Konstantin Ananyev 074f54ad03 acl: fix build and runtime for default target
Make ACL library to build/work on 'default' architecture:
- make rte_acl_classify_scalar really scalar
 (make sure it wouldn't use sse4 instrincts through resolve_priority()).
- Provide two versions of rte_acl_classify code path:
  rte_acl_classify_sse() - could be build and used only on systems with sse4.2
  and upper, return -ENOTSUP on lower arch.
  rte_acl_classify_scalar() - a slower version, but could be build and used
  on all systems.
- Addition of a new function rte_acl_classify_alg.  This function lets you
  specify an enum value to override the acl contexts default algorithm when doing
  a classification.  This allows an application to specify a classification
  algorithm without needing to publicize each method. I know there was concern
  over keeping those methods public, but we don't have a static ABI at the moment,
  so this seems to me a reasonable thing to do, as it gives us less of an ABI
  surface to worry about.
- keep common code shared between these two codepaths.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
2014-09-03 03:26:50 +02:00

2009 lines
47 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_acl.h>
#include "tb_mem.h"
#include "acl.h"
#define ACL_POOL_ALIGN 8
#define ACL_POOL_ALLOC_MIN 0x800000
/* number of pointers per alloc */
#define ACL_PTR_ALLOC 32
/* variable for dividing rule sets */
#define NODE_MAX 2500
#define NODE_PERCENTAGE (0.40)
#define RULE_PERCENTAGE (0.40)
/* TALLY are statistics per field */
enum {
TALLY_0 = 0, /* number of rules that are 0% or more wild. */
TALLY_25, /* number of rules that are 25% or more wild. */
TALLY_50,
TALLY_75,
TALLY_100,
TALLY_DEACTIVATED, /* deactivated fields (100% wild in all rules). */
TALLY_DEPTH,
/* number of rules that are 100% wild for this field and higher. */
TALLY_NUM
};
static const uint32_t wild_limits[TALLY_DEACTIVATED] = {0, 25, 50, 75, 100};
enum {
ACL_INTERSECT_NONE = 0,
ACL_INTERSECT_A = 1, /* set A is a superset of A and B intersect */
ACL_INTERSECT_B = 2, /* set B is a superset of A and B intersect */
ACL_INTERSECT = 4, /* sets A and B intersect */
};
enum {
ACL_PRIORITY_EQUAL = 0,
ACL_PRIORITY_NODE_A = 1,
ACL_PRIORITY_NODE_B = 2,
ACL_PRIORITY_MIXED = 3
};
struct acl_mem_block {
uint32_t block_size;
void *mem_ptr;
};
#define MEM_BLOCK_NUM 16
/* Single ACL rule, build representation.*/
struct rte_acl_build_rule {
struct rte_acl_build_rule *next;
struct rte_acl_config *config;
/**< configuration for each field in the rule. */
const struct rte_acl_rule *f;
uint32_t *wildness;
};
/* Context for build phase */
struct acl_build_context {
const struct rte_acl_ctx *acx;
struct rte_acl_build_rule *build_rules;
struct rte_acl_config cfg;
uint32_t node;
uint32_t num_nodes;
uint32_t category_mask;
uint32_t num_rules;
uint32_t node_id;
uint32_t src_mask;
uint32_t num_build_rules;
uint32_t num_tries;
struct tb_mem_pool pool;
struct rte_acl_trie tries[RTE_ACL_MAX_TRIES];
struct rte_acl_bld_trie bld_tries[RTE_ACL_MAX_TRIES];
uint32_t data_indexes[RTE_ACL_MAX_TRIES][RTE_ACL_MAX_FIELDS];
/* memory free lists for nodes and blocks used for node ptrs */
struct acl_mem_block blocks[MEM_BLOCK_NUM];
struct rte_acl_node *node_free_list;
};
static int acl_merge_trie(struct acl_build_context *context,
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
uint32_t level, uint32_t subtree_id, struct rte_acl_node **node_c);
static int acl_merge(struct acl_build_context *context,
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
int move, int a_subset, int level);
static void
acl_deref_ptr(struct acl_build_context *context,
struct rte_acl_node *node, int index);
static void *
acl_build_alloc(struct acl_build_context *context, size_t n, size_t s)
{
uint32_t m;
void *p;
size_t alloc_size = n * s;
/*
* look for memory in free lists
*/
for (m = 0; m < RTE_DIM(context->blocks); m++) {
if (context->blocks[m].block_size ==
alloc_size && context->blocks[m].mem_ptr != NULL) {
p = context->blocks[m].mem_ptr;
context->blocks[m].mem_ptr = *((void **)p);
memset(p, 0, alloc_size);
return p;
}
}
/*
* return allocation from memory pool
*/
p = tb_alloc(&context->pool, alloc_size);
return p;
}
/*
* Free memory blocks (kept in context for reuse).
*/
static void
acl_build_free(struct acl_build_context *context, size_t s, void *p)
{
uint32_t n;
for (n = 0; n < RTE_DIM(context->blocks); n++) {
if (context->blocks[n].block_size == s) {
*((void **)p) = context->blocks[n].mem_ptr;
context->blocks[n].mem_ptr = p;
return;
}
}
for (n = 0; n < RTE_DIM(context->blocks); n++) {
if (context->blocks[n].block_size == 0) {
context->blocks[n].block_size = s;
*((void **)p) = NULL;
context->blocks[n].mem_ptr = p;
return;
}
}
}
/*
* Allocate and initialize a new node.
*/
static struct rte_acl_node *
acl_alloc_node(struct acl_build_context *context, int level)
{
struct rte_acl_node *node;
if (context->node_free_list != NULL) {
node = context->node_free_list;
context->node_free_list = node->next;
memset(node, 0, sizeof(struct rte_acl_node));
} else {
node = acl_build_alloc(context, sizeof(struct rte_acl_node), 1);
}
if (node != NULL) {
node->num_ptrs = 0;
node->level = level;
node->node_type = RTE_ACL_NODE_UNDEFINED;
node->node_index = RTE_ACL_NODE_UNDEFINED;
context->num_nodes++;
node->id = context->node_id++;
}
return node;
}
/*
* Dereference all nodes to which this node points
*/
static void
acl_free_node(struct acl_build_context *context,
struct rte_acl_node *node)
{
uint32_t n;
if (node->prev != NULL)
node->prev->next = NULL;
for (n = 0; n < node->num_ptrs; n++)
acl_deref_ptr(context, node, n);
/* free mrt if this is a match node */
if (node->mrt != NULL) {
acl_build_free(context, sizeof(struct rte_acl_match_results),
node->mrt);
node->mrt = NULL;
}
/* free transitions to other nodes */
if (node->ptrs != NULL) {
acl_build_free(context,
node->max_ptrs * sizeof(struct rte_acl_ptr_set),
node->ptrs);
node->ptrs = NULL;
}
/* put it on the free list */
context->num_nodes--;
node->next = context->node_free_list;
context->node_free_list = node;
}
/*
* Include src bitset in dst bitset
*/
static void
acl_include(struct rte_acl_bitset *dst, struct rte_acl_bitset *src, bits_t mask)
{
uint32_t n;
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
dst->bits[n] = (dst->bits[n] & mask) | src->bits[n];
}
/*
* Set dst to bits of src1 that are not in src2
*/
static int
acl_exclude(struct rte_acl_bitset *dst,
struct rte_acl_bitset *src1,
struct rte_acl_bitset *src2)
{
uint32_t n;
bits_t all_bits = 0;
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
dst->bits[n] = src1->bits[n] & ~src2->bits[n];
all_bits |= dst->bits[n];
}
return all_bits != 0;
}
/*
* Add a pointer (ptr) to a node.
