1f01425813
The number of Tx queues requested by the user must not be overridden; instead, the limits imposed by TSO must be applied to the advertised maximum Fixes: fec33d5bb3eb ("net/sfc: support firmware-assisted TSO") Cc: stable@dpdk.org Signed-off-by: Ivan Malov <ivan.malov@oktetlabs.ru> Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com> Reviewed-by: Andrew Lee <alee@solarflare.com> Reviewed-by: Andy Moreton <amoreton@solarflare.com>
696 lines
15 KiB
C
696 lines
15 KiB
C
/*-
|
|
* Copyright (c) 2016 Solarflare Communications Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was jointly developed between OKTET Labs (under contract
|
|
* for Solarflare) and Solarflare Communications, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/* sysconf() */
|
|
#include <unistd.h>
|
|
|
|
#include <rte_errno.h>
|
|
|
|
#include "efx.h"
|
|
|
|
#include "sfc.h"
|
|
#include "sfc_log.h"
|
|
#include "sfc_ev.h"
|
|
#include "sfc_rx.h"
|
|
#include "sfc_tx.h"
|
|
|
|
|
|
int
|
|
sfc_dma_alloc(const struct sfc_adapter *sa, const char *name, uint16_t id,
|
|
size_t len, int socket_id, efsys_mem_t *esmp)
|
|
{
|
|
const struct rte_memzone *mz;
|
|
|
|
sfc_log_init(sa, "name=%s id=%u len=%lu socket_id=%d",
|
|
name, id, len, socket_id);
|
|
|
|
mz = rte_eth_dma_zone_reserve(sa->eth_dev, name, id, len,
|
|
sysconf(_SC_PAGESIZE), socket_id);
|
|
if (mz == NULL) {
|
|
sfc_err(sa, "cannot reserve DMA zone for %s:%u %#x@%d: %s",
|
|
name, (unsigned int)id, (unsigned int)len, socket_id,
|
|
rte_strerror(rte_errno));
|
|
return ENOMEM;
|
|
}
|
|
|
|
esmp->esm_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
|
|
if (esmp->esm_addr == RTE_BAD_PHYS_ADDR) {
|
|
(void)rte_memzone_free(mz);
|
|
return EFAULT;
|
|
}
|
|
|
|
esmp->esm_mz = mz;
|
|
esmp->esm_base = mz->addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
sfc_dma_free(const struct sfc_adapter *sa, efsys_mem_t *esmp)
|
|
{
|
|
int rc;
|
|
|
|
sfc_log_init(sa, "name=%s", esmp->esm_mz->name);
|
|
|
|
rc = rte_memzone_free(esmp->esm_mz);
|
|
if (rc != 0)
|
|
sfc_err(sa, "rte_memzone_free(() failed: %d", rc);
|
|
|
|
memset(esmp, 0, sizeof(*esmp));
|
|
}
|
|
|
|
static uint32_t
|
|
sfc_phy_cap_from_link_speeds(uint32_t speeds)
|
|
{
|
|
uint32_t phy_caps = 0;
|
|
|
|
if (~speeds & ETH_LINK_SPEED_FIXED) {
|
|
phy_caps |= (1 << EFX_PHY_CAP_AN);
|
|
/*
|
|
* If no speeds are specified in the mask, any supported
|
|
* may be negotiated
|
|
*/
|
|
if (speeds == ETH_LINK_SPEED_AUTONEG)
|
|
phy_caps |=
|
|
(1 << EFX_PHY_CAP_1000FDX) |
|
|
(1 << EFX_PHY_CAP_10000FDX) |
|
|
(1 << EFX_PHY_CAP_40000FDX);
|
|
}
|
|
if (speeds & ETH_LINK_SPEED_1G)
|
|
phy_caps |= (1 << EFX_PHY_CAP_1000FDX);
|
|
if (speeds & ETH_LINK_SPEED_10G)
|
|
phy_caps |= (1 << EFX_PHY_CAP_10000FDX);
|
|
if (speeds & ETH_LINK_SPEED_40G)
|
|
phy_caps |= (1 << EFX_PHY_CAP_40000FDX);
|
|
|
|
return phy_caps;
|
|
}
|
|
|
|
/*
|
|
* Check requested device level configuration.
|
|
* Receive and transmit configuration is checked in corresponding
|
|
* modules.
