on Tx DMA descriptors. Addition of these checks on
* datapath would simply make the datapath slower.
*/
if (encp->enc_tx_dma_desc_boundary != 0) {
rc = ENOTSUP;
goto fail_tx_dma_desc_boundary;
}
rc = sfc_tx_check_mode(sa, &dev_conf->txmode);
if (rc != 0)
goto fail_check_mode;
if (nb_tx_queues == sas->txq_count)
goto done;
if (sas->txq_info == NULL) {
sas->txq_info = rte_calloc_socket("sfc-txqs", nb_tx_queues,
sizeof(sas->txq_info[0]), 0,
sa->socket_id);
if (sas->txq_info == NULL)
goto fail_txqs_alloc;
/*
* Allocate primary process only TxQ control from heap
* since it should not be shared.
*/
rc = ENOMEM;
sa->txq_ctrl = calloc(nb_tx_queues, sizeof(sa->txq_ctrl[0]));
if (sa->txq_ctrl == NULL)
goto fail_txqs_ctrl_alloc;
} else {
struct sfc_txq_info *new_txq_info;
struct sfc_txq *new_txq_ctrl;
if (nb_tx_queues < sas->txq_count)
sfc_tx_fini_queues(sa, nb_tx_queues);
new_txq_info =
rte_realloc(sas->txq_info,
nb_tx_queues * sizeof(sas->txq_info[0]), 0);
if (new_txq_info == NULL && nb_tx_queues > 0)
goto fail_txqs_realloc;
new_txq_ctrl = realloc(sa->txq_ctrl,
nb_tx_queues * sizeof(sa->txq_ctrl[0]));
if (new_txq_ctrl == NULL && nb_tx_queues > 0)
goto fail_txqs_ctrl_realloc;
sas->txq_info = new_txq_info;
sa->txq_ctrl = new_txq_ctrl;
if (nb_tx_queues > sas->txq_count) {
memset(&sas->txq_info[sas->txq_count], 0,
(nb_tx_queues - sas->txq_count) *
sizeof(sas->txq_info[0]));
memset(&sa->txq_ctrl[sas->txq_count], 0,
(nb_tx_queues - sas->txq_count) *
sizeof(sa->txq_ctrl[0]));
}
}
while (sas->txq_count < nb_tx_queues) {
rc = sfc_tx_qinit_info(sa, sas->txq_count);
if (rc != 0)
goto fail_tx_qinit_info;
sas->txq_count++;
}
done:
return 0;
fail_tx_qinit_info:
fail_txqs_ctrl_realloc:
fail_txqs_realloc:
fail_txqs_ctrl_alloc:
fail_txqs_alloc:
sfc_tx_close(sa);
fail_check_mode:
fail_tx_dma_desc_boundary:
sfc_log_init(sa, "failed (rc = %d)", rc);
return rc;
}
void
sfc_tx_close(struct sfc_adapter *sa)
{
sfc_tx_fini_queues(sa, 0);
free(sa->txq_ctrl);
sa->txq_ctrl = NULL;
rte_free(sfc_sa2shared(sa)->txq_info);
sfc_sa2shared(sa)->txq_info = NULL;
}
int
sfc_tx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
uint64_t offloads_supported = sfc_tx_get_dev_offload_caps(sa) |
sfc_tx_get_queue_offload_caps(sa);
struct rte_eth_dev_data *dev_data;
struct sfc_txq_info *txq_info;
struct sfc_txq *txq;
struct sfc_evq *evq;
uint16_t flags = 0;
unsigned int desc_index;
int rc = 0;
sfc_log_init(sa, "TxQ = %u", sw_index);
SFC_ASSERT(sw_index < sas->txq_count);
txq_info = &sas->txq_info[sw_index];
SFC_ASSERT(txq_info->state == SFC_TXQ_INITIALIZED);
txq = &sa->txq_ctrl[sw_index];
evq = txq->evq;
rc = sfc_ev_qstart(evq, sfc_evq_index_by_txq_sw_index(sa, sw_index));
if (rc != 0)
goto fail_ev_qstart;
if (txq_info->offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
flags |= EFX_TXQ_CKSUM_IPV4;
if (txq_info->offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
flags |= EFX_TXQ_CKSUM_INNER_IPV4;