*/
static int
acl_add_ptr(struct acl_build_context *context,
struct rte_acl_node *node,
struct rte_acl_node *ptr,
struct rte_acl_bitset *bits)
{
uint32_t n, num_ptrs;
struct rte_acl_ptr_set *ptrs = NULL;
/*
* If there's already a pointer to the same node, just add to the bitset
*/
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL) {
if (node->ptrs[n].ptr == ptr) {
acl_include(&node->ptrs[n].values, bits, -1);
acl_include(&node->values, bits, -1);
return 0;
}
}
}
/* if there's no room for another pointer, make room */
if (node->num_ptrs >= node->max_ptrs) {
/* add room for more pointers */
num_ptrs = node->max_ptrs + ACL_PTR_ALLOC;
ptrs = acl_build_alloc(context, num_ptrs, sizeof(*ptrs));
if (ptrs == NULL)
return -ENOMEM;
/* copy current points to new memory allocation */
if (node->ptrs != NULL) {
memcpy(ptrs, node->ptrs,
node->num_ptrs * sizeof(*ptrs));
acl_build_free(context, node->max_ptrs * sizeof(*ptrs),
node->ptrs);
}
node->ptrs = ptrs;
node->max_ptrs = num_ptrs;
}
/* Find available ptr and add a new pointer to this node */
for (n = node->min_add; n < node->max_ptrs; n++) {
if (node->ptrs[n].ptr == NULL) {
node->ptrs[n].ptr = ptr;
acl_include(&node->ptrs[n].values, bits, 0);
acl_include(&node->values, bits, -1);
if (ptr != NULL)
ptr->ref_count++;
if (node->num_ptrs <= n)
node->num_ptrs = n + 1;
return 0;
}
}
return 0;
}
/*
* Add a pointer for a range of values
*/
static int
acl_add_ptr_range(struct acl_build_context *context,
struct rte_acl_node *root,
struct rte_acl_node *node,
uint8_t low,
uint8_t high)
{
uint32_t n;
struct rte_acl_bitset bitset;
/* clear the bitset values */
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
bitset.bits[n] = 0;
/* for each bit in range, add bit to set */
for (n = 0; n < UINT8_MAX + 1; n++)
if (n >= low && n <= high)
bitset.bits[n / (sizeof(bits_t) * 8)] |=
1 << (n % (sizeof(bits_t) * 8));
return acl_add_ptr(context, root, node, &bitset);
}
/*
* Generate a bitset from a byte value and mask.
*/
static int
acl_gen_mask(struct rte_acl_bitset *bitset, uint32_t value, uint32_t mask)
{
int range = 0;
uint32_t n;
/* clear the bitset values */
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
bitset->bits[n] = 0;
/* for each bit in value/mask, add bit to set */
for (n = 0; n < UINT8_MAX + 1; n++) {
if ((n & mask) == value) {
range++;
bitset->bits[n / (sizeof(bits_t) * 8)] |=
1 << (n % (sizeof(bits_t) * 8));
}
}
return range;
}
/*
* Determine how A and B intersect.
* Determine if A and/or B are supersets of the intersection.
*/
static int
acl_intersect_type(struct rte_acl_bitset *a_bits,
struct rte_acl_bitset *b_bits,
struct rte_acl_bitset *intersect)
{
uint32_t n;
bits_t intersect_bits = 0;
bits_t a_superset = 0;
bits_t b_superset = 0;
/*
* calculate and store intersection and check if A and/or B have
* bits outside the intersection (superset)
*/
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n];
a_superset |= a_bits->bits[n] ^ intersect->bits[n];
b_superset |= b_bits->bits[n] ^ intersect->bits[n];
intersect_bits |= intersect->bits[n];
}
n = (intersect_bits == 0 ? ACL_INTERSECT_NONE : ACL_INTERSECT) |
(b_superset == 0 ? 0 : ACL_INTERSECT_B) |
(a_superset == 0 ? 0 : ACL_INTERSECT_A);
return n;
}
/*
* Check if all bits in the bitset are on
*/
static int
acl_full(struct rte_acl_node *node)
{
uint32_t n;
bits_t all_bits = -1;
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
all_bits &= node->values.bits[n];
return all_bits == -1;
}
/*
* Check if all bits in the bitset are off
*/
static int
acl_empty(struct rte_acl_node *node)
{
uint32_t n;
if (node->ref_count == 0) {
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
if (0 != node->values.bits[n])
return 0;
}
return 1;
} else {
return 0;
}
}
/*
* Compute intersection of A and B
* return 1 if there is an intersection else 0.
*/
static int
acl_intersect(struct rte_acl_bitset *a_bits,
struct rte_acl_bitset *b_bits,
struct rte_acl_bitset *intersect)
{
uint32_t n;
bits_t all_bits = 0;
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++) {
intersect->bits[n] = a_bits->bits[n] & b_bits->bits[n];
all_bits |= intersect->bits[n];
}
return all_bits != 0;
}
/*
* Duplicate a node
*/
static struct rte_acl_node *
acl_dup_node(struct acl_build_context *context, struct rte_acl_node *node)
{
uint32_t n;
struct rte_acl_node *next;
next = acl_alloc_node(context, node->level);
if (next == NULL)
return NULL;
/* allocate the pointers */
if (node->num_ptrs > 0) {
next->ptrs = acl_build_alloc(context,
node->max_ptrs,
sizeof(struct rte_acl_ptr_set));
if (next->ptrs == NULL)
return NULL;
next->max_ptrs = node->max_ptrs;
}
/* copy over the pointers */
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL) {
next->ptrs[n].ptr = node->ptrs[n].ptr;
next->ptrs[n].ptr->ref_count++;
acl_include(&next->ptrs[n].values,
&node->ptrs[n].values, -1);
}
}
next->num_ptrs = node->num_ptrs;
/* copy over node's match results */
if (node->match_flag == 0)
next->match_flag = 0;
else {
next->match_flag = -1;
next->mrt = acl_build_alloc(context, 1, sizeof(*next->mrt));
memcpy(next->mrt, node->mrt, sizeof(*next->mrt));
}
/* copy over node's bitset */
acl_include(&next->values, &node->values, -1);
node->next = next;
next->prev = node;
return next;
}
/*
* Dereference a pointer from a node
*/
static void
acl_deref_ptr(struct acl_build_context *context,
struct rte_acl_node *node, int index)
{
struct rte_acl_node *ref_node;
/* De-reference the node at the specified pointer */
if (node != NULL && node->ptrs[index].ptr != NULL) {
ref_node = node->ptrs[index].ptr;
ref_node->ref_count--;
if (ref_node->ref_count == 0)
acl_free_node(context, ref_node);
}
}
/*
* Exclude bitset from a node pointer
* returns 0 if poiter was deref'd
* 1 otherwise.
