numam-dpdk/drivers/common/cpt/cpt_ucode.h
Ankur Dwivedi 131966f876 common/cpt: support new firmware
With the latest firmware, there are few changes for zuc and snow3g.

1. The iv_source is present in bitfield 7 of minor opcode. In the
old firmware this was present in bitfield 6.

2. Algorithm type is a 2 bit field in new firmware. In the old
firmware it was named as cipher type and it was a 1 bit field.

Signed-off-by: Ankur Dwivedi <adwivedi@marvell.com>
Signed-off-by: Anoob Joseph <anoobj@marvell.com>
2019-10-09 11:50:12 +02:00

3581 lines
86 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Cavium, Inc
*/
#ifndef _CPT_UCODE_H_
#define _CPT_UCODE_H_
#include <stdbool.h>
#include "cpt_common.h"
#include "cpt_hw_types.h"
#include "cpt_mcode_defines.h"
/*
* This file defines functions that are interfaces to microcode spec.
*
*/
static uint8_t zuc_d[32] = {
0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
};
static __rte_always_inline int
cpt_is_algo_supported(struct rte_crypto_sym_xform *xform)
{
/*
* Microcode only supports the following combination.
* Encryption followed by authentication
* Authentication followed by decryption
*/
if (xform->next) {
if ((xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
(xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
(xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)) {
/* Unsupported as of now by microcode */
CPT_LOG_DP_ERR("Unsupported combination");
return -1;
}
if ((xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
(xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
(xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT)) {
/* For GMAC auth there is no cipher operation */
if (xform->aead.algo != RTE_CRYPTO_AEAD_AES_GCM ||
xform->next->auth.algo !=
RTE_CRYPTO_AUTH_AES_GMAC) {
/* Unsupported as of now by microcode */
CPT_LOG_DP_ERR("Unsupported combination");
return -1;
}
}
}
return 0;
}
static __rte_always_inline void
gen_key_snow3g(const uint8_t *ck, uint32_t *keyx)
{
int i, base;
for (i = 0; i < 4; i++) {
base = 4 * i;
keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
(ck[base + 2] << 8) | (ck[base + 3]);
keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
}
}
static __rte_always_inline void
cpt_fc_salt_update(void *ctx,
uint8_t *salt)
{
struct cpt_ctx *cpt_ctx = ctx;
memcpy(&cpt_ctx->fctx.enc.encr_iv, salt, 4);
}
static __rte_always_inline int
cpt_fc_ciph_validate_key_aes(uint16_t key_len)
{
switch (key_len) {
case CPT_BYTE_16:
case CPT_BYTE_24:
case CPT_BYTE_32:
return 0;
default:
return -1;
}
}
static __rte_always_inline int
cpt_fc_ciph_set_type(cipher_type_t type, struct cpt_ctx *ctx, uint16_t key_len)
{
int fc_type = 0;
switch (type) {
case PASSTHROUGH:
fc_type = FC_GEN;
break;
case DES3_CBC:
case DES3_ECB:
fc_type = FC_GEN;
break;
case AES_CBC:
case AES_ECB:
case AES_CFB:
case AES_CTR:
case AES_GCM:
if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
return -1;
fc_type = FC_GEN;
break;
case AES_XTS:
key_len = key_len / 2;
if (unlikely(key_len == CPT_BYTE_24)) {
CPT_LOG_DP_ERR("Invalid AES key len for XTS");
return -1;
}
if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
return -1;
fc_type = FC_GEN;
break;
case ZUC_EEA3:
case SNOW3G_UEA2:
if (unlikely(key_len != 16))
return -1;
/* No support for AEAD yet */
if (unlikely(ctx->hash_type))
return -1;
fc_type = ZUC_SNOW3G;
break;
case KASUMI_F8_CBC:
case KASUMI_F8_ECB:
if (unlikely(key_len != 16))
return -1;
/* No support for AEAD yet */
if (unlikely(ctx->hash_type))
return -1;
fc_type = KASUMI;
break;
default:
return -1;
}
ctx->fc_type = fc_type;
return 0;
}
static __rte_always_inline void
cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
{
cpt_ctx->enc_cipher = 0;
CPT_P_ENC_CTRL(fctx).enc_cipher = 0;
}
static __rte_always_inline void
cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
{
mc_aes_type_t aes_key_type = 0;
switch (key_len) {
case CPT_BYTE_16:
aes_key_type = AES_128_BIT;
break;
case CPT_BYTE_24:
aes_key_type = AES_192_BIT;
break;
case CPT_BYTE_32:
aes_key_type = AES_256_BIT;
break;
default:
/* This should not happen */
CPT_LOG_DP_ERR("Invalid AES key len");
return;
}
CPT_P_ENC_CTRL(fctx).aes_key = aes_key_type;
}
static __rte_always_inline void
cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, const uint8_t *key,
uint16_t key_len)
{
uint32_t keyx[4];
cpt_ctx->snow3g = 1;
gen_key_snow3g(key, keyx);
memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
cpt_ctx->zsk_flags = 0;
}
static __rte_always_inline void
cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, const uint8_t *key,
uint16_t key_len)
{
cpt_ctx->snow3g = 0;
memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
cpt_ctx->zsk_flags = 0;
}
static __rte_always_inline void
cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, const uint8_t *key,
uint16_t key_len)
{
cpt_ctx->k_ecb = 1;
memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
cpt_ctx->zsk_flags = 0;
}
static __rte_always_inline void
cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, const uint8_t *key,
uint16_t key_len)
{
memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
cpt_ctx->zsk_flags = 0;
}
static __rte_always_inline int
cpt_fc_ciph_set_key(void *ctx, cipher_type_t type, const uint8_t *key,
uint16_t key_len, uint8_t *salt)
{
struct cpt_ctx *cpt_ctx = ctx;
mc_fc_context_t *fctx = &cpt_ctx->fctx;
uint64_t *ctrl_flags = NULL;
int ret;
ret = cpt_fc_ciph_set_type(type, cpt_ctx, key_len);
if (unlikely(ret))
return -1;
if (cpt_ctx->fc_type == FC_GEN) {
ctrl_flags = (uint64_t *)&(fctx->enc.enc_ctrl.flags);
*ctrl_flags = rte_be_to_cpu_64(*ctrl_flags);
/*
* We need to always say IV is from DPTR as user can
* sometimes iverride IV per operation.
*/
CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_DPTR;
}
switch (type) {
case PASSTHROUGH:
cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
goto fc_success;
case DES3_CBC:
/* CPT performs DES using 3DES with the 8B DES-key
* replicated 2 more times to match the 24B 3DES-key.
* Eg. If org. key is "0x0a 0x0b", then new key is
* "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
*/
if (key_len == 8) {
/* Skipping the first 8B as it will be copied
* in the regular code flow
*/
memcpy(fctx->enc.encr_key+key_len, key, key_len);
memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
}
break;
case DES3_ECB:
/* For DES3_ECB IV need to be from CTX. */
CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_CTX;
break;
case AES_CBC:
case AES_ECB:
case AES_CFB:
case AES_CTR:
cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
break;
case AES_GCM:
/* Even though iv source is from dptr,
* aes_gcm salt is taken from ctx
*/
if (salt) {
memcpy(fctx->enc.encr_iv, salt, 4);
/* Assuming it was just salt update
* and nothing else
*/
if (!key)
goto fc_success;
}
cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
break;
case AES_XTS:
key_len = key_len / 2;
cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
/* Copy key2 for XTS into ipad */
memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
memcpy(fctx->hmac.ipad, &key[key_len], key_len);
break;
case SNOW3G_UEA2:
cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
goto success;
case ZUC_EEA3:
cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
goto success;
case KASUMI_F8_ECB:
cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
goto success;
case KASUMI_F8_CBC:
cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
goto success;
default:
break;
}
/* Only for FC_GEN case */
/* For GMAC auth, cipher must be NULL */
if (cpt_ctx->hash_type != GMAC_TYPE)
CPT_P_ENC_CTRL(fctx).enc_cipher = type;
memcpy(fctx->enc.encr_key, key, key_len);
fc_success:
*ctrl_flags = rte_cpu_to_be_64(*ctrl_flags);
success:
cpt_ctx->enc_cipher = type;
return 0;
}
static __rte_always_inline uint32_t
fill_sg_comp(sg_comp_t *list,
uint32_t i,
phys_addr_t dma_addr,
uint32_t size)
{
sg_comp_t *to = &list[i>>2];
to->u.s.len[i%4] = rte_cpu_to_be_16(size);
to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
i++;
return i;
}
static __rte_always_inline uint32_t
fill_sg_comp_from_buf(sg_comp_t *list,
uint32_t i,
buf_ptr_t *from)
{
sg_comp_t *to = &list[i>>2];
to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
i++;
return i;
}
static __rte_always_inline uint32_t
fill_sg_comp_from_buf_min(sg_comp_t *list,
uint32_t i,
buf_ptr_t *from,
uint32_t *psize)
{
sg_comp_t *to = &list[i >> 2];
uint32_t size = *psize;
uint32_t e_len;
e_len = (size > from->size) ? from->size : size;
to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
*psize -= e_len;
i++;
return i;
}
/*
* This fills the MC expected SGIO list
* from IOV given by user.
*/
static __rte_always_inline uint32_t
fill_sg_comp_from_iov(sg_comp_t *list,
uint32_t i,
iov_ptr_t *from, uint32_t from_offset,
uint32_t *psize, buf_ptr_t *extra_buf,
uint32_t extra_offset)
{
int32_t j;
uint32_t extra_len = extra_buf ? extra_buf->size : 0;
uint32_t size = *psize - extra_len;
buf_ptr_t *bufs;
bufs = from->bufs;
for (j = 0; (j < from->buf_cnt) && size; j++) {
phys_addr_t e_dma_addr;
uint32_t e_len;
sg_comp_t *to = &list[i >> 2];
if (!bufs[j].size)
continue;
if (unlikely(from_offset)) {
if (from_offset >= bufs[j].size) {
from_offset -= bufs[j].size;
continue;
}
e_dma_addr = bufs[j].dma_addr + from_offset;
e_len = (size > (bufs[j].size - from_offset)) ?
