numam-dpdk/drivers/net/octeontx_ep/otx_ep_ethdev.c
Nalla Pradeep 9526f3003e net/octeontx_ep: add Tx path
1. Packet transmit function for both otx and otx2 are added.
2. Flushing transmit(command) queue when pending commands are more than
   maximum allowed value (currently 16).
3. Scatter gather support if the packet spans multiple buffers.

Signed-off-by: Nalla Pradeep <pnalla@marvell.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2021-01-29 18:16:12 +01:00

467 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#include <ethdev_pci.h>
#include "otx2_common.h"
#include "otx_ep_common.h"
#include "otx_ep_vf.h"
#include "otx2_ep_vf.h"
#include "otx_ep_rxtx.h"
#define OTX_EP_DEV(_eth_dev) \
((struct otx_ep_device *)(_eth_dev)->data->dev_private)
static const struct rte_eth_desc_lim otx_ep_rx_desc_lim = {
.nb_max = OTX_EP_MAX_OQ_DESCRIPTORS,
.nb_min = OTX_EP_MIN_OQ_DESCRIPTORS,
.nb_align = OTX_EP_RXD_ALIGN,
};
static const struct rte_eth_desc_lim otx_ep_tx_desc_lim = {
.nb_max = OTX_EP_MAX_IQ_DESCRIPTORS,
.nb_min = OTX_EP_MIN_IQ_DESCRIPTORS,
.nb_align = OTX_EP_TXD_ALIGN,
};
static int
otx_ep_dev_info_get(struct rte_eth_dev *eth_dev,
struct rte_eth_dev_info *devinfo)
{
struct otx_ep_device *otx_epvf;
otx_epvf = OTX_EP_DEV(eth_dev);
devinfo->speed_capa = ETH_LINK_SPEED_10G;
devinfo->max_rx_queues = otx_epvf->max_rx_queues;
devinfo->max_tx_queues = otx_epvf->max_tx_queues;
devinfo->min_rx_bufsize = OTX_EP_MIN_RX_BUF_SIZE;
devinfo->max_rx_pktlen = OTX_EP_MAX_PKT_SZ;
devinfo->rx_offload_capa = DEV_RX_OFFLOAD_JUMBO_FRAME;
devinfo->rx_offload_capa |= DEV_RX_OFFLOAD_SCATTER;
devinfo->tx_offload_capa = DEV_TX_OFFLOAD_MULTI_SEGS;
devinfo->max_mac_addrs = OTX_EP_MAX_MAC_ADDRS;
devinfo->rx_desc_lim = otx_ep_rx_desc_lim;
devinfo->tx_desc_lim = otx_ep_tx_desc_lim;
return 0;
}
static int
otx_ep_dev_start(struct rte_eth_dev *eth_dev)
{
struct otx_ep_device *otx_epvf;
unsigned int q;
int ret;
otx_epvf = (struct otx_ep_device *)OTX_EP_DEV(eth_dev);
/* Enable IQ/OQ for this device */
ret = otx_epvf->fn_list.enable_io_queues(otx_epvf);
if (ret) {
otx_ep_err("IOQ enable failed\n");
return ret;
}
for (q = 0; q < otx_epvf->nb_rx_queues; q++) {
rte_write32(otx_epvf->droq[q]->nb_desc,
otx_epvf->droq[q]->pkts_credit_reg);
rte_wmb();
otx_ep_info("OQ[%d] dbells [%d]\n", q,
rte_read32(otx_epvf->droq[q]->pkts_credit_reg));
}
otx_ep_info("dev started\n");
return 0;
}
/* Stop device and disable input/output functions */
static int
otx_ep_dev_stop(struct rte_eth_dev *eth_dev)
{
struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev);