*/
static int
acl_exclude_ptr(struct acl_build_context *context,
struct rte_acl_node *node,
int index,
struct rte_acl_bitset *b_bits)
{
int retval = 1;
/*
* remove bitset from node pointer and deref
* if the bitset becomes empty.
*/
if (!acl_exclude(&node->ptrs[index].values,
&node->ptrs[index].values,
b_bits)) {
acl_deref_ptr(context, node, index);
node->ptrs[index].ptr = NULL;
retval = 0;
}
/* exclude bits from the composite bits for the node */
acl_exclude(&node->values, &node->values, b_bits);
return retval;
}
/*
* Remove a bitset from src ptr and move remaining ptr to dst
*/
static int
acl_move_ptr(struct acl_build_context *context,
struct rte_acl_node *dst,
struct rte_acl_node *src,
int index,
struct rte_acl_bitset *b_bits)
{
int rc;
if (b_bits != NULL)
if (!acl_exclude_ptr(context, src, index, b_bits))
return 0;
/* add src pointer to dst node */
rc = acl_add_ptr(context, dst, src->ptrs[index].ptr,
&src->ptrs[index].values);
if (rc < 0)
return rc;
/* remove ptr from src */
acl_exclude_ptr(context, src, index, &src->ptrs[index].values);
return 1;
}
/*
* acl_exclude rte_acl_bitset from src and copy remaining pointer to dst
*/
static int
acl_copy_ptr(struct acl_build_context *context,
struct rte_acl_node *dst,
struct rte_acl_node *src,
int index,
struct rte_acl_bitset *b_bits)
{
int rc;
struct rte_acl_bitset bits;
if (b_bits != NULL)
if (!acl_exclude(&bits, &src->ptrs[index].values, b_bits))
return 0;
rc = acl_add_ptr(context, dst, src->ptrs[index].ptr, &bits);
if (rc < 0)
return rc;
return 1;
}
/*
* Fill in gaps in ptrs list with the ptr at the end of the list
*/
static void
acl_compact_node_ptrs(struct rte_acl_node *node_a)
{
uint32_t n;
int min_add = node_a->min_add;
while (node_a->num_ptrs > 0 &&
node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
node_a->num_ptrs--;
for (n = min_add; n + 1 < node_a->num_ptrs; n++) {
/* if this entry is empty */
if (node_a->ptrs[n].ptr == NULL) {
/* move the last pointer to this entry */
acl_include(&node_a->ptrs[n].values,
&node_a->ptrs[node_a->num_ptrs - 1].values,
0);
node_a->ptrs[n].ptr =
node_a->ptrs[node_a->num_ptrs - 1].ptr;
/*
* mark the end as empty and adjust the number
* of used pointer enum_tries
*/
node_a->ptrs[node_a->num_ptrs - 1].ptr = NULL;
while (node_a->num_ptrs > 0 &&
node_a->ptrs[node_a->num_ptrs - 1].ptr == NULL)
node_a->num_ptrs--;
}
}
}
/*
* acl_merge helper routine.
*/
static int
acl_merge_intersect(struct acl_build_context *context,
struct rte_acl_node *node_a, uint32_t idx_a,
struct rte_acl_node *node_b, uint32_t idx_b,
int next_move, int level,
struct rte_acl_bitset *intersect_ptr)
{
struct rte_acl_node *node_c;
/* Duplicate A for intersection */
node_c = acl_dup_node(context, node_a->ptrs[idx_a].ptr);
if (node_c == NULL)
return -1;
/* Remove intersection from A */
acl_exclude_ptr(context, node_a, idx_a, intersect_ptr);
/*
* Added link from A to C for all transitions
* in the intersection
*/
if (acl_add_ptr(context, node_a, node_c, intersect_ptr) < 0)
return -1;
/* merge B->node into C */
return acl_merge(context, node_c, node_b->ptrs[idx_b].ptr, next_move,
0, level + 1);
}
/*
* Merge the children of nodes A and B together.
*
* if match node
* For each category
* node A result = highest priority result
* if any pointers in A intersect with any in B
* For each intersection
* C = copy of node that A points to
* remove intersection from A pointer
* add a pointer to A that points to C for the intersection
* Merge C and node that B points to
* Compact the pointers in A and B
* if move flag
* If B has only one reference
* Move B pointers to A
* else
* Copy B pointers to A
*/
static int
acl_merge(struct acl_build_context *context,
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
int move, int a_subset, int level)
{
uint32_t n, m, ptrs_a, ptrs_b;
uint32_t min_add_a, min_add_b;
int intersect_type;
int node_intersect_type;
int b_full, next_move, rc;
struct rte_acl_bitset intersect_values;
struct rte_acl_bitset intersect_ptr;
min_add_a = 0;
min_add_b = 0;
intersect_type = 0;
node_intersect_type = 0;
if (level == 0)
a_subset = 1;
/*
* Resolve match priorities
*/
if (node_a->match_flag != 0 || node_b->match_flag != 0) {
if (node_a->match_flag == 0 || node_b->match_flag == 0)
RTE_LOG(ERR, ACL, "Not both matches\n");
if (node_b->match_flag < node_a->match_flag)
RTE_LOG(ERR, ACL, "Not same match\n");
for (n = 0; n < context->cfg.num_categories; n++) {
if (node_a->mrt->priority[n] <
node_b->mrt->priority[n]) {
node_a->mrt->priority[n] =
node_b->mrt->priority[n];
node_a->mrt->results[n] =
node_b->mrt->results[n];
}
}
}
/*
* If the two node transitions intersect then merge the transitions.
