Anoob Joseph 252947b950 common/cnxk: allocate auth key dynamically
Reduce session private data size by allocating
auth_key dynamically as required.

Signed-off-by: Anoob Joseph <anoobj@marvell.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
2021-07-20 10:32:05 +02:00

347 lines
8.1 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#include "roc_api.h"
static uint8_t zuc_d[32] = {0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC};
static inline void
cpt_snow3g_key_gen(const uint8_t *ck, uint32_t *keyx)
{
int i, base;
for (i = 0; i < 4; i++) {
base = 4 * i;
keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
(ck[base + 2] << 8) | (ck[base + 3]);
keyx[3 - i] = plt_cpu_to_be_32(keyx[3 - i]);
}
}
static inline int
cpt_ciph_aes_key_validate(uint16_t key_len)
{
switch (key_len) {
case 16:
case 24:
case 32:
return 0;
default:
return -1;
}
}
static inline int
cpt_ciph_type_set(roc_se_cipher_type type, struct roc_se_ctx *ctx,
uint16_t key_len)
{
int fc_type = 0;
switch (type) {
case ROC_SE_PASSTHROUGH:
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_DES3_CBC:
case ROC_SE_DES3_ECB:
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_AES_CBC:
case ROC_SE_AES_ECB:
case ROC_SE_AES_CFB:
case ROC_SE_AES_CTR:
case ROC_SE_AES_GCM:
if (unlikely(cpt_ciph_aes_key_validate(key_len) != 0))
return -1;
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_CHACHA20:
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_AES_XTS:
key_len = key_len / 2;
if (unlikely(key_len == 24)) {
plt_err("Invalid AES key len for XTS");
return -1;
}
if (unlikely(cpt_ciph_aes_key_validate(key_len) != 0))
return -1;
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_ZUC_EEA3:
case ROC_SE_SNOW3G_UEA2:
if (unlikely(key_len != 16))
return -1;
/* No support for AEAD yet */
if (unlikely(ctx->hash_type))
return -1;
fc_type = ROC_SE_PDCP;
break;
case ROC_SE_AES_CTR_EEA2:
fc_type = ROC_SE_PDCP;
break;
case ROC_SE_KASUMI_F8_CBC:
case ROC_SE_KASUMI_F8_ECB:
if (unlikely(key_len != 16))
return -1;
/* No support for AEAD yet */
if (unlikely(ctx->hash_type))
return -1;
fc_type = ROC_SE_KASUMI;
break;
default:
return -1;
}
ctx->fc_type = fc_type;
return 0;
}
static inline void
cpt_ciph_aes_key_type_set(struct roc_se_context *fctx, uint16_t key_len)
{
roc_se_aes_type aes_key_type = 0;
switch (key_len) {
case 16:
aes_key_type = ROC_SE_AES_128_BIT;
break;
case 24:
aes_key_type = ROC_SE_AES_192_BIT;
break;
case 32:
aes_key_type = ROC_SE_AES_256_BIT;
break;
default:
/* This should not happen */
plt_err("Invalid AES key len");
return;
}
fctx->enc.aes_key = aes_key_type;
}
int
roc_se_auth_key_set(struct roc_se_ctx *se_ctx, roc_se_auth_type type,
const uint8_t *key, uint16_t key_len, uint16_t mac_len)
{
struct roc_se_zuc_snow3g_ctx *zs_ctx;
struct roc_se_kasumi_ctx *k_ctx;
struct roc_se_context *fctx;
if (se_ctx == NULL)
return -1;
zs_ctx = &se_ctx->se_ctx.zs_ctx;
k_ctx = &se_ctx->se_ctx.k_ctx;
fctx = &se_ctx->se_ctx.fctx;
if ((type >= ROC_SE_ZUC_EIA3) && (type <= ROC_SE_KASUMI_F9_ECB)) {
uint32_t keyx[4];
if (key_len != 16)
return -1;
/* No support for AEAD yet */
if (se_ctx->enc_cipher)
return -1;
/* For ZUC/SNOW3G/Kasumi */
switch (type) {
case ROC_SE_SNOW3G_UIA2:
se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_SNOW3G;
cpt_snow3g_key_gen(key, keyx);
memcpy(zs_ctx->ci_key, keyx, key_len);
se_ctx->fc_type = ROC_SE_PDCP;
se_ctx->zsk_flags = 0x1;
break;
case ROC_SE_ZUC_EIA3:
se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_ZUC;
memcpy(zs_ctx->ci_key, key, key_len);
memcpy(zs_ctx->zuc_const, zuc_d, 32);
se_ctx->fc_type = ROC_SE_PDCP;
se_ctx->zsk_flags = 0x1;
break;
case ROC_SE_AES_CMAC_EIA2:
se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_AES_CTR;
memcpy(zs_ctx->ci_key, key, key_len);
se_ctx->fc_type = ROC_SE_PDCP;
se_ctx->zsk_flags = 0x1;
break;
case ROC_SE_KASUMI_F9_ECB:
/* Kasumi ECB mode */
se_ctx->k_ecb = 1;
memcpy(k_ctx->ci_key, key, key_len);
se_ctx->fc_type = ROC_SE_KASUMI;
se_ctx->zsk_flags = 0x1;
break;