if ((txq_info->offloads & DEV_TX_OFFLOAD_TCP_CKSUM) ||
(txq_info->offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
flags |= EFX_TXQ_CKSUM_TCPUDP;
if (offloads_supported & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
flags |= EFX_TXQ_CKSUM_INNER_TCPUDP;
}
if (txq_info->offloads & (DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO))
flags |= EFX_TXQ_FATSOV2;
rc = efx_tx_qcreate(sa->nic, txq->hw_index, 0, &txq->mem,
txq_info->entries, 0 /* not used on EF10 */,
flags, evq->common,
&txq->common, &desc_index);
if (rc != 0) {
if (sa->tso && (rc == ENOSPC))
sfc_err(sa, "ran out of TSO contexts");
goto fail_tx_qcreate;
}
efx_tx_qenable(txq->common);
txq_info->state |= SFC_TXQ_STARTED;
rc = sa->priv.dp_tx->qstart(txq_info->dp, evq->read_ptr, desc_index);
if (rc != 0)
goto fail_dp_qstart;
/*
* It seems to be used by DPDK for debug purposes only ('rte_ether')
*/
dev_data = sa->eth_dev->data;
dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STARTED;
return 0;
fail_dp_qstart:
txq_info->state = SFC_TXQ_INITIALIZED;
efx_tx_qdestroy(txq->common);
fail_tx_qcreate:
sfc_ev_qstop(evq);
fail_ev_qstart:
return rc;
}
void
sfc_tx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
struct rte_eth_dev_data *dev_data;
struct sfc_txq_info *txq_info;
struct sfc_txq *txq;
unsigned int retry_count;
unsigned int wait_count;
int rc;
sfc_log_init(sa, "TxQ = %u", sw_index);
SFC_ASSERT(sw_index < sas->txq_count);
txq_info = &sas->txq_info[sw_index];
if (txq_info->state == SFC_TXQ_INITIALIZED)
return;
SFC_ASSERT(txq_info->state & SFC_TXQ_STARTED);
txq = &sa->txq_ctrl[sw_index];
sa->priv.dp_tx->qstop(txq_info->dp, &txq->evq->read_ptr);
/*
* Retry TX queue flushing in case of flush failed or
* timeout; in the worst case it can delay for 6 seconds
*/
for (retry_count = 0;
((txq_info->state & SFC_TXQ_FLUSHED) == 0) &&
(retry_count < SFC_TX_QFLUSH_ATTEMPTS);
++retry_count) {
rc = efx_tx_qflush(txq->common);
if (rc != 0) {
txq_info->state |= (rc == EALREADY) ?
SFC_TXQ_FLUSHED : SFC_TXQ_FLUSH_FAILED;
break;
}
/*
* Wait for TX queue flush done or flush failed event at least
* SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more
* than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied
* by SFC_TX_QFLUSH_POLL_ATTEMPTS)
*/
wait_count = 0;
do {
rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS);
sfc_ev_qpoll(txq->evq);
} while ((txq_info->state & SFC_TXQ_FLUSHING) &&
wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS);
if (txq_info->state & SFC_TXQ_FLUSHING)
sfc_err(sa, "TxQ %u flush timed out", sw_index);
if (txq_info->state & SFC_TXQ_FLUSHED)
sfc_notice(sa, "TxQ %u flushed", sw_index);
}
sa->priv.dp_tx->qreap(txq_info->dp);
txq_info->state = SFC_TXQ_INITIALIZED;
efx_tx_qdestroy(txq->common);
sfc_ev_qstop(txq->evq);
/*
* It seems to be used by DPDK for debug purposes only ('rte_ether')
*/
dev_data = sa->eth_dev->data;
dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STOPPED;