* Check intersection for entire node (all pointers)
*/
node_intersect_type = acl_intersect_type(&node_a->values,
&node_b->values,
&intersect_values);
if (node_intersect_type & ACL_INTERSECT) {
b_full = acl_full(node_b);
min_add_b = node_b->min_add;
node_b->min_add = node_b->num_ptrs;
ptrs_b = node_b->num_ptrs;
min_add_a = node_a->min_add;
node_a->min_add = node_a->num_ptrs;
ptrs_a = node_a->num_ptrs;
for (n = 0; n < ptrs_a; n++) {
for (m = 0; m < ptrs_b; m++) {
if (node_a->ptrs[n].ptr == NULL ||
node_b->ptrs[m].ptr == NULL ||
node_a->ptrs[n].ptr ==
node_b->ptrs[m].ptr)
continue;
intersect_type = acl_intersect_type(
&node_a->ptrs[n].values,
&node_b->ptrs[m].values,
&intersect_ptr);
/* If this node is not a 'match' node */
if ((intersect_type & ACL_INTERSECT) &&
(context->cfg.num_categories != 1 ||
!(node_a->ptrs[n].ptr->match_flag))) {
/*
* next merge is a 'move' pointer,
* if this one is and B is a
* subset of the intersection.
*/
next_move = move &&
(intersect_type &
ACL_INTERSECT_B) == 0;
if (a_subset && b_full) {
rc = acl_merge(context,
node_a->ptrs[n].ptr,
node_b->ptrs[m].ptr,
next_move,
1, level + 1);
if (rc != 0)
return rc;
} else {
rc = acl_merge_intersect(
context, node_a, n,
node_b, m, next_move,
level, &intersect_ptr);
if (rc != 0)
return rc;
}
}
}
}
}
/* Compact pointers */
node_a->min_add = min_add_a;
acl_compact_node_ptrs(node_a);
node_b->min_add = min_add_b;
acl_compact_node_ptrs(node_b);
/*
* Either COPY or MOVE pointers from B to A
*/
acl_intersect(&node_a->values, &node_b->values, &intersect_values);
if (move && node_b->ref_count == 1) {
for (m = 0; m < node_b->num_ptrs; m++) {
if (node_b->ptrs[m].ptr != NULL &&
acl_move_ptr(context, node_a, node_b, m,
&intersect_values) < 0)
return -1;
}
} else {
for (m = 0; m < node_b->num_ptrs; m++) {
if (node_b->ptrs[m].ptr != NULL &&
acl_copy_ptr(context, node_a, node_b, m,
&intersect_values) < 0)
return -1;
}
}
/*
* Free node if its empty (no longer used)
*/
if (acl_empty(node_b))
acl_free_node(context, node_b);
return 0;
}
static int
acl_resolve_leaf(struct acl_build_context *context,
struct rte_acl_node *node_a,
struct rte_acl_node *node_b,
struct rte_acl_node **node_c)
{
uint32_t n;
int combined_priority = ACL_PRIORITY_EQUAL;
for (n = 0; n < context->cfg.num_categories; n++) {
if (node_a->mrt->priority[n] != node_b->mrt->priority[n]) {
combined_priority |= (node_a->mrt->priority[n] >
node_b->mrt->priority[n]) ?
ACL_PRIORITY_NODE_A : ACL_PRIORITY_NODE_B;
}
}
/*
* if node a is higher or equal priority for all categories,
* then return node_a.
*/
if (combined_priority == ACL_PRIORITY_NODE_A ||
combined_priority == ACL_PRIORITY_EQUAL) {
*node_c = node_a;
return 0;
}
/*
* if node b is higher or equal priority for all categories,
* then return node_b.
*/
if (combined_priority == ACL_PRIORITY_NODE_B) {
*node_c = node_b;
return 0;
}
/*
* mixed priorities - create a new node with the highest priority
* for each category.
*/
/* force new duplication. */
node_a->next = NULL;
*node_c = acl_dup_node(context, node_a);
for (n = 0; n < context->cfg.num_categories; n++) {
if ((*node_c)->mrt->priority[n] < node_b->mrt->priority[n]) {
(*node_c)->mrt->priority[n] = node_b->mrt->priority[n];
(*node_c)->mrt->results[n] = node_b->mrt->results[n];
}
}
return 0;
}
/*
* Within the existing trie structure, determine which nodes are
* part of the subtree of the trie to be merged.
*
* For these purposes, a subtree is defined as the set of nodes that
* are 1) not a superset of the intersection with the same level of
* the merging tree, and 2) do not have any references from a node
* outside of the subtree.
*/
static void
mark_subtree(struct rte_acl_node *node,
struct rte_acl_bitset *level_bits,
uint32_t level,
uint32_t id)
{
uint32_t n;
/* mark this node as part of the subtree */
node->subtree_id = id | RTE_ACL_SUBTREE_NODE;
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL) {
struct rte_acl_bitset intersect_bits;
int intersect;
/*
* Item 1) :
* check if this child pointer is not a superset of the
* same level of the merging tree.
*/
intersect = acl_intersect_type(&node->ptrs[n].values,
&level_bits[level],
&intersect_bits);
if ((intersect & ACL_INTERSECT_A) == 0) {
struct rte_acl_node *child = node->ptrs[n].ptr;
/*
* reset subtree reference if this is
* the first visit by this subtree.
*/
if (child->subtree_id != id) {
child->subtree_id = id;
child->subtree_ref_count = 0;
}
/*
* Item 2) :
* increment the subtree reference count and if
* all references are from this subtree then
* recurse to that child
*/
child->subtree_ref_count++;
if (child->subtree_ref_count ==
child->ref_count)
mark_subtree(child, level_bits,
level + 1, id);
}
}
}
}
/*
* Build the set of bits that define the set of transitions
* for each level of a trie.
*/
static void
build_subset_mask(struct rte_acl_node *node,
struct rte_acl_bitset *level_bits,
int level)
{
uint32_t n;
/* Add this node's transitions to the set for this level */
for (n = 0; n < RTE_ACL_BIT_SET_SIZE; n++)
level_bits[level].bits[n] &= node->values.bits[n];
/* For each child, add the transitions for the next level */
for (n = 0; n < node->num_ptrs; n++)
if (node->ptrs[n].ptr != NULL)
build_subset_mask(node->ptrs[n].ptr, level_bits,
level + 1);
}
/*
* Merge nodes A and B together,
* returns a node that is the path for the intersection
*
* If match node (leaf on trie)
* For each category
* return node = highest priority result
*
* Create C as a duplicate of A to point to child intersections
* If any pointers in C intersect with any in B
* For each intersection
* merge children
* remove intersection from C pointer
* add a pointer from C to child intersection node
* Compact the pointers in A and B
* Copy any B pointers that are outside of the intersection to C
* If C has no references to the B trie
* free C and return A
* Else If C has no references to the A trie
* free C and return B
* Else
* return C
*/
static int
acl_merge_trie(struct acl_build_context *context,
struct rte_acl_node *node_a, struct rte_acl_node *node_b,
uint32_t level, uint32_t subtree_id, struct rte_acl_node **return_c)
{
uint32_t n, m, ptrs_c, ptrs_b;
uint32_t min_add_c, min_add_b;
int node_intersect_type;
struct rte_acl_bitset node_intersect;
struct rte_acl_node *node_c;
struct rte_acl_node *node_a_next;
int node_b_refs;
int node_a_refs;
node_c = node_a;
node_a_next = node_a->next;
min_add_c = 0;
min_add_b = 0;
node_a_refs = node_a->num_ptrs;
node_b_refs = 0;
node_intersect_type = 0;
/* Resolve leaf nodes (matches) */
if (node_a->match_flag != 0) {
acl_resolve_leaf(context, node_a, node_b, return_c);
return 0;
}
/*
* Create node C as a copy of node A if node A is not part of
* a subtree of the merging tree (node B side). Otherwise,
* just use node A.