|
|
*/
|
|
static int
|
|
sfc_check_conf(struct sfc_adapter *sa)
|
|
{
|
|
const struct rte_eth_conf *conf = &sa->eth_dev->data->dev_conf;
|
|
int rc = 0;
|
|
|
|
sa->port.phy_adv_cap =
|
|
sfc_phy_cap_from_link_speeds(conf->link_speeds) &
|
|
sa->port.phy_adv_cap_mask;
|
|
if ((sa->port.phy_adv_cap & ~(1 << EFX_PHY_CAP_AN)) == 0) {
|
|
sfc_err(sa, "No link speeds from mask %#x are supported",
|
|
conf->link_speeds);
|
|
rc = EINVAL;
|
|
}
|
|
|
|
if (conf->lpbk_mode != 0) {
|
|
sfc_err(sa, "Loopback not supported");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
if (conf->dcb_capability_en != 0) {
|
|
sfc_err(sa, "Priority-based flow control not supported");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
if (conf->fdir_conf.mode != RTE_FDIR_MODE_NONE) {
|
|
sfc_err(sa, "Flow Director not supported");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
if ((conf->intr_conf.lsc != 0) &&
|
|
(sa->intr.type != EFX_INTR_LINE) &&
|
|
(sa->intr.type != EFX_INTR_MESSAGE)) {
|
|
sfc_err(sa, "Link status change interrupt not supported");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
if (conf->intr_conf.rxq != 0) {
|
|
sfc_err(sa, "Receive queue interrupt not supported");
|
|
rc = EINVAL;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Find out maximum number of receive and transmit queues which could be
|
|
* advertised.
|
|
*
|
|
* NIC is kept initialized on success to allow other modules acquire
|
|
* defaults and capabilities.
|
|
*/
|
|
static int
|
|
sfc_estimate_resource_limits(struct sfc_adapter *sa)
|
|
{
|
|
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
|
|
efx_drv_limits_t limits;
|
|
int rc;
|
|
uint32_t evq_allocated;
|
|
uint32_t rxq_allocated;
|
|
uint32_t txq_allocated;
|
|
|
|
memset(&limits, 0, sizeof(limits));
|
|
|
|
/* Request at least one Rx and Tx queue */
|
|
limits.edl_min_rxq_count = 1;
|
|
limits.edl_min_txq_count = 1;
|
|
/* Management event queue plus event queue for each Tx and Rx queue */
|
|
limits.edl_min_evq_count =
|
|
1 + limits.edl_min_rxq_count + limits.edl_min_txq_count;
|
|
|
|
/* Divide by number of functions to guarantee that all functions
|
|
* will get promised resources
|
|
*/
|
|
/* FIXME Divide by number of functions (not 2) below */
|
|
limits.edl_max_evq_count = encp->enc_evq_limit / 2;
|
|
SFC_ASSERT(limits.edl_max_evq_count >= limits.edl_min_rxq_count);
|
|
|
|
/* Split equally between receive and transmit */
|
|
limits.edl_max_rxq_count =
|
|
MIN(encp->enc_rxq_limit, (limits.edl_max_evq_count - 1) / 2);
|
|
SFC_ASSERT(limits.edl_max_rxq_count >= limits.edl_min_rxq_count);
|
|
|
|
limits.edl_max_txq_count =
|
|
MIN(encp->enc_txq_limit,
|
|
limits.edl_max_evq_count - 1 - limits.edl_max_rxq_count);
|
|
|
|
if (sa->tso)
|
|
limits.edl_max_txq_count =
|
|
MIN(limits.edl_max_txq_count,
|
|
encp->enc_fw_assisted_tso_v2_n_contexts /
|
|
encp->enc_hw_pf_count);
|
|
|
|
SFC_ASSERT(limits.edl_max_txq_count >= limits.edl_min_rxq_count);
|
|
|
|
/* Configure the minimum required resources needed for the
|
|
* driver to operate, and the maximum desired resources that the
|
|
* driver is capable of using.