case ROC_SE_KASUMI_F9_CBC:
memcpy(k_ctx->ci_key, key, key_len);
se_ctx->fc_type = ROC_SE_KASUMI;
se_ctx->zsk_flags = 0x1;
break;
default:
return -1;
}
se_ctx->mac_len = 4;
se_ctx->hash_type = type;
return 0;
}
if (!se_ctx->fc_type ||
(type && type != ROC_SE_GMAC_TYPE && !se_ctx->enc_cipher))
se_ctx->fc_type = ROC_SE_HASH_HMAC;
if (se_ctx->fc_type == ROC_SE_FC_GEN && key_len > 64)
return -1;
/* For GMAC auth, cipher must be NULL */
if (type == ROC_SE_GMAC_TYPE)
fctx->enc.enc_cipher = 0;
fctx->enc.hash_type = type;
se_ctx->hash_type = type;
fctx->enc.mac_len = mac_len;
se_ctx->mac_len = mac_len;
if (key_len) {
se_ctx->hmac = 1;
se_ctx->auth_key = plt_zmalloc(key_len, 8);
if (se_ctx->auth_key == NULL)
return -1;
memcpy(se_ctx->auth_key, key, key_len);
se_ctx->auth_key_len = key_len;
memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
if (key_len <= 64)
memcpy(fctx->hmac.opad, key, key_len);
fctx->enc.auth_input_type = 1;
}
return 0;
}
int
roc_se_ciph_key_set(struct roc_se_ctx *se_ctx, roc_se_cipher_type type,
const uint8_t *key, uint16_t key_len, uint8_t *salt)
{
struct roc_se_context *fctx = &se_ctx->se_ctx.fctx;
struct roc_se_zuc_snow3g_ctx *zs_ctx;
uint32_t keyx[4];
int ret;
/* For AES-GCM, salt is taken from ctx even if IV source
* is from DPTR
*/
if ((salt != NULL) && (type == ROC_SE_AES_GCM)) {
memcpy(fctx->enc.encr_iv, salt, 4);
/* Assuming it was just salt update
* and nothing else
*/
if (key == NULL)
return 0;
}
ret = cpt_ciph_type_set(type, se_ctx, key_len);
if (unlikely(ret))
return -1;
if (se_ctx->fc_type == ROC_SE_FC_GEN) {
/*
* We need to always say IV is from DPTR as user can
* sometimes iverride IV per operation.
*/
fctx->enc.iv_source = ROC_SE_FROM_DPTR;
if (se_ctx->auth_key_len > 64)
return -1;
}
switch (type) {
case ROC_SE_PASSTHROUGH:
se_ctx->enc_cipher = 0;
fctx->enc.enc_cipher = 0;
goto success;
case ROC_SE_DES3_CBC:
/* CPT performs DES using 3DES with the 8B DES-key
* replicated 2 more times to match the 24B 3DES-key.
* Eg. If org. key is "0x0a 0x0b", then new key is
* "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
*/
if (key_len == 8) {
/* Skipping the first 8B as it will be copied
* in the regular code flow
*/
memcpy(fctx->enc.encr_key + key_len, key, key_len);
memcpy(fctx->enc.encr_key + 2 * key_len, key, key_len);
}
break;
case ROC_SE_DES3_ECB:
/* For DES3_ECB IV need to be from CTX. */
fctx->enc.iv_source = ROC_SE_FROM_CTX;
break;
case ROC_SE_AES_CBC:
case ROC_SE_AES_ECB:
case ROC_SE_AES_CFB:
case ROC_SE_AES_CTR:
case ROC_SE_CHACHA20:
cpt_ciph_aes_key_type_set(fctx, key_len);
break;
case ROC_SE_AES_GCM:
cpt_ciph_aes_key_type_set(fctx, key_len);
break;
case ROC_SE_AES_XTS:
key_len = key_len / 2;
cpt_ciph_aes_key_type_set(fctx, key_len);
/* Copy key2 for XTS into ipad */
memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
memcpy(fctx->hmac.ipad, &key[key_len], key_len);
break;
case ROC_SE_SNOW3G_UEA2:
se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_SNOW3G;
cpt_snow3g_key_gen(key, keyx);
memcpy(se_ctx->se_ctx.zs_ctx.ci_key, keyx, key_len);
se_ctx->zsk_flags = 0;
goto success;
case ROC_SE_ZUC_EEA3:
zs_ctx = &se_ctx->se_ctx.zs_ctx;
se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_ZUC;
memcpy(zs_ctx->ci_key, key, key_len);
memcpy(zs_ctx->zuc_const, zuc_d, 32);
se_ctx->zsk_flags = 0;
goto success;
case ROC_SE_AES_CTR_EEA2:
se_ctx->pdcp_alg_type = ROC_SE_PDCP_ALG_TYPE_AES_CTR;
memcpy(se_ctx->se_ctx.zs_ctx.ci_key, key, key_len);
se_ctx->zsk_flags = 0;
goto success;
case ROC_SE_KASUMI_F8_ECB:
se_ctx->k_ecb = 1;
memcpy(se_ctx->se_ctx.k_ctx.ci_key, key, key_len);
se_ctx->zsk_flags = 0;
goto success;
case ROC_SE_KASUMI_F8_CBC:
memcpy(se_ctx->se_ctx.k_ctx.ci_key, key, key_len);
se_ctx->zsk_flags = 0;
goto success;
default:
return -1;
}
/* Only for ROC_SE_FC_GEN case */
/* For GMAC auth, cipher must be NULL */
if (se_ctx->hash_type != ROC_SE_GMAC_TYPE)
fctx->enc.enc_cipher = type;
memcpy(fctx->enc.encr_key, key, key_len);
success:
se_ctx->enc_cipher = type;
return 0;
}