}
int
sfc_tx_start(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
unsigned int sw_index;
int rc = 0;
sfc_log_init(sa, "txq_count = %u", sas->txq_count);
if (sa->tso) {
if (!encp->enc_fw_assisted_tso_v2_enabled) {
sfc_warn(sa, "TSO support was unable to be restored");
sa->tso = B_FALSE;
sa->tso_encap = B_FALSE;
}
}
if (sa->tso_encap && !encp->enc_fw_assisted_tso_v2_encap_enabled) {
sfc_warn(sa, "Encapsulated TSO support was unable to be restored");
sa->tso_encap = B_FALSE;
}
rc = efx_tx_init(sa->nic);
if (rc != 0)
goto fail_efx_tx_init;
for (sw_index = 0; sw_index < sas->txq_count; ++sw_index) {
if (sas->txq_info[sw_index].state == SFC_TXQ_INITIALIZED &&
(!(sas->txq_info[sw_index].deferred_start) ||
sas->txq_info[sw_index].deferred_started)) {
rc = sfc_tx_qstart(sa, sw_index);
if (rc != 0)
goto fail_tx_qstart;
}
}
return 0;
fail_tx_qstart:
while (sw_index-- > 0)
sfc_tx_qstop(sa, sw_index);
efx_tx_fini(sa->nic);
fail_efx_tx_init:
sfc_log_init(sa, "failed (rc = %d)", rc);
return rc;
}
void
sfc_tx_stop(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
unsigned int sw_index;
sfc_log_init(sa, "txq_count = %u", sas->txq_count);
sw_index = sas->txq_count;
while (sw_index-- > 0) {
if (sas->txq_info[sw_index].state & SFC_TXQ_STARTED)
sfc_tx_qstop(sa, sw_index);
}
efx_tx_fini(sa->nic);
}
static void
sfc_efx_tx_reap(struct sfc_efx_txq *txq)
{
unsigned int completed;
sfc_ev_qpoll(txq->evq);
for (completed = txq->completed;
completed != txq->pending; completed++) {
struct sfc_efx_tx_sw_desc *txd;
txd = &txq->sw_ring[completed & txq->ptr_mask];
if (txd->mbuf != NULL) {
rte_pktmbuf_free(txd->mbuf);
txd->mbuf = NULL;
}
}
txq->completed = completed;
}
/*
* The function is used to insert or update VLAN tag;
* the firmware has state of the firmware tag to insert per TxQ
* (controlled by option descriptors), hence, if the tag of the
* packet to be sent is different from one remembered by the firmware,
* the function will update it
*/
static unsigned int
sfc_efx_tx_maybe_insert_tag(struct sfc_efx_txq *txq, struct rte_mbuf *m,
efx_desc_t **pend)
{
uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ?
m->vlan_tci : 0);
if (this_tag == txq->hw_vlan_tci)
return 0;
/*
* The expression inside SFC_ASSERT() is not desired to be checked in
* a non-debug build because it might be too expensive on the data path
*/
SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled);
efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag),
*pend);
(*pend)++;
txq->hw_vlan_tci = this_tag;
return 1;
}
static uint16_t
sfc_efx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct sfc_dp_txq *dp_txq = tx_queue;
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->evq->sa->nic);
uint16_t i;
for (i = 0; i < nb_pkts; i++) {
int ret;
/*
* EFX Tx datapath may require extra VLAN descriptor if VLAN
* insertion offload is requested regardless the offload
* requested/supported.