*/
if (level > 0 &&
node_a->subtree_id !=
(subtree_id | RTE_ACL_SUBTREE_NODE)) {
node_c = acl_dup_node(context, node_a);
node_c->subtree_id = subtree_id | RTE_ACL_SUBTREE_NODE;
}
/*
* If the two node transitions intersect then merge the transitions.
* Check intersection for entire node (all pointers)
*/
node_intersect_type = acl_intersect_type(&node_c->values,
&node_b->values,
&node_intersect);
if (node_intersect_type & ACL_INTERSECT) {
min_add_b = node_b->min_add;
node_b->min_add = node_b->num_ptrs;
ptrs_b = node_b->num_ptrs;
min_add_c = node_c->min_add;
node_c->min_add = node_c->num_ptrs;
ptrs_c = node_c->num_ptrs;
for (n = 0; n < ptrs_c; n++) {
if (node_c->ptrs[n].ptr == NULL) {
node_a_refs--;
continue;
}
node_c->ptrs[n].ptr->next = NULL;
for (m = 0; m < ptrs_b; m++) {
struct rte_acl_bitset child_intersect;
int child_intersect_type;
struct rte_acl_node *child_node_c = NULL;
if (node_b->ptrs[m].ptr == NULL ||
node_c->ptrs[n].ptr ==
node_b->ptrs[m].ptr)
continue;
child_intersect_type = acl_intersect_type(
&node_c->ptrs[n].values,
&node_b->ptrs[m].values,
&child_intersect);
if ((child_intersect_type & ACL_INTERSECT) !=
0) {
if (acl_merge_trie(context,
node_c->ptrs[n].ptr,
node_b->ptrs[m].ptr,
level + 1, subtree_id,
&child_node_c))
return 1;
if (child_node_c != NULL &&
child_node_c !=
node_c->ptrs[n].ptr) {
node_b_refs++;
/*
* Added link from C to
* child_C for all transitions
* in the intersection.
*/
acl_add_ptr(context, node_c,
child_node_c,
&child_intersect);
/*
* inc refs if pointer is not
* to node b.
*/
node_a_refs += (child_node_c !=
node_b->ptrs[m].ptr);
/*
* Remove intersection from C
* pointer.
*/
if (!acl_exclude(
&node_c->ptrs[n].values,
&node_c->ptrs[n].values,
&child_intersect)) {
acl_deref_ptr(context,
node_c, n);
node_c->ptrs[n].ptr =
NULL;
node_a_refs--;
}
}
}
}
}
/* Compact pointers */
node_c->min_add = min_add_c;
acl_compact_node_ptrs(node_c);
node_b->min_add = min_add_b;
acl_compact_node_ptrs(node_b);
}
/*
* Copy pointers outside of the intersection from B to C
*/
if ((node_intersect_type & ACL_INTERSECT_B) != 0) {
node_b_refs++;
for (m = 0; m < node_b->num_ptrs; m++)
if (node_b->ptrs[m].ptr != NULL)
acl_copy_ptr(context, node_c,
node_b, m, &node_intersect);
}
/*
* Free node C if top of trie is contained in A or B
* if node C is a duplicate of node A &&
* node C was not an existing duplicate
*/
if (node_c != node_a && node_c != node_a_next) {
/*
* if the intersection has no references to the
* B side, then it is contained in A
*/
if (node_b_refs == 0) {
acl_free_node(context, node_c);
node_c = node_a;
} else {
/*
* if the intersection has no references to the
* A side, then it is contained in B.
*/
if (node_a_refs == 0) {
acl_free_node(context, node_c);
node_c = node_b;
}
}
}
if (return_c != NULL)
*return_c = node_c;
if (level == 0)
acl_free_node(context, node_b);
return 0;
}
/*
* Reset current runtime fields before next build:
* - free allocated RT memory.
* - reset all RT related fields to zero.