(bufs[j].size - from_offset) : size;
from_offset = 0;
} else {
e_dma_addr = bufs[j].dma_addr;
e_len = (size > bufs[j].size) ?
bufs[j].size : size;
}
to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
if (extra_len && (e_len >= extra_offset)) {
/* Break the data at given offset */
uint32_t next_len = e_len - extra_offset;
phys_addr_t next_dma = e_dma_addr + extra_offset;
if (!extra_offset) {
i--;
} else {
e_len = extra_offset;
size -= e_len;
to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
}
/* Insert extra data ptr */
if (extra_len) {
i++;
to = &list[i >> 2];
to->u.s.len[i % 4] =
rte_cpu_to_be_16(extra_buf->size);
to->ptr[i % 4] =
rte_cpu_to_be_64(extra_buf->dma_addr);
/* size already decremented by extra len */
}
/* insert the rest of the data */
if (next_len) {
i++;
to = &list[i >> 2];
to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
size -= next_len;
}
extra_len = 0;
} else {
size -= e_len;
}
if (extra_offset)
extra_offset -= size;
i++;
}
*psize = size;
return (uint32_t)i;
}
static __rte_always_inline void
cpt_digest_gen_prep(uint32_t flags,
uint64_t d_lens,
digest_params_t *params,
void *op,
void **prep_req)
{
struct cpt_request_info *req;
uint32_t size, i;
uint16_t data_len, mac_len, key_len;
auth_type_t hash_type;
buf_ptr_t *meta_p;
struct cpt_ctx *ctx;
sg_comp_t *gather_comp;
sg_comp_t *scatter_comp;
uint8_t *in_buffer;
uint32_t g_size_bytes, s_size_bytes;
uint64_t dptr_dma, rptr_dma;
vq_cmd_word0_t vq_cmd_w0;
vq_cmd_word3_t vq_cmd_w3;
void *c_vaddr, *m_vaddr;
uint64_t c_dma, m_dma;
opcode_info_t opcode;
ctx = params->ctx_buf.vaddr;
meta_p = &params->meta_buf;
m_vaddr = meta_p->vaddr;
m_dma = meta_p->dma_addr;
/*
* Save initial space that followed app data for completion code &
* alternate completion code to fall in same cache line as app data
*/
m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
m_dma += COMPLETION_CODE_SIZE;
size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
(uint8_t *)m_vaddr;
c_vaddr = (uint8_t *)m_vaddr + size;
c_dma = m_dma + size;
size += sizeof(cpt_res_s_t);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
req = m_vaddr;
size = sizeof(struct cpt_request_info);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
hash_type = ctx->hash_type;
mac_len = ctx->mac_len;
key_len = ctx->auth_key_len;
data_len = AUTH_DLEN(d_lens);
/*GP op header */
vq_cmd_w0.u64 = 0;
vq_cmd_w0.s.param2 = ((uint16_t)hash_type << 8);
if (ctx->hmac) {
opcode.s.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
vq_cmd_w0.s.param1 = key_len;
vq_cmd_w0.s.dlen = data_len + ROUNDUP8(key_len);
} else {
opcode.s.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
vq_cmd_w0.s.param1 = 0;
vq_cmd_w0.s.dlen = data_len;
}
opcode.s.minor = 0;
/* Null auth only case enters the if */
if (unlikely(!hash_type && !ctx->enc_cipher)) {
opcode.s.major = CPT_MAJOR_OP_MISC;
/* Minor op is passthrough */
opcode.s.minor = 0x03;
/* Send out completion code only */
vq_cmd_w0.s.param2 = 0x1;
}
vq_cmd_w0.s.opcode = opcode.flags;
/* DPTR has SG list */
in_buffer = m_vaddr;
dptr_dma = m_dma;
((uint16_t *)in_buffer)[0] = 0;
((uint16_t *)in_buffer)[1] = 0;
/* TODO Add error check if space will be sufficient */
gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
/*
* Input gather list
*/
i = 0;
if (ctx->hmac) {
uint64_t k_dma = params->ctx_buf.dma_addr +
offsetof(struct cpt_ctx, auth_key);
/* Key */
i = fill_sg_comp(gather_comp, i, k_dma, ROUNDUP8(key_len));
}
/* input data */
size = data_len;
if (size) {
i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
0, &size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
" by %dB", size);
return;
}
} else {
/*
* Looks like we need to support zero data
* gather ptr in case of hash & hmac
*/
i++;
}
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
/*
* Output Gather list
*/
i = 0;
scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
if (flags & VALID_MAC_BUF) {
if (unlikely(params->mac_buf.size < mac_len)) {
CPT_LOG_DP_ERR("Insufficient MAC size");
return;
}
size = mac_len;
i = fill_sg_comp_from_buf_min(scatter_comp, i,
&params->mac_buf, &size);
} else {
size = mac_len;
i = fill_sg_comp_from_iov(scatter_comp, i,
params->src_iov, data_len,
&size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient dst IOV size, short by"
" %dB", size);
return;
}
}
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
/* This is DPTR len incase of SG mode */
vq_cmd_w0.s.dlen = size;
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* cpt alternate completion address saved earlier */
req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
rptr_dma = c_dma - 8;
req->ist.ei1 = dptr_dma;
req->ist.ei2 = rptr_dma;
/* vq command w3 */
vq_cmd_w3.u64 = 0;
/* 16 byte aligned cpt res address */
req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
*req->completion_addr = COMPLETION_CODE_INIT;
req->comp_baddr = c_dma;
/* Fill microcode part of instruction */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei3 = vq_cmd_w3.u64;
req->op = op;
*prep_req = req;
return;
}
static __rte_always_inline void
cpt_enc_hmac_prep(uint32_t flags,
uint64_t d_offs,
uint64_t d_lens,
fc_params_t *fc_params,
void *op,
void **prep_req)
{
uint32_t iv_offset = 0;
int32_t inputlen, outputlen, enc_dlen, auth_dlen;
struct cpt_ctx *cpt_ctx;
uint32_t cipher_type, hash_type;
uint32_t mac_len, size;
uint8_t iv_len = 16;
struct cpt_request_info *req;
buf_ptr_t *meta_p, *aad_buf = NULL;
uint32_t encr_offset, auth_offset;
uint32_t encr_data_len, auth_data_len, aad_len = 0;
uint32_t passthrough_len = 0;
void *m_vaddr, *offset_vaddr;
uint64_t m_dma, offset_dma, ctx_dma;
vq_cmd_word0_t vq_cmd_w0;
vq_cmd_word3_t vq_cmd_w3;
void *c_vaddr;
uint64_t c_dma;
opcode_info_t opcode;
meta_p = &fc_params->meta_buf;
m_vaddr = meta_p->vaddr;
m_dma = meta_p->dma_addr;
encr_offset = ENCR_OFFSET(d_offs);
auth_offset = AUTH_OFFSET(d_offs);
encr_data_len = ENCR_DLEN(d_lens);
auth_data_len = AUTH_DLEN(d_lens);
if (unlikely(flags & VALID_AAD_BUF)) {
/*
* We dont support both aad
* and auth data separately
*/
auth_data_len = 0;
auth_offset = 0;
aad_len = fc_params->aad_buf.size;
aad_buf = &fc_params->aad_buf;
}
cpt_ctx = fc_params->ctx_buf.vaddr;
cipher_type = cpt_ctx->enc_cipher;
hash_type = cpt_ctx->hash_type;
mac_len = cpt_ctx->mac_len;
/*
* Save initial space that followed app data for completion code &
* alternate completion code to fall in same cache line as app data
*/
m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
m_dma += COMPLETION_CODE_SIZE;
size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
(uint8_t *)m_vaddr;
c_vaddr = (uint8_t *)m_vaddr + size;
c_dma = m_dma + size;
size += sizeof(cpt_res_s_t);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* start cpt request info struct at 8 byte boundary */
size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
(uint8_t *)m_vaddr;
req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
size += sizeof(struct cpt_request_info);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
if (hash_type == GMAC_TYPE)
encr_data_len = 0;
if (unlikely(!(flags & VALID_IV_BUF))) {
iv_len = 0;
iv_offset = ENCR_IV_OFFSET(d_offs);
}
if (unlikely(flags & VALID_AAD_BUF)) {
/*
* When AAD is given, data above encr_offset is pass through
* Since AAD is given as separate pointer and not as offset,
* this is a special case as we need to fragment input data
* into passthrough + encr_data and then insert AAD in between.
*/
if (hash_type != GMAC_TYPE) {
passthrough_len = encr_offset;
auth_offset = passthrough_len + iv_len;
encr_offset = passthrough_len + aad_len + iv_len;
auth_data_len = aad_len + encr_data_len;
} else {
passthrough_len = 16 + aad_len;
auth_offset = passthrough_len + iv_len;
auth_data_len = aad_len;
}
} else {
encr_offset += iv_len;
auth_offset += iv_len;
}
/* Encryption */
opcode.s.major = CPT_MAJOR_OP_FC;
opcode.s.minor = 0;
auth_dlen = auth_offset + auth_data_len;
enc_dlen = encr_data_len + encr_offset;
if (unlikely(encr_data_len & 0xf)) {
if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
enc_dlen = ROUNDUP8(encr_data_len) + encr_offset;
else if (likely((cipher_type == AES_CBC) ||
(cipher_type == AES_ECB)))
enc_dlen = ROUNDUP16(encr_data_len) + encr_offset;
}
if (unlikely(hash_type == GMAC_TYPE)) {
encr_offset = auth_dlen;
enc_dlen = 0;
}
if (unlikely(auth_dlen > enc_dlen)) {
inputlen = auth_dlen;
outputlen = auth_dlen + mac_len;
} else {
inputlen = enc_dlen;
outputlen = enc_dlen + mac_len;
}
/* GP op header */
vq_cmd_w0.u64 = 0;
vq_cmd_w0.s.param1 = encr_data_len;
vq_cmd_w0.s.param2 = auth_data_len;
/*
* In 83XX since we have a limitation of
* IV & Offset control word not part of instruction
* and need to be part of Data Buffer, we check if
* head room is there and then only do the Direct mode processing
*/
if (likely((flags & SINGLE_BUF_INPLACE) &&
(flags & SINGLE_BUF_HEADTAILROOM))) {
void *dm_vaddr = fc_params->bufs[0].vaddr;
uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
/*
* This flag indicates that there is 24 bytes head room and
* 8 bytes tail room available, so that we get to do
* DIRECT MODE with limitation
*/
offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
/* DPTR */
req->ist.ei1 = offset_dma;
/* RPTR should just exclude offset control word */
req->ist.ei2 = dm_dma_addr - iv_len;
req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
+ outputlen - iv_len);
vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
vq_cmd_w0.s.opcode = opcode.flags;
if (likely(iv_len)) {
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
+ OFF_CTRL_LEN);
uint64_t *src = fc_params->iv_buf;
dest[0] = src[0];
dest[1] = src[1];
}
*(uint64_t *)offset_vaddr =
rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
((uint64_t)iv_offset << 8) |
((uint64_t)auth_offset));
} else {
uint32_t i, g_size_bytes, s_size_bytes;
uint64_t dptr_dma, rptr_dma;
sg_comp_t *gather_comp;
sg_comp_t *scatter_comp;
uint8_t *in_buffer;
/* This falls under strict SG mode */
offset_vaddr = m_vaddr;
offset_dma = m_dma;
size = OFF_CTRL_LEN + iv_len;
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
opcode.s.major |= CPT_DMA_MODE;
vq_cmd_w0.s.opcode = opcode.flags;
if (likely(iv_len)) {
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
+ OFF_CTRL_LEN);
uint64_t *src = fc_params->iv_buf;
