074f54ad03
Make ACL library to build/work on 'default' architecture: - make rte_acl_classify_scalar really scalar (make sure it wouldn't use sse4 instrincts through resolve_priority()). - Provide two versions of rte_acl_classify code path: rte_acl_classify_sse() - could be build and used only on systems with sse4.2 and upper, return -ENOTSUP on lower arch. rte_acl_classify_scalar() - a slower version, but could be build and used on all systems. - Addition of a new function rte_acl_classify_alg. This function lets you specify an enum value to override the acl contexts default algorithm when doing a classification. This allows an application to specify a classification algorithm without needing to publicize each method. I know there was concern over keeping those methods public, but we don't have a static ABI at the moment, so this seems to me a reasonable thing to do, as it gives us less of an ABI surface to worry about. - keep common code shared between these two codepaths. Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com> Acked-by: Neil Horman <nhorman@tuxdriver.com>
517 lines
14 KiB
C
517 lines
14 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <rte_acl.h>
|
|
#include "acl.h"
|
|
|
|
#define BIT_SIZEOF(x) (sizeof(x) * CHAR_BIT)
|
|
|
|
TAILQ_HEAD(rte_acl_list, rte_tailq_entry);
|
|
|
|
static const rte_acl_classify_t classify_fns[] = {
|
|
[RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar,
|
|
[RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar,
|
|
[RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse,
|
|
};
|
|
|
|
/* by default, use always avaialbe scalar code path. */
|
|
static enum rte_acl_classify_alg rte_acl_default_classify =
|
|
RTE_ACL_CLASSIFY_SCALAR;
|
|
|
|
static void
|
|
rte_acl_set_default_classify(enum rte_acl_classify_alg alg)
|
|
{
|
|
rte_acl_default_classify = alg;
|
|
}
|
|
|
|
extern int
|
|
rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg)
|
|
{
|
|
if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns))
|
|
return -EINVAL;
|
|
|
|
ctx->alg = alg;
|
|
return 0;
|
|
}
|
|
|
|
static void __attribute__((constructor))
|
|
rte_acl_init(void)
|
|
{
|
|
enum rte_acl_classify_alg alg = RTE_ACL_CLASSIFY_DEFAULT;
|
|
|
|
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
|
|
alg = RTE_ACL_CLASSIFY_SSE;
|
|
|
|
rte_acl_set_default_classify(alg);
|
|
}
|
|
|
|
int
|
|
rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
|
|
uint32_t *results, uint32_t num, uint32_t categories)
|
|
{
|
|
return classify_fns[ctx->alg](ctx, data, results, num, categories);
|
|
}
|
|
|
|
int
|
|
rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data,
|
|
uint32_t *results, uint32_t num, uint32_t categories,
|
|
enum rte_acl_classify_alg alg)
|
|
{
|
|
return classify_fns[alg](ctx, data, results, num, categories);
|
|
}
|
|
|
|
struct rte_acl_ctx *
|
|
rte_acl_find_existing(const char *name)
|
|
{
|
|
struct rte_acl_ctx *ctx = NULL;
|
|
struct rte_acl_list *acl_list;
|
|
struct rte_tailq_entry *te;
|
|
|
|
/* check that we have an initialised tail queue */
|
|
acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, rte_acl_list);
|
|
if (acl_list == NULL) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return NULL;
|
|
}
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
TAILQ_FOREACH(te, acl_list, next) {
|
|
ctx = (struct rte_acl_ctx *) te->data;
|
|
if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
|
|
break;
|
|
}
|
|
rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
if (te == NULL) {
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
return ctx;
|
|
}
|
|
|
|
void
|
|
rte_acl_free(struct rte_acl_ctx *ctx)
|
|
{
|
|
struct rte_acl_list *acl_list;
|
|
struct rte_tailq_entry *te;
|
|
|
|
if (ctx == NULL)
|
|
return;
|
|
|
|
/* check that we have an initialised tail queue */
|
|
acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, rte_acl_list);
|
