numam-dpdk/app/test/test_common.c
David Marchand 30a0df64aa test/common: fix log2 check
We recently started to get random failures on the common_autotest ut with
clang on Ubuntu 16.04.6.

Example: https://travis-ci.com/DPDK/dpdk/jobs/263177424

Wrong rte_log2_u64(0) val 0, expected ffffffff
Test Failed

The ut passes 0 to log2() to get an expected value.

Quoting log2 / log(3) manual:
If x is zero, then a pole error occurs, and the functions return
-HUGE_VAL, -HUGE_VALF, or -HUGE_VALL, respectively.

rte_log2_uXX helpers handle 0 as a special value and return 0.
Let's have dedicated tests for this case.

Fixes: 05c4345ef5 ("test: add unit test for integer log2 function")
Cc: stable@dpdk.org

Signed-off-by: David Marchand <david.marchand@redhat.com>
Acked-by: Aaron Conole <aconole@redhat.com>
2019-12-20 15:05:41 +01:00

328 lines
7.2 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <rte_common.h>
#include <rte_hexdump.h>
#include <rte_pause.h>
#include "test.h"
#define MAX_NUM 1 << 20
#define FAIL(x)\
{printf(x "() test failed!\n");\
return -1;}
/* this is really a sanity check */
static int
test_macros(int __rte_unused unused_parm)
{
#define SMALLER 0x1000U
#define BIGGER 0x2000U
#define PTR_DIFF BIGGER - SMALLER
#define FAIL_MACRO(x)\
{printf(#x "() test failed!\n");\
return -1;}
uintptr_t unused = 0;
RTE_SET_USED(unused);
if ((uintptr_t)RTE_PTR_ADD(SMALLER, PTR_DIFF) != BIGGER)
FAIL_MACRO(RTE_PTR_ADD);
if ((uintptr_t)RTE_PTR_SUB(BIGGER, PTR_DIFF) != SMALLER)
FAIL_MACRO(RTE_PTR_SUB);
if (RTE_PTR_DIFF(BIGGER, SMALLER) != PTR_DIFF)
FAIL_MACRO(RTE_PTR_DIFF);
if (RTE_MAX(SMALLER, BIGGER) != BIGGER)
FAIL_MACRO(RTE_MAX);
if (RTE_MIN(SMALLER, BIGGER) != SMALLER)
FAIL_MACRO(RTE_MIN);
if (strncmp(RTE_STR(test), "test", sizeof("test")))
FAIL_MACRO(RTE_STR);
return 0;
}
static int
test_bsf(void)
{
uint32_t shift, pos;
/* safe versions should be able to handle 0 */
if (rte_bsf32_safe(0, &pos) != 0)
FAIL("rte_bsf32_safe");
if (rte_bsf64_safe(0, &pos) != 0)
FAIL("rte_bsf64_safe");
for (shift = 0; shift < 63; shift++) {
uint32_t val32;
uint64_t val64;
val64 = 1ULL << shift;
if ((uint32_t)rte_bsf64(val64) != shift)
FAIL("rte_bsf64");
if (rte_bsf64_safe(val64, &pos) != 1)
FAIL("rte_bsf64_safe");
if (pos != shift)
FAIL("rte_bsf64_safe");
if (shift > 31)
continue;
val32 = 1U << shift;
if ((uint32_t)rte_bsf32(val32) != shift)
FAIL("rte_bsf32");
if (rte_bsf32_safe(val32, &pos) != 1)
FAIL("rte_bsf32_safe");
if (pos != shift)
FAIL("rte_bsf32_safe");
}
return 0;
}
static int
test_misc(void)
{
char memdump[] = "memdump_test";
rte_memdump(stdout, "test", memdump, sizeof(memdump));
rte_hexdump(stdout, "test", memdump, sizeof(memdump));
rte_pause();
return 0;
}
static int
test_align(void)
{
#define FAIL_ALIGN(x, i, p)\
{printf(x "() test failed: %u %u\n", i, p);\
return -1;}
#define FAIL_ALIGN64(x, j, q)\
{printf(x "() test failed: %"PRIu64" %"PRIu64"\n", j, q);\
return -1; }
#define ERROR_FLOOR(res, i, pow) \
(res % pow) || /* check if not aligned */ \
((res / pow) != (i / pow)) /* check if correct alignment */
#define ERROR_CEIL(res, i, pow) \
(res % pow) || /* check if not aligned */ \
((i % pow) == 0 ? /* check if ceiling is invoked */ \
val / pow != i / pow : /* if aligned */ \
val / pow != (i / pow) + 1) /* if not aligned, hence +1 */
uint32_t i, p, val;
uint64_t j, q;
for (i = 1, p = 1; i <= MAX_NUM; i ++) {
if (rte_align32pow2(i) != p)
FAIL_ALIGN("rte_align32pow2", i, p);
if (i == p)
p <<= 1;
}
for (i = 1, p = 1; i <= MAX_NUM; i++) {
if (rte_align32prevpow2(i) != p)
FAIL_ALIGN("rte_align32prevpow2", i, p);
if (rte_is_power_of_2(i + 1))
p = i + 1;
}
for (j = 1, q = 1; j <= MAX_NUM ; j++) {
if (rte_align64pow2(j) != q)
FAIL_ALIGN64("rte_align64pow2", j, q);
if (j == q)
q <<= 1;
}
for (j = 1, q = 1; j <= MAX_NUM ; j++) {