dest[0] = src[0];
dest[1] = src[1];
}
*(uint64_t *)offset_vaddr =
rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
((uint64_t)iv_offset << 8) |
((uint64_t)auth_offset));
/* DPTR has SG list */
in_buffer = m_vaddr;
dptr_dma = m_dma;
((uint16_t *)in_buffer)[0] = 0;
((uint16_t *)in_buffer)[1] = 0;
/* TODO Add error check if space will be sufficient */
gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
/*
* Input Gather List
*/
i = 0;
/* Offset control word that includes iv */
i = fill_sg_comp(gather_comp, i, offset_dma,
OFF_CTRL_LEN + iv_len);
/* Add input data */
size = inputlen - iv_len;
if (likely(size)) {
uint32_t aad_offset = aad_len ? passthrough_len : 0;
if (unlikely(flags & SINGLE_BUF_INPLACE)) {
i = fill_sg_comp_from_buf_min(gather_comp, i,
fc_params->bufs,
&size);
} else {
i = fill_sg_comp_from_iov(gather_comp, i,
fc_params->src_iov,
0, &size,
aad_buf, aad_offset);
}
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
/*
* Output Scatter list
*/
i = 0;
scatter_comp =
(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
/* Add IV */
if (likely(iv_len)) {
i = fill_sg_comp(scatter_comp, i,
offset_dma + OFF_CTRL_LEN,
iv_len);
}
/* output data or output data + digest*/
if (unlikely(flags & VALID_MAC_BUF)) {
size = outputlen - iv_len - mac_len;
if (size) {
uint32_t aad_offset =
aad_len ? passthrough_len : 0;
if (unlikely(flags & SINGLE_BUF_INPLACE)) {
i = fill_sg_comp_from_buf_min(
scatter_comp,
i,
fc_params->bufs,
&size);
} else {
i = fill_sg_comp_from_iov(scatter_comp,
i,
fc_params->dst_iov,
0,
&size,
aad_buf,
aad_offset);
}
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer"
" space, size %d needed",
size);
return;
}
}
/* mac_data */
if (mac_len) {
i = fill_sg_comp_from_buf(scatter_comp, i,
&fc_params->mac_buf);
}
} else {
/* Output including mac */
size = outputlen - iv_len;
if (likely(size)) {
uint32_t aad_offset =
aad_len ? passthrough_len : 0;
if (unlikely(flags & SINGLE_BUF_INPLACE)) {
i = fill_sg_comp_from_buf_min(
scatter_comp,
i,
fc_params->bufs,
&size);
} else {
i = fill_sg_comp_from_iov(scatter_comp,
i,
fc_params->dst_iov,
0,
&size,
aad_buf,
aad_offset);
}
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer"
" space, size %d needed",
size);
return;
}
}
}
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
/* This is DPTR len incase of SG mode */
vq_cmd_w0.s.dlen = size;
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* cpt alternate completion address saved earlier */
req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
rptr_dma = c_dma - 8;
req->ist.ei1 = dptr_dma;
req->ist.ei2 = rptr_dma;
}
ctx_dma = fc_params->ctx_buf.dma_addr +
offsetof(struct cpt_ctx, fctx);
/* vq command w3 */
vq_cmd_w3.u64 = 0;
vq_cmd_w3.s.grp = 0;
vq_cmd_w3.s.cptr = ctx_dma;
/* 16 byte aligned cpt res address */
req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
*req->completion_addr = COMPLETION_CODE_INIT;
req->comp_baddr = c_dma;
/* Fill microcode part of instruction */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei3 = vq_cmd_w3.u64;
req->op = op;
*prep_req = req;
return;
}
static __rte_always_inline void
cpt_dec_hmac_prep(uint32_t flags,
uint64_t d_offs,
uint64_t d_lens,
fc_params_t *fc_params,
void *op,
void **prep_req)
{
uint32_t iv_offset = 0, size;
int32_t inputlen, outputlen, enc_dlen, auth_dlen;
struct cpt_ctx *cpt_ctx;
int32_t hash_type, mac_len;
uint8_t iv_len = 16;
struct cpt_request_info *req;
buf_ptr_t *meta_p, *aad_buf = NULL;
uint32_t encr_offset, auth_offset;
uint32_t encr_data_len, auth_data_len, aad_len = 0;
uint32_t passthrough_len = 0;
void *m_vaddr, *offset_vaddr;
uint64_t m_dma, offset_dma, ctx_dma;
opcode_info_t opcode;
vq_cmd_word0_t vq_cmd_w0;
vq_cmd_word3_t vq_cmd_w3;
void *c_vaddr;
uint64_t c_dma;
meta_p = &fc_params->meta_buf;
m_vaddr = meta_p->vaddr;
m_dma = meta_p->dma_addr;
encr_offset = ENCR_OFFSET(d_offs);
auth_offset = AUTH_OFFSET(d_offs);
encr_data_len = ENCR_DLEN(d_lens);
auth_data_len = AUTH_DLEN(d_lens);
if (unlikely(flags & VALID_AAD_BUF)) {
/*
* We dont support both aad
* and auth data separately
*/
auth_data_len = 0;
auth_offset = 0;
aad_len = fc_params->aad_buf.size;
aad_buf = &fc_params->aad_buf;
}
cpt_ctx = fc_params->ctx_buf.vaddr;
hash_type = cpt_ctx->hash_type;
mac_len = cpt_ctx->mac_len;
if (hash_type == GMAC_TYPE)
encr_data_len = 0;
if (unlikely(!(flags & VALID_IV_BUF))) {
iv_len = 0;
iv_offset = ENCR_IV_OFFSET(d_offs);
}
if (unlikely(flags & VALID_AAD_BUF)) {
/*
* When AAD is given, data above encr_offset is pass through
* Since AAD is given as separate pointer and not as offset,
* this is a special case as we need to fragment input data
* into passthrough + encr_data and then insert AAD in between.
*/
if (hash_type != GMAC_TYPE) {
passthrough_len = encr_offset;
auth_offset = passthrough_len + iv_len;
encr_offset = passthrough_len + aad_len + iv_len;
auth_data_len = aad_len + encr_data_len;
} else {
passthrough_len = 16 + aad_len;
auth_offset = passthrough_len + iv_len;
auth_data_len = aad_len;
}
} else {
encr_offset += iv_len;
auth_offset += iv_len;
}
/*
* Save initial space that followed app data for completion code &
* alternate completion code to fall in same cache line as app data
*/
m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
m_dma += COMPLETION_CODE_SIZE;
size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
(uint8_t *)m_vaddr;
c_vaddr = (uint8_t *)m_vaddr + size;
c_dma = m_dma + size;
size += sizeof(cpt_res_s_t);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* start cpt request info structure at 8 byte alignment */
size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
(uint8_t *)m_vaddr;
req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
size += sizeof(struct cpt_request_info);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* Decryption */
opcode.s.major = CPT_MAJOR_OP_FC;
opcode.s.minor = 1;
enc_dlen = encr_offset + encr_data_len;
auth_dlen = auth_offset + auth_data_len;
if (auth_dlen > enc_dlen) {
inputlen = auth_dlen + mac_len;
outputlen = auth_dlen;
} else {
inputlen = enc_dlen + mac_len;
outputlen = enc_dlen;
}
if (hash_type == GMAC_TYPE)
encr_offset = inputlen;
vq_cmd_w0.u64 = 0;
vq_cmd_w0.s.param1 = encr_data_len;
vq_cmd_w0.s.param2 = auth_data_len;
/*
* In 83XX since we have a limitation of
* IV & Offset control word not part of instruction
* and need to be part of Data Buffer, we check if
* head room is there and then only do the Direct mode processing
*/
if (likely((flags & SINGLE_BUF_INPLACE) &&
(flags & SINGLE_BUF_HEADTAILROOM))) {
void *dm_vaddr = fc_params->bufs[0].vaddr;
uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
/*
* This flag indicates that there is 24 bytes head room and
* 8 bytes tail room available, so that we get to do
* DIRECT MODE with limitation
*/
offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
req->ist.ei1 = offset_dma;
/* RPTR should just exclude offset control word */
req->ist.ei2 = dm_dma_addr - iv_len;
req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
outputlen - iv_len);
/* since this is decryption,
* don't touch the content of
* alternate ccode space as it contains
* hmac.
*/
vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
vq_cmd_w0.s.opcode = opcode.flags;
if (likely(iv_len)) {
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
OFF_CTRL_LEN);
uint64_t *src = fc_params->iv_buf;
dest[0] = src[0];
dest[1] = src[1];
}
*(uint64_t *)offset_vaddr =
rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
((uint64_t)iv_offset << 8) |
((uint64_t)auth_offset));
} else {
uint64_t dptr_dma, rptr_dma;
uint32_t g_size_bytes, s_size_bytes;
sg_comp_t *gather_comp;
sg_comp_t *scatter_comp;
uint8_t *in_buffer;
uint8_t i = 0;
/* This falls under strict SG mode */
offset_vaddr = m_vaddr;
offset_dma = m_dma;
size = OFF_CTRL_LEN + iv_len;
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
opcode.s.major |= CPT_DMA_MODE;
vq_cmd_w0.s.opcode = opcode.flags;
if (likely(iv_len)) {
uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
OFF_CTRL_LEN);
uint64_t *src = fc_params->iv_buf;
dest[0] = src[0];
dest[1] = src[1];
}
*(uint64_t *)offset_vaddr =
rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
((uint64_t)iv_offset << 8) |
((uint64_t)auth_offset));
/* DPTR has SG list */
in_buffer = m_vaddr;
dptr_dma = m_dma;
((uint16_t *)in_buffer)[0] = 0;
((uint16_t *)in_buffer)[1] = 0;
/* TODO Add error check if space will be sufficient */
gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
/*
* Input Gather List
*/
i = 0;
/* Offset control word that includes iv */
i = fill_sg_comp(gather_comp, i, offset_dma,
OFF_CTRL_LEN + iv_len);
/* Add input data */
if (flags & VALID_MAC_BUF) {
size = inputlen - iv_len - mac_len;
if (size) {
/* input data only */
if (unlikely(flags & SINGLE_BUF_INPLACE)) {
i = fill_sg_comp_from_buf_min(
gather_comp, i,
fc_params->bufs,
&size);
} else {
uint32_t aad_offset = aad_len ?
passthrough_len : 0;
i = fill_sg_comp_from_iov(gather_comp,
i,
fc_params->src_iov,
0, &size,
aad_buf,
aad_offset);
}
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer"
" space, size %d needed",
size);
return;
}
}
/* mac data */
if (mac_len) {
i = fill_sg_comp_from_buf(gather_comp, i,
&fc_params->mac_buf);
}
} else {
/* input data + mac */
size = inputlen - iv_len;
if (size) {
if (unlikely(flags & SINGLE_BUF_INPLACE)) {
i = fill_sg_comp_from_buf_min(
gather_comp, i,
fc_params->bufs,
&size);
} else {
uint32_t aad_offset = aad_len ?
passthrough_len : 0;
if (unlikely(!fc_params->src_iov)) {
CPT_LOG_DP_ERR("Bad input args");
return;
}
i = fill_sg_comp_from_iov(
gather_comp, i,
fc_params->src_iov,
0, &size,
aad_buf,
aad_offset);
}
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer"
" space, size %d needed",
size);
return;
}
}
}
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
/*
* Output Scatter List
*/
i = 0;
scatter_comp =
(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
/* Add iv */
if (iv_len) {
i = fill_sg_comp(scatter_comp, i,
offset_dma + OFF_CTRL_LEN,
iv_len);
}
/* Add output data */
size = outputlen - iv_len;
if (size) {
if (unlikely(flags & SINGLE_BUF_INPLACE)) {
/* handle single buffer here */
i = fill_sg_comp_from_buf_min(scatter_comp, i,
fc_params->bufs,
&size);
} else {
uint32_t aad_offset = aad_len ?