|
if (acl_list == NULL) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return;
|
|
}
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
/* find our tailq entry */
|
|
TAILQ_FOREACH(te, acl_list, next) {
|
|
if (te->data == (void *) ctx)
|
|
break;
|
|
}
|
|
if (te == NULL) {
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
return;
|
|
}
|
|
|
|
TAILQ_REMOVE(acl_list, te, next);
|
|
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
rte_free(ctx->mem);
|
|
rte_free(ctx);
|
|
rte_free(te);
|
|
}
|
|
|
|
struct rte_acl_ctx *
|
|
rte_acl_create(const struct rte_acl_param *param)
|
|
{
|
|
size_t sz;
|
|
struct rte_acl_ctx *ctx;
|
|
struct rte_acl_list *acl_list;
|
|
struct rte_tailq_entry *te;
|
|
char name[sizeof(ctx->name)];
|
|
|
|
/* check that we have an initialised tail queue */
|
|
acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, rte_acl_list);
|
|
if (acl_list == NULL) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return NULL;
|
|
}
|
|
|
|
/* check that input parameters are valid. */
|
|
if (param == NULL || param->name == NULL) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
snprintf(name, sizeof(name), "ACL_%s", param->name);
|
|
|
|
/* calculate amount of memory required for pattern set. */
|
|
sz = sizeof(*ctx) + param->max_rule_num * param->rule_size;
|
|
|
|
/* get EAL TAILQ lock. */
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
/* if we already have one with that name */
|
|
TAILQ_FOREACH(te, acl_list, next) {
|
|
ctx = (struct rte_acl_ctx *) te->data;
|
|
if (strncmp(param->name, ctx->name, sizeof(ctx->name)) == 0)
|
|
break;
|
|
}
|
|
|
|
/* if ACL with such name doesn't exist, then create a new one. */
|
|
if (te == NULL) {
|
|
ctx = NULL;
|
|
te = rte_zmalloc("ACL_TAILQ_ENTRY", sizeof(*te), 0);
|
|
|
|
if (te == NULL) {
|
|
RTE_LOG(ERR, ACL, "Cannot allocate tailq entry!\n");
|
|
goto exit;
|
|
}
|
|
|
|
ctx = rte_zmalloc_socket(name, sz, CACHE_LINE_SIZE, param->socket_id);
|
|
|
|
if (ctx == NULL) {
|
|
RTE_LOG(ERR, ACL,
|
|
"allocation of %zu bytes on socket %d for %s failed\n",
|
|
sz, param->socket_id, name);
|
|
rte_free(te);
|
|
goto exit;
|
|
}
|
|
/* init new allocated context. */
|
|
ctx->rules = ctx + 1;
|
|
ctx->max_rules = param->max_rule_num;
|
|
ctx->rule_sz = param->rule_size;
|
|
ctx->socket_id = param->socket_id;
|
|
ctx->alg = rte_acl_default_classify;
|
|
snprintf(ctx->name, sizeof(ctx->name), "%s", param->name);
|
|
|
|
te->data = (void *) ctx;
|
|
|
|
TAILQ_INSERT_TAIL(acl_list, te, next);
|
|
}
|
|
|
|
exit:
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
return ctx;
|
|
}
|
|
|
|
static int
|
|
acl_add_rules(struct rte_acl_ctx *ctx, const void *rules, uint32_t num)
|
|
{
|
|
uint8_t *pos;
|
|
|
|
if (num + ctx->num_rules > ctx->max_rules)
|
|
return -ENOMEM;
|
|
|
|
pos = ctx->rules;
|
|
pos += ctx->rule_sz * ctx->num_rules;
|
|
memcpy(pos, rules, num * ctx->rule_sz);
|
|
ctx->num_rules += num;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
acl_check_rule(const struct rte_acl_rule_data *rd)
|
|
{
|
|
if ((rd->category_mask & LEN2MASK(RTE_ACL_MAX_CATEGORIES)) == 0 ||
|
|
rd->priority > RTE_ACL_MAX_PRIORITY ||
|
|
rd->priority < RTE_ACL_MIN_PRIORITY ||
|
|
rd->userdata == RTE_ACL_INVALID_USERDATA)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules,
|
|
uint32_t num)
|
|
{
|
|
const struct rte_acl_rule *rv;
|
|
uint32_t i;
|
|
int32_t rc;
|
|
|
|
if (ctx == NULL || rules == NULL || 0 == ctx->rule_sz)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i != num; i++) {
|
|
rv = (const struct rte_acl_rule *)
|
|
((uintptr_t)rules + i * ctx->rule_sz);
|
|
rc = acl_check_rule(&rv->data);
|
|
if (rc != 0) {
|
|
RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n",
|
|
__func__, ctx->name, i + 1);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
return acl_add_rules(ctx, rules, num);
|
|
}
|
|
|
|
/*
|
|
* Reset all rules.