*/
ret = sfc_dp_tx_prepare_pkt(tx_pkts[i],
encp->enc_tx_tso_tcp_header_offset_limit,
txq->max_fill_level, EFX_TX_FATSOV2_OPT_NDESCS,
1);
if (unlikely(ret != 0)) {
rte_errno = ret;
break;
}
}
return i;
}
static uint16_t
sfc_efx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
struct sfc_dp_txq *dp_txq = (struct sfc_dp_txq *)tx_queue;
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
unsigned int added = txq->added;
unsigned int pushed = added;
unsigned int pkts_sent = 0;
efx_desc_t *pend = &txq->pend_desc[0];
const unsigned int hard_max_fill = txq->max_fill_level;
const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh;
unsigned int fill_level = added - txq->completed;
boolean_t reap_done;
int rc __rte_unused;
struct rte_mbuf **pktp;
if (unlikely((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) == 0))
goto done;
/*
* If insufficient space for a single packet is present,
* we should reap; otherwise, we shouldn't do that all the time
* to avoid latency increase
*/
reap_done = (fill_level > soft_max_fill);
if (reap_done) {
sfc_efx_tx_reap(txq);
/*
* Recalculate fill level since 'txq->completed'
* might have changed on reap
*/
fill_level = added - txq->completed;
}
for (pkts_sent = 0, pktp = &tx_pkts[0];
(pkts_sent < nb_pkts) && (fill_level <= soft_max_fill);
pkts_sent++, pktp++) {
uint16_t hw_vlan_tci_prev = txq->hw_vlan_tci;
struct rte_mbuf *m_seg = *pktp;
size_t pkt_len = m_seg->pkt_len;
unsigned int pkt_descs = 0;
size_t in_off = 0;
/*
* Here VLAN TCI is expected to be zero in case if no
* DEV_TX_OFFLOAD_VLAN_INSERT capability is advertised;
* if the calling app ignores the absence of
* DEV_TX_OFFLOAD_VLAN_INSERT and pushes VLAN TCI, then
* TX_ERROR will occur
*/
pkt_descs += sfc_efx_tx_maybe_insert_tag(txq, m_seg, &pend);
if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
/*
* We expect correct 'pkt->l[2, 3, 4]_len' values
* to be set correctly by the caller
*/
if (sfc_efx_tso_do(txq, added, &m_seg, &in_off, &pend,
&pkt_descs, &pkt_len) != 0) {
/* We may have reached this place if packet
* header linearization is needed but the
* header length is greater than
* SFC_TSOH_STD_LEN
*
* We will deceive RTE saying that we have sent
* the packet, but we will actually drop it.
* Hence, we should revert 'pend' to the
* previous state (in case we have added
* VLAN descriptor) and start processing
* another one packet. But the original
* mbuf shouldn't be orphaned
*/
pend -= pkt_descs;
txq->hw_vlan_tci = hw_vlan_tci_prev;
rte_pktmbuf_free(*pktp);
continue;
}
/*
* We've only added 2 FATSOv2 option descriptors
* and 1 descriptor for the linearized packet header.
* The outstanding work will be done in the same manner
* as for the usual non-TSO path
*/
}
for (; m_seg != NULL; m_seg = m_seg->next) {
efsys_dma_addr_t next_frag;
size_t seg_len;
seg_len = m_seg->data_len;
next_frag = rte_mbuf_data_iova(m_seg);
/*
* If we've started TSO transaction few steps earlier,
* we'll skip packet header using an offset in the
* current segment (which has been set to the
* first one containing payload)
*/
seg_len -= in_off;
next_frag += in_off;
in_off = 0;
do {
efsys_dma_addr_t frag_addr = next_frag;
size_t frag_len;
/*
* It is assumed here that there is no
* limitation on address boundary
* crossing by DMA descriptor.
*/
frag_len = MIN(seg_len, txq->dma_desc_size_max);
next_frag += frag_len;
seg_len -= frag_len;
pkt_len -= frag_len;
efx_tx_qdesc_dma_create(txq->common,
frag_addr, frag_len,
(pkt_len == 0),
pend++);
pkt_descs++;
} while (seg_len != 0);
}
added += pkt_descs;
fill_level += pkt_descs;
if (unlikely(fill_level > hard_max_fill)) {
/*
* Our estimation for maximum number of descriptors
* required to send a packet seems to be wrong.
* Try to reap (if we haven't yet).