passthrough_len : 0;
if (unlikely(!fc_params->dst_iov)) {
CPT_LOG_DP_ERR("Bad input args");
return;
}
i = fill_sg_comp_from_iov(scatter_comp, i,
fc_params->dst_iov, 0,
&size, aad_buf,
aad_offset);
}
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
/* This is DPTR len incase of SG mode */
vq_cmd_w0.s.dlen = size;
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* cpt alternate completion address saved earlier */
req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
rptr_dma = c_dma - 8;
size += COMPLETION_CODE_SIZE;
req->ist.ei1 = dptr_dma;
req->ist.ei2 = rptr_dma;
}
ctx_dma = fc_params->ctx_buf.dma_addr +
offsetof(struct cpt_ctx, fctx);
/* vq command w3 */
vq_cmd_w3.u64 = 0;
vq_cmd_w3.s.grp = 0;
vq_cmd_w3.s.cptr = ctx_dma;
/* 16 byte aligned cpt res address */
req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
*req->completion_addr = COMPLETION_CODE_INIT;
req->comp_baddr = c_dma;
/* Fill microcode part of instruction */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei3 = vq_cmd_w3.u64;
req->op = op;
*prep_req = req;
return;
}
static __rte_always_inline void
cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
uint64_t d_offs,
uint64_t d_lens,
fc_params_t *params,
void *op,
void **prep_req)
{
uint32_t size;
int32_t inputlen, outputlen;
struct cpt_ctx *cpt_ctx;
uint32_t mac_len = 0;
uint8_t snow3g, j;
struct cpt_request_info *req;
buf_ptr_t *buf_p;
uint32_t encr_offset = 0, auth_offset = 0;
uint32_t encr_data_len = 0, auth_data_len = 0;
int flags, iv_len = 16;
void *m_vaddr, *c_vaddr;
uint64_t m_dma, c_dma, offset_ctrl;
uint64_t *offset_vaddr, offset_dma;
uint32_t *iv_s, iv[4];
vq_cmd_word0_t vq_cmd_w0;
vq_cmd_word3_t vq_cmd_w3;
opcode_info_t opcode;
buf_p = &params->meta_buf;
m_vaddr = buf_p->vaddr;
m_dma = buf_p->dma_addr;
cpt_ctx = params->ctx_buf.vaddr;
flags = cpt_ctx->zsk_flags;
mac_len = cpt_ctx->mac_len;
snow3g = cpt_ctx->snow3g;
/*
* Save initial space that followed app data for completion code &
* alternate completion code to fall in same cache line as app data
*/
m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
m_dma += COMPLETION_CODE_SIZE;
size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
(uint8_t *)m_vaddr;
c_vaddr = (uint8_t *)m_vaddr + size;
c_dma = m_dma + size;
size += sizeof(cpt_res_s_t);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* Reserve memory for cpt request info */
req = m_vaddr;
size = sizeof(struct cpt_request_info);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
(0 << 3) | (flags & 0x7));
if (flags == 0x1) {
/*
* Microcode expects offsets in bytes
* TODO: Rounding off
*/
auth_data_len = AUTH_DLEN(d_lens);
/* EIA3 or UIA2 */
auth_offset = AUTH_OFFSET(d_offs);
auth_offset = auth_offset / 8;
/* consider iv len */
auth_offset += iv_len;
inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
outputlen = mac_len;
offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
} else {
/* EEA3 or UEA2 */
/*
* Microcode expects offsets in bytes
* TODO: Rounding off
*/
encr_data_len = ENCR_DLEN(d_lens);
encr_offset = ENCR_OFFSET(d_offs);
encr_offset = encr_offset / 8;
/* consider iv len */
encr_offset += iv_len;
inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
outputlen = inputlen;
/* iv offset is 0 */
offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
}
/* IV */
iv_s = (flags == 0x1) ? params->auth_iv_buf :
params->iv_buf;
if (snow3g) {
/*
* DPDK seems to provide it in form of IV3 IV2 IV1 IV0
* and BigEndian, MC needs it as IV0 IV1 IV2 IV3
*/
for (j = 0; j < 4; j++)
iv[j] = iv_s[3 - j];
} else {
/* ZUC doesn't need a swap */
for (j = 0; j < 4; j++)
iv[j] = iv_s[j];
}
/*
* GP op header, lengths are expected in bits.
*/
vq_cmd_w0.u64 = 0;
vq_cmd_w0.s.param1 = encr_data_len;
vq_cmd_w0.s.param2 = auth_data_len;
/*
* In 83XX since we have a limitation of
* IV & Offset control word not part of instruction
* and need to be part of Data Buffer, we check if
* head room is there and then only do the Direct mode processing
*/
if (likely((req_flags & SINGLE_BUF_INPLACE) &&
(req_flags & SINGLE_BUF_HEADTAILROOM))) {
void *dm_vaddr = params->bufs[0].vaddr;
uint64_t dm_dma_addr = params->bufs[0].dma_addr;
/*
* This flag indicates that there is 24 bytes head room and
* 8 bytes tail room available, so that we get to do
* DIRECT MODE with limitation
*/
offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
OFF_CTRL_LEN - iv_len);
offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
/* DPTR */
req->ist.ei1 = offset_dma;
/* RPTR should just exclude offset control word */
req->ist.ei2 = dm_dma_addr - iv_len;
req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
+ outputlen - iv_len);
vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
vq_cmd_w0.s.opcode = opcode.flags;
if (likely(iv_len)) {
uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
+ OFF_CTRL_LEN);
memcpy(iv_d, iv, 16);
}
*offset_vaddr = offset_ctrl;
} else {
uint32_t i, g_size_bytes, s_size_bytes;
uint64_t dptr_dma, rptr_dma;
sg_comp_t *gather_comp;
sg_comp_t *scatter_comp;
uint8_t *in_buffer;
uint32_t *iv_d;
/* save space for iv */
offset_vaddr = m_vaddr;
offset_dma = m_dma;
m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
m_dma += OFF_CTRL_LEN + iv_len;
opcode.s.major |= CPT_DMA_MODE;
vq_cmd_w0.s.opcode = opcode.flags;
/* DPTR has SG list */
in_buffer = m_vaddr;
dptr_dma = m_dma;
((uint16_t *)in_buffer)[0] = 0;
((uint16_t *)in_buffer)[1] = 0;
/* TODO Add error check if space will be sufficient */
gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
/*
* Input Gather List
*/
i = 0;
/* Offset control word followed by iv */
i = fill_sg_comp(gather_comp, i, offset_dma,
OFF_CTRL_LEN + iv_len);
/* iv offset is 0 */
*offset_vaddr = offset_ctrl;
iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
memcpy(iv_d, iv, 16);
/* input data */
size = inputlen - iv_len;
if (size) {
i = fill_sg_comp_from_iov(gather_comp, i,
params->src_iov,
0, &size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
/*
* Output Scatter List
*/
i = 0;
scatter_comp =
(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
if (flags == 0x1) {
/* IV in SLIST only for EEA3 & UEA2 */
iv_len = 0;
}
if (iv_len) {
i = fill_sg_comp(scatter_comp, i,
offset_dma + OFF_CTRL_LEN, iv_len);
}
/* Add output data */
if (req_flags & VALID_MAC_BUF) {
size = outputlen - iv_len - mac_len;
if (size) {
i = fill_sg_comp_from_iov(scatter_comp, i,
params->dst_iov, 0,
&size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
/* mac data */
if (mac_len) {
i = fill_sg_comp_from_buf(scatter_comp, i,
&params->mac_buf);
}
} else {
/* Output including mac */
size = outputlen - iv_len;
if (size) {
i = fill_sg_comp_from_iov(scatter_comp, i,
params->dst_iov, 0,
&size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
}
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
/* This is DPTR len incase of SG mode */
vq_cmd_w0.s.dlen = size;
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* cpt alternate completion address saved earlier */
req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
rptr_dma = c_dma - 8;
req->ist.ei1 = dptr_dma;
req->ist.ei2 = rptr_dma;
}
/* vq command w3 */
vq_cmd_w3.u64 = 0;
vq_cmd_w3.s.grp = 0;
vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
offsetof(struct cpt_ctx, zs_ctx);
/* 16 byte aligned cpt res address */
req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
*req->completion_addr = COMPLETION_CODE_INIT;
req->comp_baddr = c_dma;
/* Fill microcode part of instruction */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei3 = vq_cmd_w3.u64;
req->op = op;
*prep_req = req;
return;
}
static __rte_always_inline void
cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
uint64_t d_offs,
uint64_t d_lens,
fc_params_t *params,
void *op,
void **prep_req)
{
uint32_t size;
int32_t inputlen = 0, outputlen;
struct cpt_ctx *cpt_ctx;
uint8_t snow3g, iv_len = 16;
struct cpt_request_info *req;
buf_ptr_t *buf_p;
uint32_t encr_offset;
uint32_t encr_data_len;
int flags;
void *m_vaddr, *c_vaddr;
uint64_t m_dma, c_dma;
uint64_t *offset_vaddr, offset_dma;
uint32_t *iv_s, iv[4], j;
vq_cmd_word0_t vq_cmd_w0;
vq_cmd_word3_t vq_cmd_w3;
opcode_info_t opcode;
buf_p = &params->meta_buf;
m_vaddr = buf_p->vaddr;
m_dma = buf_p->dma_addr;
/*
* Microcode expects offsets in bytes
* TODO: Rounding off
*/
encr_offset = ENCR_OFFSET(d_offs) / 8;
encr_data_len = ENCR_DLEN(d_lens);
cpt_ctx = params->ctx_buf.vaddr;
flags = cpt_ctx->zsk_flags;
snow3g = cpt_ctx->snow3g;
/*
* Save initial space that followed app data for completion code &
* alternate completion code to fall in same cache line as app data
*/
m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
m_dma += COMPLETION_CODE_SIZE;
size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
(uint8_t *)m_vaddr;
c_vaddr = (uint8_t *)m_vaddr + size;
c_dma = m_dma + size;
size += sizeof(cpt_res_s_t);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* Reserve memory for cpt request info */
req = m_vaddr;
size = sizeof(struct cpt_request_info);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
/* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
opcode.s.minor = ((1 << 7) | (snow3g << 5) | (0 << 4) |
(0 << 3) | (flags & 0x7));
/* consider iv len */
encr_offset += iv_len;
inputlen = encr_offset +
(RTE_ALIGN(encr_data_len, 8) / 8);
outputlen = inputlen;
/* IV */
iv_s = params->iv_buf;
if (snow3g) {
/*
* DPDK seems to provide it in form of IV3 IV2 IV1 IV0
* and BigEndian, MC needs it as IV0 IV1 IV2 IV3
*/
for (j = 0; j < 4; j++)
iv[j] = iv_s[3 - j];
} else {
/* ZUC doesn't need a swap */
for (j = 0; j < 4; j++)
iv[j] = iv_s[j];
}
/*
* GP op header, lengths are expected in bits.