|
|
* Note that RT structures are not affected.
|
|
*/
|
|
void
|
|
rte_acl_reset_rules(struct rte_acl_ctx *ctx)
|
|
{
|
|
if (ctx != NULL)
|
|
ctx->num_rules = 0;
|
|
}
|
|
|
|
/*
|
|
* Reset all rules and destroys RT structures.
|
|
*/
|
|
void
|
|
rte_acl_reset(struct rte_acl_ctx *ctx)
|
|
{
|
|
if (ctx != NULL) {
|
|
rte_acl_reset_rules(ctx);
|
|
rte_acl_build(ctx, &ctx->config);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Dump ACL context to the stdout.
|
|
*/
|
|
void
|
|
rte_acl_dump(const struct rte_acl_ctx *ctx)
|
|
{
|
|
if (!ctx)
|
|
return;
|
|
printf("acl context <%s>@%p\n", ctx->name, ctx);
|
|
printf(" socket_id=%"PRId32"\n", ctx->socket_id);
|
|
printf(" alg=%"PRId32"\n", ctx->alg);
|
|
printf(" max_rules=%"PRIu32"\n", ctx->max_rules);
|
|
printf(" rule_size=%"PRIu32"\n", ctx->rule_sz);
|
|
printf(" num_rules=%"PRIu32"\n", ctx->num_rules);
|
|
printf(" num_categories=%"PRIu32"\n", ctx->num_categories);
|
|
printf(" num_tries=%"PRIu32"\n", ctx->num_tries);
|
|
}
|
|
|
|
/*
|
|
* Dump all ACL contexts to the stdout.
|
|
*/
|
|
void
|
|
rte_acl_list_dump(void)
|
|
{
|
|
struct rte_acl_ctx *ctx;
|
|
struct rte_acl_list *acl_list;
|
|
struct rte_tailq_entry *te;
|
|
|
|
/* check that we have an initialised tail queue */
|
|
acl_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_ACL, rte_acl_list);
|
|
if (acl_list == NULL) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return;
|
|
}
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
TAILQ_FOREACH(te, acl_list, next) {
|
|
ctx = (struct rte_acl_ctx *) te->data;
|
|
rte_acl_dump(ctx);
|
|
}
|
|
rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
}
|
|
|
|
/*
|
|
* Support for legacy ipv4vlan rules.
|
|
*/
|
|
|
|
RTE_ACL_RULE_DEF(acl_ipv4vlan_rule, RTE_ACL_IPV4VLAN_NUM_FIELDS);
|
|
|
|
static int
|
|
acl_ipv4vlan_check_rule(const struct rte_acl_ipv4vlan_rule *rule)
|
|
{
|
|
if (rule->src_port_low > rule->src_port_high ||
|
|
rule->dst_port_low > rule->dst_port_high ||
|
|
rule->src_mask_len > BIT_SIZEOF(rule->src_addr) ||
|
|
rule->dst_mask_len > BIT_SIZEOF(rule->dst_addr))
|
|
return -EINVAL;
|
|
|
|
return acl_check_rule(&rule->data);
|
|
}
|
|
|
|
static void
|
|
acl_ipv4vlan_convert_rule(const struct rte_acl_ipv4vlan_rule *ri,
|
|
struct acl_ipv4vlan_rule *ro)
|
|
{
|
|
ro->data = ri->data;
|
|
|
|
ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].value.u8 = ri->proto;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].value.u16 = ri->vlan;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].value.u16 = ri->domain;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].value.u32 = ri->src_addr;
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].value.u32 = ri->dst_addr;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].value.u16 = ri->src_port_low;
|
|
ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].value.u16 = ri->dst_port_low;
|
|
|
|
ro->field[RTE_ACL_IPV4VLAN_PROTO_FIELD].mask_range.u8 = ri->proto_mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN1_FIELD].mask_range.u16 = ri->vlan_mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_VLAN2_FIELD].mask_range.u16 =
|
|
ri->domain_mask;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRC_FIELD].mask_range.u32 =
|
|
ri->src_mask_len;
|
|
ro->field[RTE_ACL_IPV4VLAN_DST_FIELD].mask_range.u32 = ri->dst_mask_len;
|
|
ro->field[RTE_ACL_IPV4VLAN_SRCP_FIELD].mask_range.u16 =
|
|
ri->src_port_high;
|
|
ro->field[RTE_ACL_IPV4VLAN_DSTP_FIELD].mask_range.u16 =
|
|
ri->dst_port_high;
|
|
}
|
|
|
|
int
|
|
rte_acl_ipv4vlan_add_rules(struct rte_acl_ctx *ctx,
|
|
const struct rte_acl_ipv4vlan_rule *rules,