|
|
*/
|
|
efx_nic_set_drv_limits(sa->nic, &limits);
|
|
|
|
sfc_log_init(sa, "init nic");
|
|
rc = efx_nic_init(sa->nic);
|
|
if (rc != 0)
|
|
goto fail_nic_init;
|
|
|
|
/* Find resource dimensions assigned by firmware to this function */
|
|
rc = efx_nic_get_vi_pool(sa->nic, &evq_allocated, &rxq_allocated,
|
|
&txq_allocated);
|
|
if (rc != 0)
|
|
goto fail_get_vi_pool;
|
|
|
|
/* It still may allocate more than maximum, ensure limit */
|
|
evq_allocated = MIN(evq_allocated, limits.edl_max_evq_count);
|
|
rxq_allocated = MIN(rxq_allocated, limits.edl_max_rxq_count);
|
|
txq_allocated = MIN(txq_allocated, limits.edl_max_txq_count);
|
|
|
|
/* Subtract management EVQ not used for traffic */
|
|
SFC_ASSERT(evq_allocated > 0);
|
|
evq_allocated--;
|
|
|
|
/* Right now we use separate EVQ for Rx and Tx */
|
|
sa->rxq_max = MIN(rxq_allocated, evq_allocated / 2);
|
|
sa->txq_max = MIN(txq_allocated, evq_allocated - sa->rxq_max);
|
|
|
|
/* Keep NIC initialized */
|
|
return 0;
|
|
|
|
fail_get_vi_pool:
|
|
fail_nic_init:
|
|
efx_nic_fini(sa->nic);
|
|
return rc;
|
|
}
|
|
|
|
static int
|
|
sfc_set_drv_limits(struct sfc_adapter *sa)
|
|
{
|
|
const struct rte_eth_dev_data *data = sa->eth_dev->data;
|
|
efx_drv_limits_t lim;
|
|
|
|
memset(&lim, 0, sizeof(lim));
|
|
|
|
/* Limits are strict since take into account initial estimation */
|
|
lim.edl_min_evq_count = lim.edl_max_evq_count =
|
|
1 + data->nb_rx_queues + data->nb_tx_queues;
|
|
lim.edl_min_rxq_count = lim.edl_max_rxq_count = data->nb_rx_queues;
|
|
lim.edl_min_txq_count = lim.edl_max_txq_count = data->nb_tx_queues;
|
|
|
|
return efx_nic_set_drv_limits(sa->nic, &lim);
|
|
}
|
|
|
|
int
|
|
sfc_start(struct sfc_adapter *sa)
|
|
{
|
|
int rc;
|
|
|
|
sfc_log_init(sa, "entry");
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
switch (sa->state) {
|
|
case SFC_ADAPTER_CONFIGURED:
|
|
break;
|
|
case SFC_ADAPTER_STARTED:
|
|
sfc_info(sa, "already started");
|
|
return 0;
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail_bad_state;
|
|
}
|
|
|
|
sa->state = SFC_ADAPTER_STARTING;
|
|
|
|
sfc_log_init(sa, "set resource limits");
|
|
rc = sfc_set_drv_limits(sa);
|
|
if (rc != 0)
|
|
goto fail_set_drv_limits;
|
|
|
|
sfc_log_init(sa, "init nic");
|
|
rc = efx_nic_init(sa->nic);
|
|
if (rc != 0)
|
|
goto fail_nic_init;
|
|
|
|
rc = sfc_intr_start(sa);
|
|
if (rc != 0)
|
|
goto fail_intr_start;
|
|
|
|
rc = sfc_ev_start(sa);
|
|
if (rc != 0)
|
|
goto fail_ev_start;
|
|
|
|
rc = sfc_port_start(sa);
|
|
if (rc != 0)
|
|
goto fail_port_start;
|
|
|
|
rc = sfc_rx_start(sa);
|
|
if (rc != 0)
|
|
goto fail_rx_start;
|
|
|
|
rc = sfc_tx_start(sa);
|
|
if (rc != 0)
|
|
goto fail_tx_start;
|
|
|
|
sa->state = SFC_ADAPTER_STARTED;
|
|
sfc_log_init(sa, "done");
|
|
return 0;
|
|
|
|
fail_tx_start:
|
|
sfc_rx_stop(sa);
|
|
|
|
fail_rx_start:
|
|
sfc_port_stop(sa);
|
|
|
|
fail_port_start:
|
|
sfc_ev_stop(sa);
|
|
|
|
fail_ev_start:
|
|
sfc_intr_stop(sa);
|
|
|
|
fail_intr_start:
|
|
efx_nic_fini(sa->nic);