*/
vq_cmd_w0.u64 = 0;
vq_cmd_w0.s.param1 = encr_data_len;
/*
* In 83XX since we have a limitation of
* IV & Offset control word not part of instruction
* and need to be part of Data Buffer, we check if
* head room is there and then only do the Direct mode processing
*/
if (likely((req_flags & SINGLE_BUF_INPLACE) &&
(req_flags & SINGLE_BUF_HEADTAILROOM))) {
void *dm_vaddr = params->bufs[0].vaddr;
uint64_t dm_dma_addr = params->bufs[0].dma_addr;
/*
* This flag indicates that there is 24 bytes head room and
* 8 bytes tail room available, so that we get to do
* DIRECT MODE with limitation
*/
offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
OFF_CTRL_LEN - iv_len);
offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
/* DPTR */
req->ist.ei1 = offset_dma;
/* RPTR should just exclude offset control word */
req->ist.ei2 = dm_dma_addr - iv_len;
req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
+ outputlen - iv_len);
vq_cmd_w0.s.dlen = inputlen + OFF_CTRL_LEN;
vq_cmd_w0.s.opcode = opcode.flags;
if (likely(iv_len)) {
uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
+ OFF_CTRL_LEN);
memcpy(iv_d, iv, 16);
}
/* iv offset is 0 */
*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
} else {
uint32_t i, g_size_bytes, s_size_bytes;
uint64_t dptr_dma, rptr_dma;
sg_comp_t *gather_comp;
sg_comp_t *scatter_comp;
uint8_t *in_buffer;
uint32_t *iv_d;
/* save space for offset and iv... */
offset_vaddr = m_vaddr;
offset_dma = m_dma;
m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
m_dma += OFF_CTRL_LEN + iv_len;
opcode.s.major |= CPT_DMA_MODE;
vq_cmd_w0.s.opcode = opcode.flags;
/* DPTR has SG list */
in_buffer = m_vaddr;
dptr_dma = m_dma;
((uint16_t *)in_buffer)[0] = 0;
((uint16_t *)in_buffer)[1] = 0;
/* TODO Add error check if space will be sufficient */
gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
/*
* Input Gather List
*/
i = 0;
/* Offset control word */
/* iv offset is 0 */
*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
i = fill_sg_comp(gather_comp, i, offset_dma,
OFF_CTRL_LEN + iv_len);
iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
memcpy(iv_d, iv, 16);
/* Add input data */
size = inputlen - iv_len;
if (size) {
i = fill_sg_comp_from_iov(gather_comp, i,
params->src_iov,
0, &size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
/*
* Output Scatter List
*/
i = 0;
scatter_comp =
(sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
/* IV */
i = fill_sg_comp(scatter_comp, i,
offset_dma + OFF_CTRL_LEN,
iv_len);
/* Add output data */
size = outputlen - iv_len;
if (size) {
i = fill_sg_comp_from_iov(scatter_comp, i,
params->dst_iov, 0,
&size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
/* This is DPTR len incase of SG mode */
vq_cmd_w0.s.dlen = size;
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* cpt alternate completion address saved earlier */
req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
rptr_dma = c_dma - 8;
req->ist.ei1 = dptr_dma;
req->ist.ei2 = rptr_dma;
}
/* vq command w3 */
vq_cmd_w3.u64 = 0;
vq_cmd_w3.s.grp = 0;
vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
offsetof(struct cpt_ctx, zs_ctx);
/* 16 byte aligned cpt res address */
req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
*req->completion_addr = COMPLETION_CODE_INIT;
req->comp_baddr = c_dma;
/* Fill microcode part of instruction */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei3 = vq_cmd_w3.u64;
req->op = op;
*prep_req = req;
return;
}
static __rte_always_inline void
cpt_kasumi_enc_prep(uint32_t req_flags,
uint64_t d_offs,
uint64_t d_lens,
fc_params_t *params,
void *op,
void **prep_req)
{
uint32_t size;
int32_t inputlen = 0, outputlen = 0;
struct cpt_ctx *cpt_ctx;
uint32_t mac_len = 0;
uint8_t i = 0;
struct cpt_request_info *req;
buf_ptr_t *buf_p;
uint32_t encr_offset, auth_offset;
uint32_t encr_data_len, auth_data_len;
int flags;
uint8_t *iv_s, *iv_d, iv_len = 8;
uint8_t dir = 0;
void *m_vaddr, *c_vaddr;
uint64_t m_dma, c_dma;
uint64_t *offset_vaddr, offset_dma;
vq_cmd_word0_t vq_cmd_w0;
vq_cmd_word3_t vq_cmd_w3;
opcode_info_t opcode;
uint8_t *in_buffer;
uint32_t g_size_bytes, s_size_bytes;
uint64_t dptr_dma, rptr_dma;
sg_comp_t *gather_comp;
sg_comp_t *scatter_comp;
buf_p = &params->meta_buf;
m_vaddr = buf_p->vaddr;
m_dma = buf_p->dma_addr;
encr_offset = ENCR_OFFSET(d_offs) / 8;
auth_offset = AUTH_OFFSET(d_offs) / 8;
encr_data_len = ENCR_DLEN(d_lens);
auth_data_len = AUTH_DLEN(d_lens);
cpt_ctx = params->ctx_buf.vaddr;
flags = cpt_ctx->zsk_flags;
mac_len = cpt_ctx->mac_len;
if (flags == 0x0)
iv_s = params->iv_buf;
else
iv_s = params->auth_iv_buf;
dir = iv_s[8] & 0x1;
/*
* Save initial space that followed app data for completion code &
* alternate completion code to fall in same cache line as app data
*/
m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
m_dma += COMPLETION_CODE_SIZE;
size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
(uint8_t *)m_vaddr;
c_vaddr = (uint8_t *)m_vaddr + size;
c_dma = m_dma + size;
size += sizeof(cpt_res_s_t);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* Reserve memory for cpt request info */
req = m_vaddr;
size = sizeof(struct cpt_request_info);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
(dir << 4) | (0 << 3) | (flags & 0x7));
/*
* GP op header, lengths are expected in bits.
*/
vq_cmd_w0.u64 = 0;
vq_cmd_w0.s.param1 = encr_data_len;
vq_cmd_w0.s.param2 = auth_data_len;
vq_cmd_w0.s.opcode = opcode.flags;
/* consider iv len */
if (flags == 0x0) {
encr_offset += iv_len;
auth_offset += iv_len;
}
/* save space for offset ctrl and iv */
offset_vaddr = m_vaddr;
offset_dma = m_dma;
m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
m_dma += OFF_CTRL_LEN + iv_len;
/* DPTR has SG list */
in_buffer = m_vaddr;
dptr_dma = m_dma;
((uint16_t *)in_buffer)[0] = 0;
((uint16_t *)in_buffer)[1] = 0;
/* TODO Add error check if space will be sufficient */
gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
/*
* Input Gather List
*/
i = 0;
/* Offset control word followed by iv */
if (flags == 0x0) {
inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
outputlen = inputlen;
/* iv offset is 0 */
*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
} else {
inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
outputlen = mac_len;
/* iv offset is 0 */
*offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
}
i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
/* IV */
iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
memcpy(iv_d, iv_s, iv_len);
/* input data */
size = inputlen - iv_len;
if (size) {
i = fill_sg_comp_from_iov(gather_comp, i,
params->src_iov, 0,
&size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
/*
* Output Scatter List
*/
i = 0;
scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
if (flags == 0x1) {
/* IV in SLIST only for F8 */
iv_len = 0;
}
/* IV */
if (iv_len) {
i = fill_sg_comp(scatter_comp, i,
offset_dma + OFF_CTRL_LEN,
iv_len);
}
/* Add output data */
if (req_flags & VALID_MAC_BUF) {
size = outputlen - iv_len - mac_len;
if (size) {
i = fill_sg_comp_from_iov(scatter_comp, i,
params->dst_iov, 0,
&size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
/* mac data */
if (mac_len) {
i = fill_sg_comp_from_buf(scatter_comp, i,
&params->mac_buf);
}
} else {
/* Output including mac */
size = outputlen - iv_len;
if (size) {
i = fill_sg_comp_from_iov(scatter_comp, i,
params->dst_iov, 0,
&size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
}
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
/* This is DPTR len incase of SG mode */
vq_cmd_w0.s.dlen = size;
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* cpt alternate completion address saved earlier */
req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
rptr_dma = c_dma - 8;
req->ist.ei1 = dptr_dma;
req->ist.ei2 = rptr_dma;
/* vq command w3 */
vq_cmd_w3.u64 = 0;
vq_cmd_w3.s.grp = 0;
vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
offsetof(struct cpt_ctx, k_ctx);
/* 16 byte aligned cpt res address */
req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
*req->completion_addr = COMPLETION_CODE_INIT;
req->comp_baddr = c_dma;
/* Fill microcode part of instruction */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei3 = vq_cmd_w3.u64;
req->op = op;
*prep_req = req;
return;
}
static __rte_always_inline void
cpt_kasumi_dec_prep(uint64_t d_offs,
uint64_t d_lens,
fc_params_t *params,
void *op,
void **prep_req)
{
uint32_t size;
int32_t inputlen = 0, outputlen;
struct cpt_ctx *cpt_ctx;
uint8_t i = 0, iv_len = 8;
struct cpt_request_info *req;
buf_ptr_t *buf_p;
uint32_t encr_offset;
uint32_t encr_data_len;
int flags;
uint8_t dir = 0;
void *m_vaddr, *c_vaddr;
uint64_t m_dma, c_dma;
uint64_t *offset_vaddr, offset_dma;
vq_cmd_word0_t vq_cmd_w0;
vq_cmd_word3_t vq_cmd_w3;
opcode_info_t opcode;
uint8_t *in_buffer;
uint32_t g_size_bytes, s_size_bytes;
uint64_t dptr_dma, rptr_dma;
sg_comp_t *gather_comp;
sg_comp_t *scatter_comp;
buf_p = &params->meta_buf;
m_vaddr = buf_p->vaddr;
m_dma = buf_p->dma_addr;
encr_offset = ENCR_OFFSET(d_offs) / 8;
encr_data_len = ENCR_DLEN(d_lens);
cpt_ctx = params->ctx_buf.vaddr;
flags = cpt_ctx->zsk_flags;
/*
* Save initial space that followed app data for completion code &
* alternate completion code to fall in same cache line as app data
*/
m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
m_dma += COMPLETION_CODE_SIZE;
size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
(uint8_t *)m_vaddr;
c_vaddr = (uint8_t *)m_vaddr + size;
c_dma = m_dma + size;
size += sizeof(cpt_res_s_t);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* Reserve memory for cpt request info */
req = m_vaddr;
size = sizeof(struct cpt_request_info);
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
/* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
(dir << 4) | (0 << 3) | (flags & 0x7));
/*
* GP op header, lengths are expected in bits.