*/
if (!reap_done) {
sfc_efx_tx_reap(txq);
reap_done = B_TRUE;
fill_level = added - txq->completed;
if (fill_level > hard_max_fill) {
pend -= pkt_descs;
txq->hw_vlan_tci = hw_vlan_tci_prev;
break;
}
} else {
pend -= pkt_descs;
txq->hw_vlan_tci = hw_vlan_tci_prev;
break;
}
}
/* Assign mbuf to the last used desc */
txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp;
}
if (likely(pkts_sent > 0)) {
rc = efx_tx_qdesc_post(txq->common, txq->pend_desc,
pend - &txq->pend_desc[0],
txq->completed, &txq->added);
SFC_ASSERT(rc == 0);
if (likely(pushed != txq->added))
efx_tx_qpush(txq->common, txq->added, pushed);
}
#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
if (!reap_done)
sfc_efx_tx_reap(txq);
#endif
done:
return pkts_sent;
}
const struct sfc_dp_tx *
sfc_dp_tx_by_dp_txq(const struct sfc_dp_txq *dp_txq)
{
const struct sfc_dp_queue *dpq = &dp_txq->dpq;
struct rte_eth_dev *eth_dev;
struct sfc_adapter_priv *sap;
SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
eth_dev = &rte_eth_devices[dpq->port_id];
sap = sfc_adapter_priv_by_eth_dev(eth_dev);
return sap->dp_tx;
}
struct sfc_txq_info *
sfc_txq_info_by_dp_txq(const struct sfc_dp_txq *dp_txq)
{
const struct sfc_dp_queue *dpq = &dp_txq->dpq;
struct rte_eth_dev *eth_dev;
struct sfc_adapter_shared *sas;
SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
eth_dev = &rte_eth_devices[dpq->port_id];
sas = sfc_adapter_shared_by_eth_dev(eth_dev);
SFC_ASSERT(dpq->queue_id < sas->txq_count);
return &sas->txq_info[dpq->queue_id];
}
struct sfc_txq *
sfc_txq_by_dp_txq(const struct sfc_dp_txq *dp_txq)
{
const struct sfc_dp_queue *dpq = &dp_txq->dpq;
struct rte_eth_dev *eth_dev;
struct sfc_adapter *sa;
SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
eth_dev = &rte_eth_devices[dpq->port_id];
sa = sfc_adapter_by_eth_dev(eth_dev);
SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->txq_count);
return &sa->txq_ctrl[dpq->queue_id];
}
static sfc_dp_tx_qsize_up_rings_t sfc_efx_tx_qsize_up_rings;
static int
sfc_efx_tx_qsize_up_rings(uint16_t nb_tx_desc,
__rte_unused struct sfc_dp_tx_hw_limits *limits,
unsigned int *txq_entries,
unsigned int *evq_entries,
unsigned int *txq_max_fill_level)
{
*txq_entries = nb_tx_desc;
*evq_entries = nb_tx_desc;
*txq_max_fill_level = EFX_TXQ_LIMIT(*txq_entries);
return 0;
}
static sfc_dp_tx_qcreate_t sfc_efx_tx_qcreate;
static int
sfc_efx_tx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr,
int socket_id,
const struct sfc_dp_tx_qcreate_info *info,
struct sfc_dp_txq **dp_txqp)
{
struct sfc_efx_txq *txq;
struct sfc_txq *ctrl_txq;
int rc;
rc = ENOMEM;
txq = rte_zmalloc_socket("sfc-efx-txq", sizeof(*txq),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq == NULL)
goto fail_txq_alloc;
sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
txq->pend_desc = rte_calloc_socket("sfc-efx-txq-pend-desc",
EFX_TXQ_LIMIT(info->txq_entries),
sizeof(*txq->pend_desc), 0,
socket_id);
if (txq->pend_desc == NULL)
goto fail_pend_desc_alloc;
rc = ENOMEM;
txq->sw_ring = rte_calloc_socket("sfc-efx-txq-sw_ring",
info->txq_entries,
sizeof(*txq->sw_ring),
RTE_CACHE_LINE_SIZE, socket_id);
if (txq->sw_ring == NULL)
goto fail_sw_ring_alloc;
ctrl_txq = sfc_txq_by_dp_txq(&txq->dp);
if (ctrl_txq->evq->sa->tso) {
rc = sfc_efx_tso_alloc_tsoh_objs(txq->sw_ring,
info->txq_entries, socket_id);
if (rc != 0)
goto fail_alloc_tsoh_objs;
}
txq->evq = ctrl_txq->evq;
txq->ptr_mask = info->txq_entries - 1;
txq->max_fill_level = info->max_fill_level;