|
|
|
|
fail_nic_init:
|
|
fail_set_drv_limits:
|
|
sa->state = SFC_ADAPTER_CONFIGURED;
|
|
fail_bad_state:
|
|
sfc_log_init(sa, "failed %d", rc);
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfc_stop(struct sfc_adapter *sa)
|
|
{
|
|
sfc_log_init(sa, "entry");
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
switch (sa->state) {
|
|
case SFC_ADAPTER_STARTED:
|
|
break;
|
|
case SFC_ADAPTER_CONFIGURED:
|
|
sfc_info(sa, "already stopped");
|
|
return;
|
|
default:
|
|
sfc_err(sa, "stop in unexpected state %u", sa->state);
|
|
SFC_ASSERT(B_FALSE);
|
|
return;
|
|
}
|
|
|
|
sa->state = SFC_ADAPTER_STOPPING;
|
|
|
|
sfc_tx_stop(sa);
|
|
sfc_rx_stop(sa);
|
|
sfc_port_stop(sa);
|
|
sfc_ev_stop(sa);
|
|
sfc_intr_stop(sa);
|
|
efx_nic_fini(sa->nic);
|
|
|
|
sa->state = SFC_ADAPTER_CONFIGURED;
|
|
sfc_log_init(sa, "done");
|
|
}
|
|
|
|
int
|
|
sfc_configure(struct sfc_adapter *sa)
|
|
{
|
|
int rc;
|
|
|
|
sfc_log_init(sa, "entry");
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
|
|
sa->state = SFC_ADAPTER_CONFIGURING;
|
|
|
|
rc = sfc_check_conf(sa);
|
|
if (rc != 0)
|
|
goto fail_check_conf;
|
|
|
|
rc = sfc_intr_init(sa);
|
|
if (rc != 0)
|
|
goto fail_intr_init;
|
|
|
|
rc = sfc_ev_init(sa);
|
|
if (rc != 0)
|
|
goto fail_ev_init;
|
|
|
|
rc = sfc_port_init(sa);
|
|
if (rc != 0)
|
|
goto fail_port_init;
|
|
|
|
rc = sfc_rx_init(sa);
|
|
if (rc != 0)
|
|
goto fail_rx_init;
|
|
|
|
rc = sfc_tx_init(sa);
|
|
if (rc != 0)
|
|
goto fail_tx_init;
|
|
|
|
sa->state = SFC_ADAPTER_CONFIGURED;
|
|
sfc_log_init(sa, "done");
|
|
return 0;
|
|
|
|
fail_tx_init:
|
|
sfc_rx_fini(sa);
|
|
|
|
fail_rx_init:
|
|
sfc_port_fini(sa);
|
|
|
|
fail_port_init:
|
|
sfc_ev_fini(sa);
|
|
|
|
fail_ev_init:
|
|
sfc_intr_fini(sa);
|
|
|
|
fail_intr_init:
|
|
fail_check_conf:
|
|
sa->state = SFC_ADAPTER_INITIALIZED;
|
|
sfc_log_init(sa, "failed %d", rc);
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfc_close(struct sfc_adapter *sa)
|
|
{
|
|
sfc_log_init(sa, "entry");
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
|
|
sa->state = SFC_ADAPTER_CLOSING;
|
|
|
|
sfc_tx_fini(sa);
|
|
sfc_rx_fini(sa);
|
|
sfc_port_fini(sa);
|
|
sfc_ev_fini(sa);
|
|
sfc_intr_fini(sa);
|
|
|
|
sa->state = SFC_ADAPTER_INITIALIZED;
|
|
sfc_log_init(sa, "done");
|
|
}
|
|
|
|
static int
|
|
sfc_mem_bar_init(struct sfc_adapter *sa)
|
|
{
|
|
struct rte_eth_dev *eth_dev = sa->eth_dev;
|
|
struct rte_pci_device *pci_dev = SFC_DEV_TO_PCI(eth_dev);
|
|
efsys_bar_t *ebp = &sa->mem_bar;
|
|
unsigned int i;
|
|
struct rte_mem_resource *res;
|
|
|
|
for (i = 0; i < RTE_DIM(pci_dev->mem_resource); i++) {
|
|
res = &pci_dev->mem_resource[i];
|
|
if ((res->len != 0) && (res->phys_addr != 0)) {
|
|
/* Found first memory BAR */
|
|
SFC_BAR_LOCK_INIT(ebp, eth_dev->data->name);
|
|
ebp->esb_rid = i;
|
|
ebp->esb_dev = pci_dev;
|
|
ebp->esb_base = res->addr;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return EFAULT;
|
|
}
|
|
|
|
static void
|
|
sfc_mem_bar_fini(struct sfc_adapter *sa)
|
|