otx_epvf->fn_list.disable_io_queues(otx_epvf);
return 0;
}
static int
otx_ep_chip_specific_setup(struct otx_ep_device *otx_epvf)
{
struct rte_pci_device *pdev = otx_epvf->pdev;
uint32_t dev_id = pdev->id.device_id;
int ret = 0;
switch (dev_id) {
case PCI_DEVID_OCTEONTX_EP_VF:
otx_epvf->chip_id = dev_id;
ret = otx_ep_vf_setup_device(otx_epvf);
otx_epvf->fn_list.disable_io_queues(otx_epvf);
break;
case PCI_DEVID_OCTEONTX2_EP_NET_VF:
case PCI_DEVID_CN98XX_EP_NET_VF:
otx_epvf->chip_id = dev_id;
ret = otx2_ep_vf_setup_device(otx_epvf);
otx_epvf->fn_list.disable_io_queues(otx_epvf);
break;
default:
otx_ep_err("Unsupported device\n");
ret = -EINVAL;
}
if (!ret)
otx_ep_info("OTX_EP dev_id[%d]\n", dev_id);
return ret;
}
/* OTX_EP VF device initialization */
static int
otx_epdev_init(struct otx_ep_device *otx_epvf)
{
uint32_t ethdev_queues;
int ret = 0;
ret = otx_ep_chip_specific_setup(otx_epvf);
if (ret) {
otx_ep_err("Chip specific setup failed\n");
goto setup_fail;
}
otx_epvf->fn_list.setup_device_regs(otx_epvf);
otx_epvf->eth_dev->rx_pkt_burst = &otx_ep_recv_pkts;
if (otx_epvf->chip_id == PCI_DEVID_OCTEONTX_EP_VF)
otx_epvf->eth_dev->tx_pkt_burst = &otx_ep_xmit_pkts;
else if (otx_epvf->chip_id == PCI_DEVID_OCTEONTX2_EP_NET_VF ||
otx_epvf->chip_id == PCI_DEVID_CN98XX_EP_NET_VF)
otx_epvf->eth_dev->tx_pkt_burst = &otx2_ep_xmit_pkts;
ethdev_queues = (uint32_t)(otx_epvf->sriov_info.rings_per_vf);
otx_epvf->max_rx_queues = ethdev_queues;
otx_epvf->max_tx_queues = ethdev_queues;
otx_ep_info("OTX_EP Device is Ready\n");
setup_fail:
return ret;
}
static int
otx_ep_dev_configure(struct rte_eth_dev *eth_dev)
{
struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev);
struct rte_eth_dev_data *data = eth_dev->data;
struct rte_eth_rxmode *rxmode;
struct rte_eth_txmode *txmode;
struct rte_eth_conf *conf;
conf = &data->dev_conf;
rxmode = &conf->rxmode;
txmode = &conf->txmode;
if (eth_dev->data->nb_rx_queues > otx_epvf->max_rx_queues ||
eth_dev->data->nb_tx_queues > otx_epvf->max_tx_queues) {
otx_ep_err("invalid num queues\n");
return -EINVAL;
}
otx_ep_info("OTX_EP Device is configured with num_txq %d num_rxq %d\n",
eth_dev->data->nb_rx_queues, eth_dev->data->nb_tx_queues);
otx_epvf->rx_offloads = rxmode->offloads;
otx_epvf->tx_offloads = txmode->offloads;
return 0;
}
/**
* Setup our receive queue/ringbuffer. This is the
* queue the Octeon uses to send us packets and
* responses. We are given a memory pool for our
* packet buffers that are used to populate the receive
* queue.