*/
vq_cmd_w0.u64 = 0;
vq_cmd_w0.s.param1 = encr_data_len;
vq_cmd_w0.s.opcode = opcode.flags;
/* consider iv len */
encr_offset += iv_len;
inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
outputlen = inputlen;
/* save space for offset ctrl & iv */
offset_vaddr = m_vaddr;
offset_dma = m_dma;
m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
m_dma += OFF_CTRL_LEN + iv_len;
/* DPTR has SG list */
in_buffer = m_vaddr;
dptr_dma = m_dma;
((uint16_t *)in_buffer)[0] = 0;
((uint16_t *)in_buffer)[1] = 0;
/* TODO Add error check if space will be sufficient */
gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
/*
* Input Gather List
*/
i = 0;
/* Offset control word followed by iv */
*offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
/* IV */
memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
params->iv_buf, iv_len);
/* Add input data */
size = inputlen - iv_len;
if (size) {
i = fill_sg_comp_from_iov(gather_comp, i,
params->src_iov,
0, &size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
/*
* Output Scatter List
*/
i = 0;
scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
/* IV */
i = fill_sg_comp(scatter_comp, i,
offset_dma + OFF_CTRL_LEN,
iv_len);
/* Add output data */
size = outputlen - iv_len;
if (size) {
i = fill_sg_comp_from_iov(scatter_comp, i,
params->dst_iov, 0,
&size, NULL, 0);
if (unlikely(size)) {
CPT_LOG_DP_ERR("Insufficient buffer space,"
" size %d needed", size);
return;
}
}
((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
/* This is DPTR len incase of SG mode */
vq_cmd_w0.s.dlen = size;
m_vaddr = (uint8_t *)m_vaddr + size;
m_dma += size;
/* cpt alternate completion address saved earlier */
req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
*req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
rptr_dma = c_dma - 8;
req->ist.ei1 = dptr_dma;
req->ist.ei2 = rptr_dma;
/* vq command w3 */
vq_cmd_w3.u64 = 0;
vq_cmd_w3.s.grp = 0;
vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
offsetof(struct cpt_ctx, k_ctx);
/* 16 byte aligned cpt res address */
req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
*req->completion_addr = COMPLETION_CODE_INIT;
req->comp_baddr = c_dma;
/* Fill microcode part of instruction */
req->ist.ei0 = vq_cmd_w0.u64;
req->ist.ei3 = vq_cmd_w3.u64;
req->op = op;
*prep_req = req;
return;
}
static __rte_always_inline void *
cpt_fc_dec_hmac_prep(uint32_t flags,
uint64_t d_offs,
uint64_t d_lens,
fc_params_t *fc_params,
void *op)
{
struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
uint8_t fc_type;
void *prep_req = NULL;
fc_type = ctx->fc_type;
if (likely(fc_type == FC_GEN)) {
cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op,
&prep_req);
} else if (fc_type == ZUC_SNOW3G) {
cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op,
&prep_req);
} else if (fc_type == KASUMI) {
cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req);
}
/*
* For AUTH_ONLY case,
* MC only supports digest generation and verification
* should be done in software by memcmp()
*/
return prep_req;
}
static __rte_always_inline void *__hot
cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
fc_params_t *fc_params, void *op)
{
struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
uint8_t fc_type;
void *prep_req = NULL;
fc_type = ctx->fc_type;
/* Common api for rest of the ops */
if (likely(fc_type == FC_GEN)) {
cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op,
&prep_req);
} else if (fc_type == ZUC_SNOW3G) {
cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op,
&prep_req);
} else if (fc_type == KASUMI) {
cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op,
&prep_req);
} else if (fc_type == HASH_HMAC) {
cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req);
}
return prep_req;
}
static __rte_always_inline int
cpt_fc_auth_set_key(void *ctx, auth_type_t type, const uint8_t *key,
uint16_t key_len, uint16_t mac_len)
{
struct cpt_ctx *cpt_ctx = ctx;
mc_fc_context_t *fctx = &cpt_ctx->fctx;
uint64_t *ctrl_flags = NULL;
if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
uint32_t keyx[4];
if (key_len != 16)
return -1;
/* No support for AEAD yet */
if (cpt_ctx->enc_cipher)
return -1;
/* For ZUC/SNOW3G/Kasumi */
switch (type) {
case SNOW3G_UIA2:
cpt_ctx->snow3g = 1;
gen_key_snow3g(key, keyx);
memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
cpt_ctx->fc_type = ZUC_SNOW3G;
cpt_ctx->zsk_flags = 0x1;
break;
case ZUC_EIA3:
cpt_ctx->snow3g = 0;
memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
cpt_ctx->fc_type = ZUC_SNOW3G;
cpt_ctx->zsk_flags = 0x1;
break;
case KASUMI_F9_ECB:
/* Kasumi ECB mode */
cpt_ctx->k_ecb = 1;
memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
cpt_ctx->fc_type = KASUMI;
cpt_ctx->zsk_flags = 0x1;
break;
case KASUMI_F9_CBC:
memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
cpt_ctx->fc_type = KASUMI;
cpt_ctx->zsk_flags = 0x1;
break;
default:
return -1;
}
cpt_ctx->mac_len = 4;
cpt_ctx->hash_type = type;
return 0;
}
if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
cpt_ctx->fc_type = HASH_HMAC;
}
ctrl_flags = (uint64_t *)&fctx->enc.enc_ctrl.flags;
*ctrl_flags = rte_be_to_cpu_64(*ctrl_flags);
/* For GMAC auth, cipher must be NULL */
if (type == GMAC_TYPE)
CPT_P_ENC_CTRL(fctx).enc_cipher = 0;
CPT_P_ENC_CTRL(fctx).hash_type = cpt_ctx->hash_type = type;
CPT_P_ENC_CTRL(fctx).mac_len = cpt_ctx->mac_len = mac_len;
if (key_len) {
cpt_ctx->hmac = 1;
memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key));
memcpy(cpt_ctx->auth_key, key, key_len);
cpt_ctx->auth_key_len = key_len;
memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
memcpy(fctx->hmac.opad, key, key_len);
CPT_P_ENC_CTRL(fctx).auth_input_type = 1;
}
*ctrl_flags = rte_cpu_to_be_64(*ctrl_flags);
return 0;
}
static __rte_always_inline int
fill_sess_aead(struct rte_crypto_sym_xform *xform,
struct cpt_sess_misc *sess)
{
struct rte_crypto_aead_xform *aead_form;
cipher_type_t enc_type = 0; /* NULL Cipher type */
auth_type_t auth_type = 0; /* NULL Auth type */
uint32_t cipher_key_len = 0;
uint8_t aes_gcm = 0;
aead_form = &xform->aead;
void *ctx = SESS_PRIV(sess);
if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT &&
aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
sess->cpt_op |= CPT_OP_AUTH_GENERATE;
} else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT &&
aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
sess->cpt_op |= CPT_OP_AUTH_VERIFY;
} else {
CPT_LOG_DP_ERR("Unknown cipher operation\n");
return -1;
}
switch (aead_form->algo) {
case RTE_CRYPTO_AEAD_AES_GCM:
enc_type = AES_GCM;
cipher_key_len = 16;
aes_gcm = 1;
break;
case RTE_CRYPTO_AEAD_AES_CCM:
CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
aead_form->algo);
return -1;
default:
CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
aead_form->algo);
return -1;
}
if (aead_form->key.length < cipher_key_len) {
CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
(unsigned int long)aead_form->key.length);
return -1;
}
sess->zsk_flag = 0;
sess->aes_gcm = aes_gcm;
sess->mac_len = aead_form->digest_length;
sess->iv_offset = aead_form->iv.offset;
sess->iv_length = aead_form->iv.length;
sess->aad_length = aead_form->aad_length;
cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
aead_form->key.length, NULL);
cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, aead_form->digest_length);
return 0;
}
static __rte_always_inline int
fill_sess_cipher(struct rte_crypto_sym_xform *xform,
struct cpt_sess_misc *sess)
{
struct rte_crypto_cipher_xform *c_form;
cipher_type_t enc_type = 0; /* NULL Cipher type */
uint32_t cipher_key_len = 0;
uint8_t zsk_flag = 0, aes_ctr = 0, is_null = 0;
c_form = &xform->cipher;
if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT)
sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
else {
CPT_LOG_DP_ERR("Unknown cipher operation\n");
return -1;
}
switch (c_form->algo) {
case RTE_CRYPTO_CIPHER_AES_CBC:
enc_type = AES_CBC;
cipher_key_len = 16;
break;
case RTE_CRYPTO_CIPHER_3DES_CBC:
enc_type = DES3_CBC;
cipher_key_len = 24;
break;
case RTE_CRYPTO_CIPHER_DES_CBC:
/* DES is implemented using 3DES in hardware */
enc_type = DES3_CBC;
cipher_key_len = 8;
break;
case RTE_CRYPTO_CIPHER_AES_CTR:
enc_type = AES_CTR;
cipher_key_len = 16;
aes_ctr = 1;
break;
case RTE_CRYPTO_CIPHER_NULL:
enc_type = 0;
is_null = 1;
break;
case RTE_CRYPTO_CIPHER_KASUMI_F8:
enc_type = KASUMI_F8_ECB;
cipher_key_len = 16;
zsk_flag = K_F8;
break;
case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
enc_type = SNOW3G_UEA2;
cipher_key_len = 16;
zsk_flag = ZS_EA;
break;
case RTE_CRYPTO_CIPHER_ZUC_EEA3:
enc_type = ZUC_EEA3;
cipher_key_len = 16;
zsk_flag = ZS_EA;
break;
case RTE_CRYPTO_CIPHER_AES_XTS:
enc_type = AES_XTS;
cipher_key_len = 16;
break;
case RTE_CRYPTO_CIPHER_3DES_ECB:
enc_type = DES3_ECB;
cipher_key_len = 24;
break;
case RTE_CRYPTO_CIPHER_AES_ECB:
enc_type = AES_ECB;
cipher_key_len = 16;
break;
case RTE_CRYPTO_CIPHER_3DES_CTR:
case RTE_CRYPTO_CIPHER_AES_F8:
case RTE_CRYPTO_CIPHER_ARC4:
CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
c_form->algo);
return -1;
default:
CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
c_form->algo);
return -1;
}
if (c_form->key.length < cipher_key_len) {
CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
(unsigned long) c_form->key.length);
return -1;
}
sess->zsk_flag = zsk_flag;
sess->aes_gcm = 0;
sess->aes_ctr = aes_ctr;
sess->iv_offset = c_form->iv.offset;
sess->iv_length = c_form->iv.length;
sess->is_null = is_null;
cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type, c_form->key.data,
c_form->key.length, NULL);
return 0;
}
static __rte_always_inline int