*/
static void
acl_build_reset(struct rte_acl_ctx *ctx)
{
rte_free(ctx->mem);
memset(&ctx->num_categories, 0,
sizeof(*ctx) - offsetof(struct rte_acl_ctx, num_categories));
}
static void
acl_gen_range(struct acl_build_context *context,
const uint8_t *hi, const uint8_t *lo, int size, int level,
struct rte_acl_node *root, struct rte_acl_node *end)
{
struct rte_acl_node *node, *prev;
uint32_t n;
prev = root;
for (n = size - 1; n > 0; n--) {
node = acl_alloc_node(context, level++);
acl_add_ptr_range(context, prev, node, lo[n], hi[n]);
prev = node;
}
acl_add_ptr_range(context, prev, end, lo[0], hi[0]);
}
static struct rte_acl_node *
acl_gen_range_trie(struct acl_build_context *context,
const void *min, const void *max,
int size, int level, struct rte_acl_node **pend)
{
int32_t n;
struct rte_acl_node *root;
const uint8_t *lo = (const uint8_t *)min;
const uint8_t *hi = (const uint8_t *)max;
*pend = acl_alloc_node(context, level+size);
root = acl_alloc_node(context, level++);
if (lo[size - 1] == hi[size - 1]) {
acl_gen_range(context, hi, lo, size, level, root, *pend);
} else {
uint8_t limit_lo[64];
uint8_t limit_hi[64];
uint8_t hi_ff = UINT8_MAX;
uint8_t lo_00 = 0;
memset(limit_lo, 0, RTE_DIM(limit_lo));
memset(limit_hi, UINT8_MAX, RTE_DIM(limit_hi));
for (n = size - 2; n >= 0; n--) {
hi_ff = (uint8_t)(hi_ff & hi[n]);
lo_00 = (uint8_t)(lo_00 | lo[n]);
}
if (hi_ff != UINT8_MAX) {
limit_lo[size - 1] = hi[size - 1];
acl_gen_range(context, hi, limit_lo, size, level,
root, *pend);
}
if (lo_00 != 0) {
limit_hi[size - 1] = lo[size - 1];
acl_gen_range(context, limit_hi, lo, size, level,
root, *pend);
}
if (hi[size - 1] - lo[size - 1] > 1 ||
lo_00 == 0 ||
hi_ff == UINT8_MAX) {
limit_lo[size-1] = (uint8_t)(lo[size-1] + (lo_00 != 0));
limit_hi[size-1] = (uint8_t)(hi[size-1] -
(hi_ff != UINT8_MAX));
acl_gen_range(context, limit_hi, limit_lo, size,
level, root, *pend);
}
}
return root;
}
static struct rte_acl_node *
acl_gen_mask_trie(struct acl_build_context *context,
const void *value, const void *mask,
int size, int level, struct rte_acl_node **pend)
{
int32_t n;
struct rte_acl_node *root;
struct rte_acl_node *node, *prev;
struct rte_acl_bitset bits;
const uint8_t *val = (const uint8_t *)value;
const uint8_t *msk = (const uint8_t *)mask;
root = acl_alloc_node(context, level++);
prev = root;
for (n = size - 1; n >= 0; n--) {
node = acl_alloc_node(context, level++);
acl_gen_mask(&bits, val[n] & msk[n], msk[n]);
acl_add_ptr(context, prev, node, &bits);
prev = node;
}
*pend = prev;
return root;
}
static struct rte_acl_node *
build_trie(struct acl_build_context *context, struct rte_acl_build_rule *head,
struct rte_acl_build_rule **last, uint32_t *count)
{
uint32_t n, m;
int field_index, node_count;
struct rte_acl_node *trie;
struct rte_acl_build_rule *prev, *rule;
struct rte_acl_node *end, *merge, *root, *end_prev;
const struct rte_acl_field *fld;
struct rte_acl_bitset level_bits[RTE_ACL_MAX_LEVELS];
prev = head;
rule = head;
trie = acl_alloc_node(context, 0);
if (trie == NULL)
return NULL;
while (rule != NULL) {
root = acl_alloc_node(context, 0);
if (root == NULL)
return NULL;
root->ref_count = 1;
end = root;
for (n = 0; n < rule->config->num_fields; n++) {
field_index = rule->config->defs[n].field_index;
fld = rule->f->field + field_index;
end_prev = end;
/* build a mini-trie for this field */
switch (rule->config->defs[n].type) {
case RTE_ACL_FIELD_TYPE_BITMASK:
merge = acl_gen_mask_trie(context,
&fld->value,
&fld->mask_range,
rule->config->defs[n].size,
end->level + 1,
&end);
break;
case RTE_ACL_FIELD_TYPE_MASK:
{
/*
* set msb for the size of the field and
* all higher bits.
*/
uint64_t mask;
if (fld->mask_range.u32 == 0) {
mask = 0;
/*
* arithmetic right shift for the length of
* the mask less the msb.
*/
} else {
mask = -1 <<
(rule->config->defs[n].size *
CHAR_BIT - fld->mask_range.u32);
}
/* gen a mini-trie for this field */
merge = acl_gen_mask_trie(context,
&fld->value,
(char *)&mask,
rule->config->defs[n].size,
end->level + 1,
&end);
}
break;
case RTE_ACL_FIELD_TYPE_RANGE:
merge = acl_gen_range_trie(context,
&rule->f->field[field_index].value,
&rule->f->field[field_index].mask_range,
rule->config->defs[n].size,
end->level + 1,
&end);
break;
default:
RTE_LOG(ERR, ACL,
"Error in rule[%u] type - %hhu\n",
rule->f->data.userdata,
rule->config->defs[n].type);
return NULL;
}
/* merge this field on to the end of the rule */
if (acl_merge_trie(context, end_prev, merge, 0,
0, NULL) != 0) {
return NULL;
}
}
end->match_flag = ++context->num_build_rules;
/*
* Setup the results for this rule.
* The result and priority of each category.
*/
if (end->mrt == NULL &&
(end->mrt = acl_build_alloc(context, 1,
sizeof(*end->mrt))) == NULL)
return NULL;
for (m = 0; m < context->cfg.num_categories; m++) {
if (rule->f->data.category_mask & (1 << m)) {
end->mrt->results[m] = rule->f->data.userdata;
end->mrt->priority[m] = rule->f->data.priority;
} else {
end->mrt->results[m] = 0;
end->mrt->priority[m] = 0;
}
}
node_count = context->num_nodes;
memset(&level_bits[0], UINT8_MAX, sizeof(level_bits));
build_subset_mask(root, &level_bits[0], 0);
mark_subtree(trie, &level_bits[0], 0, end->match_flag);
(*count)++;
/* merge this rule into the trie */
if (acl_merge_trie(context, trie, root, 0, end->match_flag,
NULL))
return NULL;
node_count = context->num_nodes - node_count;
if (node_count > NODE_MAX) {
*last = prev;
return trie;
}
prev = rule;
rule = rule->next;
}
*last = NULL;
return trie;
}
static int
acl_calc_wildness(struct rte_acl_build_rule *head,
const struct rte_acl_config *config)
{
uint32_t n;
struct rte_acl_build_rule *rule;
for (rule = head; rule != NULL; rule = rule->next) {
for (n = 0; n < config->num_fields; n++) {
double wild = 0;
double size = CHAR_BIT * config->defs[n].size;
int field_index = config->defs[n].field_index;
const struct rte_acl_field *fld = rule->f->field +
field_index;
switch (rule->config->defs[n].type) {
case RTE_ACL_FIELD_TYPE_BITMASK:
wild = (size - __builtin_popcount(
fld->mask_range.u8)) /
size;
break;
case RTE_ACL_FIELD_TYPE_MASK:
wild = (size - fld->mask_range.u32) / size;
break;
case RTE_ACL_FIELD_TYPE_RANGE:
switch (rule->config->defs[n].size) {
case sizeof(uint8_t):
wild = ((double)fld->mask_range.u8 -
fld->value.u8) / UINT8_MAX;
break;
case sizeof(uint16_t):
wild = ((double)fld->mask_range.u16 -
fld->value.u16) / UINT16_MAX;
break;
case sizeof(uint32_t):
wild = ((double)fld->mask_range.u32 -
fld->value.u32) / UINT32_MAX;
break;
case sizeof(uint64_t):
wild = ((double)fld->mask_range.u64 -
fld->value.u64) / UINT64_MAX;
break;
default:
RTE_LOG(ERR, ACL,
"%s(rule: %u) invalid %u-th "
"field, type: %hhu, "
"unknown size: %hhu\n",
__func__,
rule->f->data.userdata,
n,
rule->config->defs[n].type,
rule->config->defs[n].size);
return -EINVAL;
}
break;
default:
RTE_LOG(ERR, ACL,
"%s(rule: %u) invalid %u-th "
"field, unknown type: %hhu\n",
__func__,
rule->f->data.userdata,
n,
rule->config->defs[n].type);
return -EINVAL;
}
rule->wildness[field_index] = (uint32_t)(wild * 100);
}
}
return 0;
}
static int
acl_rule_stats(struct rte_acl_build_rule *head, struct rte_acl_config *config,
uint32_t *wild_limit)
{
int min;
struct rte_acl_build_rule *rule;
uint32_t n, m, fields_deactivated = 0;
uint32_t start = 0, deactivate = 0;
int tally[RTE_ACL_MAX_LEVELS][TALLY_NUM];
memset(tally, 0, sizeof(tally));
for (rule = head; rule != NULL; rule = rule->next) {
for (n = 0; n < config->num_fields; n++) {
uint32_t field_index = config->defs[n].field_index;
tally[n][TALLY_0]++;
for (m = 1; m < RTE_DIM(wild_limits); m++) {
if (rule->wildness[field_index] >=
wild_limits[m])
tally[n][m]++;
}
}
for (n = config->num_fields - 1; n > 0; n--) {
uint32_t field_index = config->defs[n].field_index;
if (rule->wildness[field_index] == 100)
tally[n][TALLY_DEPTH]++;
else
break;
}
}
/*
* Look for any field that is always wild and drop it from the config
* Only deactivate if all fields for a given input loop are deactivated.