*
* @param eth_dev
* Pointer to the structure rte_eth_dev
* @param q_no
* Queue number
* @param num_rx_descs
* Number of entries in the queue
* @param socket_id
* Where to allocate memory
* @param rx_conf
* Pointer to the struction rte_eth_rxconf
* @param mp
* Pointer to the packet pool
*
* @return
* - On success, return 0
* - On failure, return -1
*/
static int
otx_ep_rx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t q_no,
uint16_t num_rx_descs, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf __rte_unused,
struct rte_mempool *mp)
{
struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev);
struct rte_pktmbuf_pool_private *mbp_priv;
uint16_t buf_size;
if (q_no >= otx_epvf->max_rx_queues) {
otx_ep_err("Invalid rx queue number %u\n", q_no);
return -EINVAL;
}
if (num_rx_descs & (num_rx_descs - 1)) {
otx_ep_err("Invalid rx desc number should be pow 2 %u\n",
num_rx_descs);
return -EINVAL;
}
if (num_rx_descs < (SDP_GBL_WMARK * 8)) {
otx_ep_err("Invalid rx desc number should at least be greater than 8xwmark %u\n",
num_rx_descs);
return -EINVAL;
}
otx_ep_dbg("setting up rx queue %u\n", q_no);
mbp_priv = rte_mempool_get_priv(mp);
buf_size = mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM;
if (otx_ep_setup_oqs(otx_epvf, q_no, num_rx_descs, buf_size, mp,
socket_id)) {
otx_ep_err("droq allocation failed\n");
return -1;
}
eth_dev->data->rx_queues[q_no] = otx_epvf->droq[q_no];
return 0;
}
/**
* Release the receive queue/ringbuffer. Called by
* the upper layers.
*
* @param rxq
* Opaque pointer to the receive queue to release
*
* @return
* - nothing
*/
static void
otx_ep_rx_queue_release(void *rxq)
{
struct otx_ep_droq *rq = (struct otx_ep_droq *)rxq;
struct otx_ep_device *otx_epvf = rq->otx_ep_dev;
int q_id = rq->q_no;
if (otx_ep_delete_oqs(otx_epvf, q_id))
otx_ep_err("Failed to delete OQ:%d\n", q_id);
}
/**
* Allocate and initialize SW ring. Initialize associated HW registers.
*
* @param eth_dev
* Pointer to structure rte_eth_dev
*
* @param q_no
* Queue number
*
* @param num_tx_descs
* Number of ringbuffer descriptors
*
* @param socket_id
* NUMA socket id, used for memory allocations
*
* @param tx_conf
* Pointer to the structure rte_eth_txconf
*
* @return
* - On success, return 0
* - On failure, return -errno value
*/
static int
otx_ep_tx_queue_setup(struct rte_eth_dev *eth_dev, uint16_t q_no,
uint16_t num_tx_descs, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf __rte_unused)
{
struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev);
int retval;
if (q_no >= otx_epvf->max_tx_queues) {
otx_ep_err("Invalid tx queue number %u\n", q_no);
return -EINVAL;
}
if (num_tx_descs & (num_tx_descs - 1)) {
otx_ep_err("Invalid tx desc number should be pow 2 %u\n",
num_tx_descs);
return -EINVAL;
}
retval = otx_ep_setup_iqs(otx_epvf, q_no, num_tx_descs, socket_id);
if (retval) {
otx_ep_err("IQ(TxQ) creation failed.\n");
return retval;
}
eth_dev->data->tx_queues[q_no] = otx_epvf->instr_queue[q_no];
otx_ep_dbg("tx queue[%d] setup\n", q_no);
return 0;
}
/**
* Release the transmit queue/ringbuffer. Called by
* the upper layers.