txq->free_thresh = info->free_thresh;
txq->dma_desc_size_max = info->dma_desc_size_max;
*dp_txqp = &txq->dp;
return 0;
fail_alloc_tsoh_objs:
rte_free(txq->sw_ring);
fail_sw_ring_alloc:
rte_free(txq->pend_desc);
fail_pend_desc_alloc:
rte_free(txq);
fail_txq_alloc:
return rc;
}
static sfc_dp_tx_qdestroy_t sfc_efx_tx_qdestroy;
static void
sfc_efx_tx_qdestroy(struct sfc_dp_txq *dp_txq)
{
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
sfc_efx_tso_free_tsoh_objs(txq->sw_ring, txq->ptr_mask + 1);
rte_free(txq->sw_ring);
rte_free(txq->pend_desc);
rte_free(txq);
}
static sfc_dp_tx_qstart_t sfc_efx_tx_qstart;
static int
sfc_efx_tx_qstart(struct sfc_dp_txq *dp_txq,
__rte_unused unsigned int evq_read_ptr,
unsigned int txq_desc_index)
{
/* libefx-based datapath is specific to libefx-based PMD */
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
struct sfc_txq *ctrl_txq = sfc_txq_by_dp_txq(dp_txq);
txq->common = ctrl_txq->common;
txq->pending = txq->completed = txq->added = txq_desc_index;
txq->hw_vlan_tci = 0;
txq->flags |= (SFC_EFX_TXQ_FLAG_STARTED | SFC_EFX_TXQ_FLAG_RUNNING);
return 0;
}
static sfc_dp_tx_qstop_t sfc_efx_tx_qstop;
static void
sfc_efx_tx_qstop(struct sfc_dp_txq *dp_txq,
__rte_unused unsigned int *evq_read_ptr)
{
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
txq->flags &= ~SFC_EFX_TXQ_FLAG_RUNNING;
}
static sfc_dp_tx_qreap_t sfc_efx_tx_qreap;
static void
sfc_efx_tx_qreap(struct sfc_dp_txq *dp_txq)
{
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
unsigned int txds;
sfc_efx_tx_reap(txq);
for (txds = 0; txds <= txq->ptr_mask; txds++) {
if (txq->sw_ring[txds].mbuf != NULL) {
rte_pktmbuf_free(txq->sw_ring[txds].mbuf);
txq->sw_ring[txds].mbuf = NULL;
}
}
txq->flags &= ~SFC_EFX_TXQ_FLAG_STARTED;
}
static sfc_dp_tx_qdesc_status_t sfc_efx_tx_qdesc_status;
static int
sfc_efx_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
{
struct sfc_efx_txq *txq = sfc_efx_txq_by_dp_txq(dp_txq);
if (unlikely(offset > txq->ptr_mask))
return -EINVAL;
if (unlikely(offset >= txq->max_fill_level))
return RTE_ETH_TX_DESC_UNAVAIL;
/*
* Poll EvQ to derive up-to-date 'txq->pending' figure;
* it is required for the queue to be running, but the
* check is omitted because API design assumes that it
* is the duty of the caller to satisfy all conditions
*/
SFC_ASSERT((txq->flags & SFC_EFX_TXQ_FLAG_RUNNING) ==
SFC_EFX_TXQ_FLAG_RUNNING);
sfc_ev_qpoll(txq->evq);
/*
* Ring tail is 'txq->pending', and although descriptors
* between 'txq->completed' and 'txq->pending' are still
* in use by the driver, they should be reported as DONE
*/
if (unlikely(offset < (txq->added - txq->pending)))
return RTE_ETH_TX_DESC_FULL;
/*
* There is no separate return value for unused descriptors;
* the latter will be reported as DONE because genuine DONE
* descriptors will be freed anyway in SW on the next burst
*/
return RTE_ETH_TX_DESC_DONE;
}
struct sfc_dp_tx sfc_efx_tx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EFX,
.type = SFC_DP_TX,
.hw_fw_caps = 0,
},
.features = 0,
.dev_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_MULTI_SEGS,
.queue_offload_capa = DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO,
.qsize_up_rings = sfc_efx_tx_qsize_up_rings,
.qcreate = sfc_efx_tx_qcreate,
.qdestroy = sfc_efx_tx_qdestroy,
.qstart = sfc_efx_tx_qstart,
.qstop = sfc_efx_tx_qstop,
.qreap = sfc_efx_tx_qreap,
.qdesc_status = sfc_efx_tx_qdesc_status,
.pkt_prepare = sfc_efx_prepare_pkts,
.pkt_burst = sfc_efx_xmit_pkts,
};