fill_sess_auth(struct rte_crypto_sym_xform *xform,
struct cpt_sess_misc *sess)
{
struct rte_crypto_auth_xform *a_form;
auth_type_t auth_type = 0; /* NULL Auth type */
uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
a_form = &xform->auth;
if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
sess->cpt_op |= CPT_OP_AUTH_VERIFY;
else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
sess->cpt_op |= CPT_OP_AUTH_GENERATE;
else {
CPT_LOG_DP_ERR("Unknown auth operation");
return -1;
}
if (a_form->key.length > 64) {
CPT_LOG_DP_ERR("Auth key length is big");
return -1;
}
switch (a_form->algo) {
case RTE_CRYPTO_AUTH_SHA1_HMAC:
/* Fall through */
case RTE_CRYPTO_AUTH_SHA1:
auth_type = SHA1_TYPE;
break;
case RTE_CRYPTO_AUTH_SHA256_HMAC:
case RTE_CRYPTO_AUTH_SHA256:
auth_type = SHA2_SHA256;
break;
case RTE_CRYPTO_AUTH_SHA512_HMAC:
case RTE_CRYPTO_AUTH_SHA512:
auth_type = SHA2_SHA512;
break;
case RTE_CRYPTO_AUTH_AES_GMAC:
auth_type = GMAC_TYPE;
aes_gcm = 1;
break;
case RTE_CRYPTO_AUTH_SHA224_HMAC:
case RTE_CRYPTO_AUTH_SHA224:
auth_type = SHA2_SHA224;
break;
case RTE_CRYPTO_AUTH_SHA384_HMAC:
case RTE_CRYPTO_AUTH_SHA384:
auth_type = SHA2_SHA384;
break;
case RTE_CRYPTO_AUTH_MD5_HMAC:
case RTE_CRYPTO_AUTH_MD5:
auth_type = MD5_TYPE;
break;
case RTE_CRYPTO_AUTH_KASUMI_F9:
auth_type = KASUMI_F9_ECB;
/*
* Indicate that direction needs to be taken out
* from end of src
*/
zsk_flag = K_F9;
break;
case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
auth_type = SNOW3G_UIA2;
zsk_flag = ZS_IA;
break;
case RTE_CRYPTO_AUTH_ZUC_EIA3:
auth_type = ZUC_EIA3;
zsk_flag = ZS_IA;
break;
case RTE_CRYPTO_AUTH_NULL:
auth_type = 0;
is_null = 1;
break;
case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
case RTE_CRYPTO_AUTH_AES_CMAC:
case RTE_CRYPTO_AUTH_AES_CBC_MAC:
CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
a_form->algo);
return -1;
default:
CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
a_form->algo);
return -1;
}
sess->zsk_flag = zsk_flag;
sess->aes_gcm = aes_gcm;
sess->mac_len = a_form->digest_length;
sess->is_null = is_null;
if (zsk_flag) {
sess->auth_iv_offset = a_form->iv.offset;
sess->auth_iv_length = a_form->iv.length;
}
cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type, a_form->key.data,
a_form->key.length, a_form->digest_length);
return 0;
}
static __rte_always_inline int
fill_sess_gmac(struct rte_crypto_sym_xform *xform,
struct cpt_sess_misc *sess)
{
struct rte_crypto_auth_xform *a_form;
cipher_type_t enc_type = 0; /* NULL Cipher type */
auth_type_t auth_type = 0; /* NULL Auth type */
void *ctx = SESS_PRIV(sess);
a_form = &xform->auth;
if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
sess->cpt_op |= CPT_OP_ENCODE;
else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
sess->cpt_op |= CPT_OP_DECODE;
else {
CPT_LOG_DP_ERR("Unknown auth operation");
return -1;
}
switch (a_form->algo) {
case RTE_CRYPTO_AUTH_AES_GMAC:
enc_type = AES_GCM;
auth_type = GMAC_TYPE;
break;
default:
CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
a_form->algo);
return -1;
}
sess->zsk_flag = 0;
sess->aes_gcm = 0;
sess->is_gmac = 1;
sess->iv_offset = a_form->iv.offset;
sess->iv_length = a_form->iv.length;
sess->mac_len = a_form->digest_length;
cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
a_form->key.length, NULL);
cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, a_form->digest_length);
return 0;
}
static __rte_always_inline void *
alloc_op_meta(struct rte_mbuf *m_src,
buf_ptr_t *buf,
int32_t len,
struct rte_mempool *cpt_meta_pool)
{
uint8_t *mdata;
#ifndef CPT_ALWAYS_USE_SEPARATE_BUF
if (likely(m_src && (m_src->nb_segs == 1))) {
int32_t tailroom;
phys_addr_t mphys;
/* Check if tailroom is sufficient to hold meta data */
tailroom = rte_pktmbuf_tailroom(m_src);
if (likely(tailroom > len + 8)) {
mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
mphys = m_src->buf_physaddr + m_src->buf_len;
mdata -= len;
mphys -= len;
buf->vaddr = mdata;
buf->dma_addr = mphys;
buf->size = len;
/* Indicate that this is a mbuf allocated mdata */
mdata = (uint8_t *)((uint64_t)mdata | 1ull);
return mdata;
}
}
#else
RTE_SET_USED(m_src);
#endif
if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
return NULL;
buf->vaddr = mdata;
buf->dma_addr = rte_mempool_virt2iova(mdata);
buf->size = len;
return mdata;
}
/**
* cpt_free_metabuf - free metabuf to mempool.
* @param instance: pointer to instance.
* @param objp: pointer to the metabuf.
*/
static __rte_always_inline void
free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
{
bool nofree = ((uintptr_t)mdata & 1ull);
if (likely(nofree))
return;
rte_mempool_put(cpt_meta_pool, mdata);
}
static __rte_always_inline uint32_t
prepare_iov_from_pkt(struct rte_mbuf *pkt,
iov_ptr_t *iovec, uint32_t start_offset)
{
uint16_t index = 0;
void *seg_data = NULL;
phys_addr_t seg_phys;
int32_t seg_size = 0;
if (!pkt) {
iovec->buf_cnt = 0;
return 0;
}
if (!start_offset) {
seg_data = rte_pktmbuf_mtod(pkt, void *);
seg_phys = rte_pktmbuf_mtophys(pkt);
seg_size = pkt->data_len;
} else {
while (start_offset >= pkt->data_len) {
start_offset -= pkt->data_len;
pkt = pkt->next;
}
seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
seg_phys = rte_pktmbuf_mtophys_offset(pkt, start_offset);
seg_size = pkt->data_len - start_offset;
if (!seg_size)
return 1;
}
/* first seg */
iovec->bufs[index].vaddr = seg_data;
iovec->bufs[index].dma_addr = seg_phys;
iovec->bufs[index].size = seg_size;
index++;
pkt = pkt->next;
while (unlikely(pkt != NULL)) {
seg_data = rte_pktmbuf_mtod(pkt, void *);
seg_phys = rte_pktmbuf_mtophys(pkt);
seg_size = pkt->data_len;
if (!seg_size)
break;
iovec->bufs[index].vaddr = seg_data;
iovec->bufs[index].dma_addr = seg_phys;
iovec->bufs[index].size = seg_size;
index++;
pkt = pkt->next;
}
iovec->buf_cnt = index;
return 0;
}
static __rte_always_inline uint32_t
prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
fc_params_t *param,
uint32_t *flags)
{
uint16_t index = 0;
void *seg_data = NULL;
phys_addr_t seg_phys;
uint32_t seg_size = 0;
iov_ptr_t *iovec;
seg_data = rte_pktmbuf_mtod(pkt, void *);
seg_phys = rte_pktmbuf_mtophys(pkt);
seg_size = pkt->data_len;
/* first seg */
if (likely(!pkt->next)) {
uint32_t headroom, tailroom;
*flags |= SINGLE_BUF_INPLACE;
headroom = rte_pktmbuf_headroom(pkt);
tailroom = rte_pktmbuf_tailroom(pkt);
if (likely((headroom >= 24) &&
(tailroom >= 8))) {
/* In 83XX this is prerequivisit for Direct mode */
*flags |= SINGLE_BUF_HEADTAILROOM;
}
param->bufs[0].vaddr = seg_data;
param->bufs[0].dma_addr = seg_phys;
param->bufs[0].size = seg_size;
return 0;
}
iovec = param->src_iov;
iovec->bufs[index].vaddr = seg_data;
iovec->bufs[index].dma_addr = seg_phys;
iovec->bufs[index].size = seg_size;
index++;
pkt = pkt->next;
while (unlikely(pkt != NULL)) {
seg_data = rte_pktmbuf_mtod(pkt, void *);
seg_phys = rte_pktmbuf_mtophys(pkt);
seg_size = pkt->data_len;
if (!seg_size)
break;
iovec->bufs[index].vaddr = seg_data;
iovec->bufs[index].dma_addr = seg_phys;
iovec->bufs[index].size = seg_size;
index++;
pkt = pkt->next;
}
iovec->buf_cnt = index;
return 0;
}
static __rte_always_inline int
fill_fc_params(struct rte_crypto_op *cop,
struct cpt_sess_misc *sess_misc,
struct cpt_qp_meta_info *m_info,
void **mdata_ptr,
void **prep_req)
{
uint32_t space = 0;
struct rte_crypto_sym_op *sym_op = cop->sym;
void *mdata = NULL;
uintptr_t *op;
uint32_t mc_hash_off;
uint32_t flags = 0;
uint64_t d_offs, d_lens;
struct rte_mbuf *m_src, *m_dst;
uint8_t cpt_op = sess_misc->cpt_op;
#ifdef CPT_ALWAYS_USE_SG_MODE
uint8_t inplace = 0;
#else
uint8_t inplace = 1;
#endif
fc_params_t fc_params;
char src[SRC_IOV_SIZE];
char dst[SRC_IOV_SIZE];
uint32_t iv_buf[4];
int ret;
if (likely(sess_misc->iv_length)) {
flags |= VALID_IV_BUF;
fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
uint8_t *, sess_misc->iv_offset);
if (sess_misc->aes_ctr &&
unlikely(sess_misc->iv_length != 16)) {
memcpy((uint8_t *)iv_buf,
rte_crypto_op_ctod_offset(cop,
uint8_t *, sess_misc->iv_offset), 12);
iv_buf[3] = rte_cpu_to_be_32(0x1);
fc_params.iv_buf = iv_buf;
}
}
if (sess_misc->zsk_flag) {
fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
uint8_t *,
sess_misc->auth_iv_offset);
if (sess_misc->zsk_flag != ZS_EA)
inplace = 0;
}
m_src = sym_op->m_src;
m_dst = sym_op->m_dst;
if (sess_misc->aes_gcm) {
uint8_t *salt;
uint8_t *aad_data;
uint16_t aad_len;
d_offs = sym_op->aead.data.offset;
d_lens = sym_op->aead.data.length;
mc_hash_off = sym_op->aead.data.offset +
sym_op->aead.data.length;
aad_data = sym_op->aead.aad.data;
aad_len = sess_misc->aad_length;
if (likely((aad_data + aad_len) ==
rte_pktmbuf_mtod_offset(m_src,
uint8_t *,
sym_op->aead.data.offset))) {
d_offs = (d_offs - aad_len) | (d_offs << 16);
d_lens = (d_lens + aad_len) | (d_lens << 32);
} else {
fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
fc_params.aad_buf.size = aad_len;
flags |= VALID_AAD_BUF;
inplace = 0;
d_offs = d_offs << 16;
d_lens = d_lens << 32;
}
salt = fc_params.iv_buf;
if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
sess_misc->salt = *(uint32_t *)salt;
}
fc_params.iv_buf = salt + 4;
if (likely(sess_misc->mac_len)) {
struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
m_src;
if (!m)
m = m_src;
/* hmac immediately following data is best case */
if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
mc_hash_off !=
(uint8_t *)sym_op->aead.digest.data)) {
flags |= VALID_MAC_BUF;
fc_params.mac_buf.size = sess_misc->mac_len;
fc_params.mac_buf.vaddr =
sym_op->aead.digest.data;
fc_params.mac_buf.dma_addr =
sym_op->aead.digest.phys_addr;
inplace = 0;
}
}
} else {