*
* @param txq
* Opaque pointer to the transmit queue to release
*
* @return
* - nothing
*/
static void
otx_ep_tx_queue_release(void *txq)
{
struct otx_ep_instr_queue *tq = (struct otx_ep_instr_queue *)txq;
otx_ep_delete_iqs(tq->otx_ep_dev, tq->q_no);
}
/* Define our ethernet definitions */
static const struct eth_dev_ops otx_ep_eth_dev_ops = {
.dev_configure = otx_ep_dev_configure,
.dev_start = otx_ep_dev_start,
.dev_stop = otx_ep_dev_stop,
.rx_queue_setup = otx_ep_rx_queue_setup,
.rx_queue_release = otx_ep_rx_queue_release,
.tx_queue_setup = otx_ep_tx_queue_setup,
.tx_queue_release = otx_ep_tx_queue_release,
.dev_infos_get = otx_ep_dev_info_get,
};
static int
otx_epdev_exit(struct rte_eth_dev *eth_dev)
{
struct otx_ep_device *otx_epvf;
uint32_t num_queues, q;
otx_ep_info("%s:\n", __func__);
otx_epvf = OTX_EP_DEV(eth_dev);
otx_epvf->fn_list.disable_io_queues(otx_epvf);
num_queues = otx_epvf->nb_rx_queues;
for (q = 0; q < num_queues; q++) {
if (otx_ep_delete_oqs(otx_epvf, q)) {
otx_ep_err("Failed to delete OQ:%d\n", q);
return -EINVAL;
}
}
otx_ep_info("Num OQs:%d freed\n", otx_epvf->nb_rx_queues);
num_queues = otx_epvf->nb_tx_queues;
for (q = 0; q < num_queues; q++) {
if (otx_ep_delete_iqs(otx_epvf, q)) {
otx_ep_err("Failed to delete IQ:%d\n", q);
return -EINVAL;
}
}
otx_ep_dbg("Num IQs:%d freed\n", otx_epvf->nb_tx_queues);
return 0;
}
static int
otx_ep_eth_dev_uninit(struct rte_eth_dev *eth_dev)
{
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
otx_epdev_exit(eth_dev);
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
return 0;
}
static int
otx_ep_eth_dev_init(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pdev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct otx_ep_device *otx_epvf = OTX_EP_DEV(eth_dev);
struct rte_ether_addr vf_mac_addr;
/* Single process support */
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
otx_epvf->eth_dev = eth_dev;
otx_epvf->port_id = eth_dev->data->port_id;
eth_dev->dev_ops = &otx_ep_eth_dev_ops;
eth_dev->data->mac_addrs = rte_zmalloc("otx_ep", RTE_ETHER_ADDR_LEN, 0);
if (eth_dev->data->mac_addrs == NULL) {
otx_ep_err("MAC addresses memory allocation failed\n");
eth_dev->dev_ops = NULL;
return -ENOMEM;
}
rte_eth_random_addr(vf_mac_addr.addr_bytes);
rte_ether_addr_copy(&vf_mac_addr, eth_dev->data->mac_addrs);
otx_epvf->hw_addr = pdev->mem_resource[0].addr;
otx_epvf->pdev = pdev;
otx_epdev_init(otx_epvf);
if (pdev->id.device_id == PCI_DEVID_OCTEONTX2_EP_NET_VF)
otx_epvf->pkind = SDP_OTX2_PKIND;
else
otx_epvf->pkind = SDP_PKIND;
otx_ep_info("using pkind %d\n", otx_epvf->pkind);
return 0;
}
static int
otx_ep_eth_dev_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct otx_ep_device),
otx_ep_eth_dev_init);
}
static int
otx_ep_eth_dev_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev,
otx_ep_eth_dev_uninit);
}
/* Set of PCI devices this driver supports */
static const struct rte_pci_id pci_id_otx_ep_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX_EP_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_EP_NET_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN98XX_EP_NET_VF) },
{ .vendor_id = 0, /* sentinel */ }
};
static struct rte_pci_driver rte_otx_ep_pmd = {
.id_table = pci_id_otx_ep_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = otx_ep_eth_dev_pci_probe,
.remove = otx_ep_eth_dev_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_otx_ep, rte_otx_ep_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_otx_ep, pci_id_otx_ep_map);
RTE_PMD_REGISTER_KMOD_DEP(net_otx_ep, "* igb_uio | vfio-pci");
RTE_LOG_REGISTER(otx_net_ep_logtype, pmd.net.octeontx_ep, NOTICE);