if (rte_align64prevpow2(j) != q)
FAIL_ALIGN64("rte_align64prevpow2", j, q);
if (rte_is_power_of_2(j + 1))
q = j + 1;
}
for (p = 2; p <= MAX_NUM; p <<= 1) {
if (!rte_is_power_of_2(p))
FAIL("rte_is_power_of_2");
for (i = 1; i <= MAX_NUM; i++) {
/* align floor */
if (RTE_ALIGN_FLOOR((uintptr_t)i, p) % p)
FAIL_ALIGN("RTE_ALIGN_FLOOR", i, p);
val = RTE_PTR_ALIGN_FLOOR((uintptr_t) i, p);
if (ERROR_FLOOR(val, i, p))
FAIL_ALIGN("RTE_PTR_ALIGN_FLOOR", i, p);
val = RTE_ALIGN_FLOOR(i, p);
if (ERROR_FLOOR(val, i, p))
FAIL_ALIGN("RTE_ALIGN_FLOOR", i, p);
/* align ceiling */
val = RTE_PTR_ALIGN((uintptr_t) i, p);
if (ERROR_CEIL(val, i, p))
FAIL_ALIGN("RTE_PTR_ALIGN", i, p);
val = RTE_ALIGN(i, p);
if (ERROR_CEIL(val, i, p))
FAIL_ALIGN("RTE_ALIGN", i, p);
val = RTE_ALIGN_CEIL(i, p);
if (ERROR_CEIL(val, i, p))
FAIL_ALIGN("RTE_ALIGN_CEIL", i, p);
val = RTE_PTR_ALIGN_CEIL((uintptr_t)i, p);
if (ERROR_CEIL(val, i, p))
FAIL_ALIGN("RTE_PTR_ALIGN_CEIL", i, p);
/* by this point we know that val is aligned to p */
if (!rte_is_aligned((void*)(uintptr_t) val, p))
FAIL("rte_is_aligned");
}
}
for (p = 1; p <= MAX_NUM / 2; p++) {
for (i = 1; i <= MAX_NUM / 2; i++) {
val = RTE_ALIGN_MUL_CEIL(i, p);
if (val % p != 0 || val < i)
FAIL_ALIGN("RTE_ALIGN_MUL_CEIL", i, p);
val = RTE_ALIGN_MUL_FLOOR(i, p);
if (val % p != 0 || val > i)
FAIL_ALIGN("RTE_ALIGN_MUL_FLOOR", i, p);
val = RTE_ALIGN_MUL_NEAR(i, p);
if (val % p != 0 || ((val != RTE_ALIGN_MUL_CEIL(i, p))
& (val != RTE_ALIGN_MUL_FLOOR(i, p))))
FAIL_ALIGN("RTE_ALIGN_MUL_NEAR", i, p);
}
}
return 0;
}
static int
test_log2(void)
{
uint32_t i, base, compare;
const uint32_t max = 0x10000;
const uint32_t step = 1;
compare = rte_log2_u32(0);
if (compare != 0) {
printf("Wrong rte_log2_u32(0) val %x, expected 0\n", compare);
return TEST_FAILED;
}
compare = rte_log2_u64(0);
if (compare != 0) {
printf("Wrong rte_log2_u64(0) val %x, expected 0\n", compare);
return TEST_FAILED;
}
for (i = 1; i < max; i = i + step) {
uint64_t i64;
/* extend range for 64-bit */
i64 = (uint64_t)i << 32;
base = (uint32_t)ceilf(log2(i64));
compare = rte_log2_u64(i64);
if (base != compare) {
printf("Wrong rte_log2_u64(%" PRIx64 ") val %x, expected %x\n",
i64, compare, base);
return TEST_FAILED;
}
base = (uint32_t)ceilf(log2((uint32_t)i));
compare = rte_log2_u32((uint32_t)i);
if (base != compare) {
printf("Wrong rte_log2_u32(%x) val %x, expected %x\n",
i, compare, base);
return TEST_FAILED;
}
compare = rte_log2_u64((uint64_t)i);
if (base != compare) {
printf("Wrong rte_log2_u64(%x) val %x, expected %x\n",
i, compare, base);
return TEST_FAILED;
}
}
return 0;
}
static int
test_fls(void)
{
struct fls_test_vector {
uint32_t arg;
int rc;
};
int expected, rc;
uint32_t i, arg;
const struct fls_test_vector test[] = {
{0x0, 0},
{0x1, 1},
{0x4000, 15},
{0x80000000, 32},
};
for (i = 0; i < RTE_DIM(test); i++) {
uint64_t arg64;
arg = test[i].arg;
rc = rte_fls_u32(arg);
expected = test[i].rc;
if (rc != expected) {
printf("Wrong rte_fls_u32(0x%x) rc=%d, expected=%d\n",
arg, rc, expected);
return TEST_FAILED;
}
/* 64-bit version */
arg = test[i].arg;
rc = rte_fls_u64(arg);
expected = test[i].rc;
if (rc != expected) {
printf("Wrong rte_fls_u64(0x%x) rc=%d, expected=%d\n",
arg, rc, expected);
return TEST_FAILED;
}
/* 64-bit version shifted by 32 bits */
arg64 = (uint64_t)test[i].arg << 32;
rc = rte_fls_u64(arg64);
/* don't shift zero */
expected = test[i].rc == 0 ? 0 : test[i].rc + 32;
if (rc != expected) {
printf("Wrong rte_fls_u64(0x%" PRIx64 ") rc=%d, expected=%d\n",
arg64, rc, expected);
return TEST_FAILED;
}
}
return 0;
}
static int
test_common(void)
{
int ret = 0;
ret |= test_align();
ret |= test_macros(0);
ret |= test_misc();
ret |= test_bsf();
ret |= test_log2();
ret |= test_fls();
return ret;
}
REGISTER_TEST_COMMAND(common_autotest, test_common);