|
|
uint32_t num)
|
|
{
|
|
int32_t rc;
|
|
uint32_t i;
|
|
struct acl_ipv4vlan_rule rv;
|
|
|
|
if (ctx == NULL || rules == NULL || ctx->rule_sz != sizeof(rv))
|
|
return -EINVAL;
|
|
|
|
/* check input rules. */
|
|
for (i = 0; i != num; i++) {
|
|
rc = acl_ipv4vlan_check_rule(rules + i);
|
|
if (rc != 0) {
|
|
RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n",
|
|
__func__, ctx->name, i + 1);
|
|
return rc;
|
|
}
|
|
}
|
|
|
|
if (num + ctx->num_rules > ctx->max_rules)
|
|
return -ENOMEM;
|
|
|
|
/* perform conversion to the internal format and add to the context. */
|
|
for (i = 0, rc = 0; i != num && rc == 0; i++) {
|
|
acl_ipv4vlan_convert_rule(rules + i, &rv);
|
|
rc = acl_add_rules(ctx, &rv, 1);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
acl_ipv4vlan_config(struct rte_acl_config *cfg,
|
|
const uint32_t layout[RTE_ACL_IPV4VLAN_NUM],
|
|
uint32_t num_categories)
|
|
{
|
|
static const struct rte_acl_field_def
|
|
ipv4_defs[RTE_ACL_IPV4VLAN_NUM_FIELDS] = {
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_BITMASK,
|
|
.size = sizeof(uint8_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_PROTO_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_PROTO,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_BITMASK,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_VLAN1_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_VLAN,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_BITMASK,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_VLAN2_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_VLAN,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_MASK,
|
|
.size = sizeof(uint32_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_SRC_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_SRC,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_MASK,
|
|
.size = sizeof(uint32_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_DST_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_DST,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_RANGE,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_SRCP_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_PORTS,
|
|
},
|
|
{
|
|
.type = RTE_ACL_FIELD_TYPE_RANGE,
|
|
.size = sizeof(uint16_t),
|
|
.field_index = RTE_ACL_IPV4VLAN_DSTP_FIELD,
|
|
.input_index = RTE_ACL_IPV4VLAN_PORTS,
|
|
},
|
|
};
|
|
|
|
memcpy(&cfg->defs, ipv4_defs, sizeof(ipv4_defs));
|
|
cfg->num_fields = RTE_DIM(ipv4_defs);
|
|
|
|
cfg->defs[RTE_ACL_IPV4VLAN_PROTO_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_PROTO];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_VLAN];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN2_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_VLAN] +
|
|
cfg->defs[RTE_ACL_IPV4VLAN_VLAN1_FIELD].size;
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRC_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_SRC];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DST_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_DST];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_PORTS];
|
|
cfg->defs[RTE_ACL_IPV4VLAN_DSTP_FIELD].offset =
|
|
layout[RTE_ACL_IPV4VLAN_PORTS] +
|
|
cfg->defs[RTE_ACL_IPV4VLAN_SRCP_FIELD].size;
|
|
|
|
cfg->num_categories = num_categories;
|
|
}
|
|
|
|
int
|
|
rte_acl_ipv4vlan_build(struct rte_acl_ctx *ctx,
|
|
const uint32_t layout[RTE_ACL_IPV4VLAN_NUM],
|
|
uint32_t num_categories)
|
|
{
|
|
struct rte_acl_config cfg;
|
|
|
|
if (ctx == NULL || layout == NULL)
|
|
return -EINVAL;
|
|
|
|
acl_ipv4vlan_config(&cfg, layout, num_categories);
|
|
return rte_acl_build(ctx, &cfg);
|
|
}
|