d_offs = sym_op->cipher.data.offset;
d_lens = sym_op->cipher.data.length;
mc_hash_off = sym_op->cipher.data.offset +
sym_op->cipher.data.length;
d_offs = (d_offs << 16) | sym_op->auth.data.offset;
d_lens = (d_lens << 32) | sym_op->auth.data.length;
if (mc_hash_off < (sym_op->auth.data.offset +
sym_op->auth.data.length)){
mc_hash_off = (sym_op->auth.data.offset +
sym_op->auth.data.length);
}
/* for gmac, salt should be updated like in gcm */
if (unlikely(sess_misc->is_gmac)) {
uint8_t *salt;
salt = fc_params.iv_buf;
if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
sess_misc->salt = *(uint32_t *)salt;
}
fc_params.iv_buf = salt + 4;
}
if (likely(sess_misc->mac_len)) {
struct rte_mbuf *m;
m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
if (!m)
m = m_src;
/* hmac immediately following data is best case */
if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
mc_hash_off !=
(uint8_t *)sym_op->auth.digest.data)) {
flags |= VALID_MAC_BUF;
fc_params.mac_buf.size =
sess_misc->mac_len;
fc_params.mac_buf.vaddr =
sym_op->auth.digest.data;
fc_params.mac_buf.dma_addr =
sym_op->auth.digest.phys_addr;
inplace = 0;
}
}
}
fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
if (unlikely(sess_misc->is_null || sess_misc->cpt_op == CPT_OP_DECODE))
inplace = 0;
if (likely(!m_dst && inplace)) {
/* Case of single buffer without AAD buf or
* separate mac buf in place and
* not air crypto
*/
fc_params.dst_iov = fc_params.src_iov = (void *)src;
if (unlikely(prepare_iov_from_pkt_inplace(m_src,
&fc_params,
&flags))) {
CPT_LOG_DP_ERR("Prepare inplace src iov failed");
ret = -EINVAL;
goto err_exit;
}
} else {
/* Out of place processing */
fc_params.src_iov = (void *)src;
fc_params.dst_iov = (void *)dst;
/* Store SG I/O in the api for reuse */
if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
CPT_LOG_DP_ERR("Prepare src iov failed");
ret = -EINVAL;
goto err_exit;
}
if (unlikely(m_dst != NULL)) {
uint32_t pkt_len;
/* Try to make room as much as src has */
pkt_len = rte_pktmbuf_pkt_len(m_dst);
if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
if (!rte_pktmbuf_append(m_dst, pkt_len)) {
CPT_LOG_DP_ERR("Not enough space in "
"m_dst %p, need %u"
" more",
m_dst, pkt_len);
ret = -EINVAL;
goto err_exit;
}
}
if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
CPT_LOG_DP_ERR("Prepare dst iov failed for "
"m_dst %p", m_dst);
ret = -EINVAL;
goto err_exit;
}
} else {
fc_params.dst_iov = (void *)src;
}
}
if (likely(flags & SINGLE_BUF_HEADTAILROOM))
mdata = alloc_op_meta(m_src, &fc_params.meta_buf,
m_info->lb_mlen, m_info->pool);
else
mdata = alloc_op_meta(NULL, &fc_params.meta_buf,
m_info->sg_mlen, m_info->pool);
if (unlikely(mdata == NULL)) {
CPT_LOG_DP_ERR("Error allocating meta buffer for request");
ret = -ENOMEM;
goto err_exit;
}
op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
op[0] = (uintptr_t)mdata;
op[1] = (uintptr_t)cop;
op[2] = op[3] = 0; /* Used to indicate auth verify */
space += 4 * sizeof(uint64_t);
fc_params.meta_buf.vaddr = (uint8_t *)op + space;
fc_params.meta_buf.dma_addr += space;
fc_params.meta_buf.size -= space;
/* Finally prepare the instruction */
if (cpt_op & CPT_OP_ENCODE)
*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
&fc_params, op);
else
*prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
&fc_params, op);
if (unlikely(*prep_req == NULL)) {
CPT_LOG_DP_ERR("Preparing request failed due to bad input arg");
ret = -EINVAL;
goto free_mdata_and_exit;
}
*mdata_ptr = mdata;
return 0;
free_mdata_and_exit:
free_op_meta(mdata, m_info->pool);
err_exit:
return ret;
}
static __rte_always_inline void
compl_auth_verify(struct rte_crypto_op *op,
uint8_t *gen_mac,
uint64_t mac_len)
{
uint8_t *mac;
struct rte_crypto_sym_op *sym_op = op->sym;
if (sym_op->auth.digest.data)
mac = sym_op->auth.digest.data;
else
mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
uint8_t *,
sym_op->auth.data.length +
sym_op->auth.data.offset);
if (!mac) {
op->status = RTE_CRYPTO_OP_STATUS_ERROR;
return;
}
if (memcmp(mac, gen_mac, mac_len))
op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
else
op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
}
static __rte_always_inline int
instance_session_cfg(struct rte_crypto_sym_xform *xform, void *sess)
{
struct rte_crypto_sym_xform *chain;
CPT_PMD_INIT_FUNC_TRACE();
if (cpt_is_algo_supported(xform))
goto err;
chain = xform;
while (chain) {
switch (chain->type) {
case RTE_CRYPTO_SYM_XFORM_AEAD:
if (fill_sess_aead(chain, sess))
goto err;
break;
case RTE_CRYPTO_SYM_XFORM_CIPHER:
if (fill_sess_cipher(chain, sess))
goto err;
break;
case RTE_CRYPTO_SYM_XFORM_AUTH:
if (chain->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
if (fill_sess_gmac(chain, sess))
goto err;
} else {
if (fill_sess_auth(chain, sess))
goto err;
}
break;
default:
CPT_LOG_DP_ERR("Invalid crypto xform type");
break;
}
chain = chain->next;
}
return 0;
err:
return -1;
}
static __rte_always_inline void
find_kasumif9_direction_and_length(uint8_t *src,
uint32_t counter_num_bytes,
uint32_t *addr_length_in_bits,
uint8_t *addr_direction)
{
uint8_t found = 0;
uint32_t pos;
uint8_t last_byte;
while (!found && counter_num_bytes > 0) {
counter_num_bytes--;
if (src[counter_num_bytes] == 0x00)
continue;
pos = rte_bsf32(src[counter_num_bytes]);
if (pos == 7) {
if (likely(counter_num_bytes > 0)) {
last_byte = src[counter_num_bytes - 1];
*addr_direction = last_byte & 0x1;
*addr_length_in_bits = counter_num_bytes * 8
- 1;
}
} else {
last_byte = src[counter_num_bytes];
*addr_direction = (last_byte >> (pos + 1)) & 0x1;
*addr_length_in_bits = counter_num_bytes * 8
+ (8 - (pos + 2));
}
found = 1;
}
}
/*
* This handles all auth only except AES_GMAC
*/
static __rte_always_inline int
fill_digest_params(struct rte_crypto_op *cop,
struct cpt_sess_misc *sess,
struct cpt_qp_meta_info *m_info,
void **mdata_ptr,
void **prep_req)
{
uint32_t space = 0;
struct rte_crypto_sym_op *sym_op = cop->sym;
void *mdata;
phys_addr_t mphys;
uint64_t *op;
uint32_t auth_range_off;
uint32_t flags = 0;
uint64_t d_offs = 0, d_lens;
struct rte_mbuf *m_src, *m_dst;
uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
uint16_t mac_len = sess->mac_len;
fc_params_t params;
char src[SRC_IOV_SIZE];
uint8_t iv_buf[16];
int ret;
memset(&params, 0, sizeof(fc_params_t));
m_src = sym_op->m_src;
/* For just digest lets force mempool alloc */
mdata = alloc_op_meta(NULL, &params.meta_buf, m_info->sg_mlen,
m_info->pool);
if (mdata == NULL) {
ret = -ENOMEM;
goto err_exit;
}
mphys = params.meta_buf.dma_addr;
op = mdata;
op[0] = (uintptr_t)mdata;
op[1] = (uintptr_t)cop;
op[2] = op[3] = 0; /* Used to indicate auth verify */
space += 4 * sizeof(uint64_t);
auth_range_off = sym_op->auth.data.offset;
flags = VALID_MAC_BUF;
params.src_iov = (void *)src;
if (unlikely(sess->zsk_flag)) {
/*
* Since for Zuc, Kasumi, Snow3g offsets are in bits
* we will send pass through even for auth only case,
* let MC handle it
*/
d_offs = auth_range_off;
auth_range_off = 0;
params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
uint8_t *, sess->auth_iv_offset);
if (sess->zsk_flag == K_F9) {
uint32_t length_in_bits, num_bytes;
uint8_t *src, direction = 0;
memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
uint8_t *), 8);
/*
* This is kasumi f9, take direction from
* source buffer
*/
length_in_bits = cop->sym->auth.data.length;
num_bytes = (length_in_bits >> 3);
src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
find_kasumif9_direction_and_length(src,
num_bytes,
&length_in_bits,
&direction);
length_in_bits -= 64;
cop->sym->auth.data.offset += 64;
d_offs = cop->sym->auth.data.offset;
auth_range_off = d_offs / 8;
cop->sym->auth.data.length = length_in_bits;
/* Store it at end of auth iv */
iv_buf[8] = direction;
params.auth_iv_buf = iv_buf;
}
}
d_lens = sym_op->auth.data.length;
params.ctx_buf.vaddr = SESS_PRIV(sess);
params.ctx_buf.dma_addr = sess->ctx_dma_addr;
if (auth_op == CPT_OP_AUTH_GENERATE) {
if (sym_op->auth.digest.data) {
/*
* Digest to be generated
* in separate buffer
*/
params.mac_buf.size =
sess->mac_len;
params.mac_buf.vaddr =
sym_op->auth.digest.data;
params.mac_buf.dma_addr =
sym_op->auth.digest.phys_addr;
} else {
uint32_t off = sym_op->auth.data.offset +
sym_op->auth.data.length;
int32_t dlen, space;
m_dst = sym_op->m_dst ?
sym_op->m_dst : sym_op->m_src;
dlen = rte_pktmbuf_pkt_len(m_dst);
space = off + mac_len - dlen;
if (space > 0)
if (!rte_pktmbuf_append(m_dst, space)) {
CPT_LOG_DP_ERR("Failed to extend "
"mbuf by %uB", space);
ret = -EINVAL;
goto free_mdata_and_exit;
}
params.mac_buf.vaddr =
rte_pktmbuf_mtod_offset(m_dst, void *, off);
params.mac_buf.dma_addr =
rte_pktmbuf_mtophys_offset(m_dst, off);
params.mac_buf.size = mac_len;
}
} else {
/* Need space for storing generated mac */
params.mac_buf.vaddr = (uint8_t *)mdata + space;
params.mac_buf.dma_addr = mphys + space;
params.mac_buf.size = mac_len;
space += RTE_ALIGN_CEIL(mac_len, 8);
op[2] = (uintptr_t)params.mac_buf.vaddr;
op[3] = mac_len;
}
params.meta_buf.vaddr = (uint8_t *)mdata + space;
params.meta_buf.dma_addr = mphys + space;
params.meta_buf.size -= space;
/* Out of place processing */
params.src_iov = (void *)src;
/*Store SG I/O in the api for reuse */
if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
CPT_LOG_DP_ERR("Prepare src iov failed");
ret = -EINVAL;
goto free_mdata_and_exit;
}
*prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &params, op);
if (unlikely(*prep_req == NULL)) {
ret = -EINVAL;
goto free_mdata_and_exit;
}
*mdata_ptr = mdata;
return 0;
free_mdata_and_exit:
free_op_meta(mdata, m_info->pool);
err_exit:
return ret;
}
#endif /*_CPT_UCODE_H_ */