*/
for (n = 1; n < config->num_fields; n++) {
if (config->defs[n].input_index !=
config->defs[n - 1].input_index) {
for (m = start; m < n; m++)
tally[m][TALLY_DEACTIVATED] = deactivate;
fields_deactivated += deactivate;
start = n;
deactivate = 1;
}
/* if the field is not always completely wild */
if (tally[n][TALLY_100] != tally[n][TALLY_0])
deactivate = 0;
}
for (m = start; m < n; m++)
tally[m][TALLY_DEACTIVATED] = deactivate;
fields_deactivated += deactivate;
/* remove deactivated fields */
if (fields_deactivated) {
uint32_t k, l = 0;
for (k = 0; k < config->num_fields; k++) {
if (tally[k][TALLY_DEACTIVATED] == 0) {
memcpy(&tally[l][0], &tally[k][0],
TALLY_NUM * sizeof(tally[0][0]));
memcpy(&config->defs[l++],
&config->defs[k],
sizeof(struct rte_acl_field_def));
}
}
config->num_fields = l;
}
min = RTE_ACL_SINGLE_TRIE_SIZE;
if (config->num_fields == 2)
min *= 4;
else if (config->num_fields == 3)
min *= 3;
else if (config->num_fields == 4)
min *= 2;
if (tally[0][TALLY_0] < min)
return 0;
for (n = 0; n < config->num_fields; n++)
wild_limit[n] = 0;
/*
* If trailing fields are 100% wild, group those together.
* This allows the search length of the trie to be shortened.
*/
for (n = 1; n < config->num_fields; n++) {
double rule_percentage = (double)tally[n][TALLY_DEPTH] /
tally[n][0];
if (rule_percentage > RULE_PERCENTAGE) {
/* if it crosses an input boundary then round up */
while (config->defs[n - 1].input_index ==
config->defs[n].input_index)
n++;
/* set the limit for selecting rules */
while (n < config->num_fields)
wild_limit[n++] = 100;
if (wild_limit[n - 1] == 100)
return 1;
}
}
/* look for the most wild that's 40% or more of the rules */
for (n = 1; n < config->num_fields; n++) {
for (m = TALLY_100; m > 0; m--) {
double rule_percentage = (double)tally[n][m] /
tally[n][0];
if (tally[n][TALLY_DEACTIVATED] == 0 &&
tally[n][TALLY_0] >
RTE_ACL_SINGLE_TRIE_SIZE &&
rule_percentage > NODE_PERCENTAGE &&
rule_percentage < 0.80) {
wild_limit[n] = wild_limits[m];
return 1;
}
}
}
return 0;
}
static int
order(struct rte_acl_build_rule **insert, struct rte_acl_build_rule *rule)
{
uint32_t n;
struct rte_acl_build_rule *left = *insert;
if (left == NULL)
return 0;
for (n = 1; n < left->config->num_fields; n++) {
int field_index = left->config->defs[n].field_index;
if (left->wildness[field_index] != rule->wildness[field_index])
return (left->wildness[field_index] >=
rule->wildness[field_index]);
}
return 0;
}
static struct rte_acl_build_rule *
ordered_insert_rule(struct rte_acl_build_rule *head,
struct rte_acl_build_rule *rule)
{
struct rte_acl_build_rule **insert;
if (rule == NULL)
return head;
rule->next = head;
if (head == NULL)
return rule;
insert = &head;
while (order(insert, rule))
insert = &(*insert)->next;
rule->next = *insert;
*insert = rule;
return head;
}
static struct rte_acl_build_rule *
sort_rules(struct rte_acl_build_rule *head)
{
struct rte_acl_build_rule *rule, *reordered_head = NULL;
struct rte_acl_build_rule *last_rule = NULL;
for (rule = head; rule != NULL; rule = rule->next) {
reordered_head = ordered_insert_rule(reordered_head, last_rule);
last_rule = rule;
}
if (last_rule != reordered_head)
reordered_head = ordered_insert_rule(reordered_head, last_rule);
return reordered_head;
}
static uint32_t
acl_build_index(const struct rte_acl_config *config, uint32_t *data_index)
{
uint32_t n, m;
int32_t last_header;
m = 0;
last_header = -1;
for (n = 0; n < config->num_fields; n++) {
if (last_header != config->defs[n].input_index) {
last_header = config->defs[n].input_index;
data_index[m++] = config->defs[n].offset;
}
}
return m;
}
static int
acl_build_tries(struct acl_build_context *context,
struct rte_acl_build_rule *head)
{
int32_t rc;
uint32_t n, m, num_tries;
struct rte_acl_config *config;
struct rte_acl_build_rule *last, *rule;
uint32_t wild_limit[RTE_ACL_MAX_LEVELS];
struct rte_acl_build_rule *rule_sets[RTE_ACL_MAX_TRIES];
config = head->config;
rule = head;
rule_sets[0] = head;
num_tries = 1;
/* initialize tries */
for (n = 0; n < RTE_DIM(context->tries); n++) {
context->tries[n].type = RTE_ACL_UNUSED_TRIE;
context->bld_tries[n].trie = NULL;
context->tries[n].count = 0;
context->tries[n].smallest = INT32_MAX;
}
context->tries[0].type = RTE_ACL_FULL_TRIE;
/* calc wildness of each field of each rule */
rc = acl_calc_wildness(head, config);
if (rc != 0)
return rc;
n = acl_rule_stats(head, config, &wild_limit[0]);
/* put all rules that fit the wildness criteria into a seperate trie */
while (n > 0 && num_tries < RTE_ACL_MAX_TRIES) {
struct rte_acl_config *new_config;
struct rte_acl_build_rule **prev = &rule_sets[num_tries - 1];
struct rte_acl_build_rule *next = head->next;
new_config = acl_build_alloc(context, 1, sizeof(*new_config));
if (new_config == NULL) {
RTE_LOG(ERR, ACL,
"Failed to geti space for new config\n");
return -ENOMEM;
}
memcpy(new_config, config, sizeof(*new_config));
config = new_config;
rule_sets[num_tries] = NULL;
for (rule = head; rule != NULL; rule = next) {
int move = 1;
next = rule->next;
for (m = 0; m < config->num_fields; m++) {
int x = config->defs[m].field_index;
if (rule->wildness[x] < wild_limit[m]) {
move = 0;
break;
}
}
if (move) {
rule->config = new_config;
rule->next = rule_sets[num_tries];
rule_sets[num_tries] = rule;
*prev = next;
} else
prev = &rule->next;
}
head = rule_sets[num_tries];
n = acl_rule_stats(rule_sets[num_tries], config,
&wild_limit[0]);
num_tries++;
}
if (n > 0)
RTE_LOG(DEBUG, ACL,
"Number of tries(%d) exceeded.\n", RTE_ACL_MAX_TRIES);
for (n = 0; n < num_tries; n++) {
rule_sets[n] = sort_rules(rule_sets[n]);
context->tries[n].type = RTE_ACL_FULL_TRIE;
context->tries[n].count = 0;
context->tries[n].num_data_indexes =
acl_build_index(rule_sets[n]->config,
context->data_indexes[n]);
context->tries[n].data_index = context->data_indexes[n];
context->bld_tries[n].trie =
build_trie(context, rule_sets[n],
&last, &context->tries[n].count);
if (context->bld_tries[n].trie == NULL) {
RTE_LOG(ERR, ACL, "Build of %u-th trie failed\n", n);
return -ENOMEM;
}
if (last != NULL) {
rule_sets[num_tries++] = last->next;
last->next = NULL;
acl_free_node(context, context->bld_tries[n].trie);
context->tries[n].count = 0;
context->bld_tries[n].trie =
build_trie(context, rule_sets[n],
&last, &context->tries[n].count);
if (context->bld_tries[n].trie == NULL) {
RTE_LOG(ERR, ACL,
"Build of %u-th trie failed\n", n);
return -ENOMEM;
}
}
}
context->num_tries = num_tries;
return 0;
}
static void
acl_build_log(const struct acl_build_context *ctx)
{
uint32_t n;
RTE_LOG(DEBUG, ACL, "Build phase for ACL \"%s\":\n"
"memory consumed: %zu\n",
ctx->acx->name,
ctx->pool.alloc);
for (n = 0; n < RTE_DIM(ctx->tries); n++) {
if (ctx->tries[n].count != 0)
RTE_LOG(DEBUG, ACL,
"trie %u: number of rules: %u\n",
n, ctx->tries[n].count);
}
}
static int
acl_build_rules(struct acl_build_context *bcx)
{
struct rte_acl_build_rule *br, *head;
const struct rte_acl_rule *rule;
uint32_t *wp;
uint32_t fn, i, n, num;
size_t ofs, sz;
fn = bcx->cfg.num_fields;
n = bcx->acx->num_rules;
ofs = n * sizeof(*br);
sz = ofs + n * fn * sizeof(*wp);
br = tb_alloc(&bcx->pool, sz);
if (br == NULL) {
RTE_LOG(ERR, ACL, "ACL conext %s: failed to create a copy "
"of %u build rules (%zu bytes)\n",
bcx->acx->name, n, sz);
return -ENOMEM;
}
wp = (uint32_t *)((uintptr_t)br + ofs);
num = 0;
head = NULL;
for (i = 0; i != n; i++) {
rule = (const struct rte_acl_rule *)
((uintptr_t)bcx->acx->rules + bcx->acx->rule_sz * i);
if ((rule->data.category_mask & bcx->category_mask) != 0) {
br[num].next = head;
br[num].config = &bcx->cfg;
br[num].f = rule;
br[num].wildness = wp;
wp += fn;
head = br + num;
num++;
}
}
bcx->num_rules = num;
bcx->build_rules = head;
return 0;
}
/*
* Copy data_indexes for each trie into RT location.
*/
static void
acl_set_data_indexes(struct rte_acl_ctx *ctx)
{
uint32_t i, n, ofs;
ofs = 0;
for (i = 0; i != ctx->num_tries; i++) {
n = ctx->trie[i].num_data_indexes;
memcpy(ctx->data_indexes + ofs, ctx->trie[i].data_index,
n * sizeof(ctx->data_indexes[0]));
ctx->trie[i].data_index = ctx->data_indexes + ofs;
ofs += n;
}
}
int
rte_acl_build(struct rte_acl_ctx *ctx, const struct rte_acl_config *cfg)
{
int rc;
struct acl_build_context bcx;
if (ctx == NULL || cfg == NULL || cfg->num_categories == 0 ||
cfg->num_categories > RTE_ACL_MAX_CATEGORIES)
return -EINVAL;
acl_build_reset(ctx);
memset(&bcx, 0, sizeof(bcx));
bcx.acx = ctx;
bcx.pool.alignment = ACL_POOL_ALIGN;
bcx.pool.min_alloc = ACL_POOL_ALLOC_MIN;
bcx.cfg = *cfg;
bcx.category_mask = LEN2MASK(bcx.cfg.num_categories);
/* Create a buid rules copy. */
rc = acl_build_rules(&bcx);
if (rc != 0)
return rc;
/* No rules to build for that context+config */
if (bcx.build_rules == NULL) {
rc = -EINVAL;
/* build internal trie representation. */
} else if ((rc = acl_build_tries(&bcx, bcx.build_rules)) == 0) {
/* allocate and fill run-time structures. */
rc = rte_acl_gen(ctx, bcx.tries, bcx.bld_tries,
bcx.num_tries, bcx.cfg.num_categories,
RTE_ACL_IPV4VLAN_NUM * RTE_DIM(bcx.tries),
bcx.num_build_rules);
if (rc == 0) {
/* set data indexes. */
acl_set_data_indexes(ctx);
/* copy in build config. */
ctx->config = *cfg;
}
}
acl_build_log(&bcx);
/* cleanup after build. */
tb_free_pool(&bcx.pool);
return rc;
}