{
|
|
efsys_bar_t *ebp = &sa->mem_bar;
|
|
|
|
SFC_BAR_LOCK_DESTROY(ebp);
|
|
memset(ebp, 0, sizeof(*ebp));
|
|
}
|
|
|
|
#if EFSYS_OPT_RX_SCALE
|
|
/*
|
|
* A fixed RSS key which has a property of being symmetric
|
|
* (symmetrical flows are distributed to the same CPU)
|
|
* and also known to give a uniform distribution
|
|
* (a good distribution of traffic between different CPUs)
|
|
*/
|
|
static const uint8_t default_rss_key[SFC_RSS_KEY_SIZE] = {
|
|
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
|
|
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
|
|
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
|
|
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
|
|
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
|
|
};
|
|
#endif
|
|
|
|
static int
|
|
sfc_set_rss_defaults(struct sfc_adapter *sa)
|
|
{
|
|
#if EFSYS_OPT_RX_SCALE
|
|
int rc;
|
|
|
|
rc = efx_intr_init(sa->nic, sa->intr.type, NULL);
|
|
if (rc != 0)
|
|
goto fail_intr_init;
|
|
|
|
rc = efx_ev_init(sa->nic);
|
|
if (rc != 0)
|
|
goto fail_ev_init;
|
|
|
|
rc = efx_rx_init(sa->nic);
|
|
if (rc != 0)
|
|
goto fail_rx_init;
|
|
|
|
rc = efx_rx_scale_support_get(sa->nic, &sa->rss_support);
|
|
if (rc != 0)
|
|
goto fail_scale_support_get;
|
|
|
|
rc = efx_rx_hash_support_get(sa->nic, &sa->hash_support);
|
|
if (rc != 0)
|
|
goto fail_hash_support_get;
|
|
|
|
efx_rx_fini(sa->nic);
|
|
efx_ev_fini(sa->nic);
|
|
efx_intr_fini(sa->nic);
|
|
|
|
sa->rss_hash_types = sfc_rte_to_efx_hash_type(SFC_RSS_OFFLOADS);
|
|
|
|
rte_memcpy(sa->rss_key, default_rss_key, sizeof(sa->rss_key));
|
|
|
|
return 0;
|
|
|
|
fail_hash_support_get:
|
|
fail_scale_support_get:
|
|
fail_rx_init:
|
|
efx_ev_fini(sa->nic);
|
|
|
|
fail_ev_init:
|
|
efx_intr_fini(sa->nic);
|
|
|
|
fail_intr_init:
|
|
return rc;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int
|
|
sfc_attach(struct sfc_adapter *sa)
|
|
{
|
|
struct rte_pci_device *pci_dev = SFC_DEV_TO_PCI(sa->eth_dev);
|
|
const efx_nic_cfg_t *encp;
|
|
efx_nic_t *enp;
|
|
int rc;
|
|
|
|
sfc_log_init(sa, "entry");
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
sa->socket_id = rte_socket_id();
|
|
|
|
sfc_log_init(sa, "init mem bar");
|
|
rc = sfc_mem_bar_init(sa);
|
|
if (rc != 0)
|
|
goto fail_mem_bar_init;
|
|
|
|
sfc_log_init(sa, "get family");
|
|
rc = efx_family(pci_dev->id.vendor_id, pci_dev->id.device_id,
|
|
&sa->family);
|
|
if (rc != 0)
|
|
goto fail_family;
|
|
sfc_log_init(sa, "family is %u", sa->family);
|
|
|
|
sfc_log_init(sa, "create nic");
|
|
rte_spinlock_init(&sa->nic_lock);
|
|
rc = efx_nic_create(sa->family, (efsys_identifier_t *)sa,
|
|
&sa->mem_bar, &sa->nic_lock, &enp);
|
|
if (rc != 0)
|
|
goto fail_nic_create;
|
|
sa->nic = enp;
|
|
|
|
rc = sfc_mcdi_init(sa);
|
|
if (rc != 0)
|
|
goto fail_mcdi_init;
|
|
|
|
sfc_log_init(sa, "probe nic");
|
|
rc = efx_nic_probe(enp);
|
|
if (rc != 0)
|
|
goto fail_nic_probe;
|
|
|
|
efx_mcdi_new_epoch(enp);
|
|
|
|
sfc_log_init(sa, "reset nic");
|
|
rc = efx_nic_reset(enp);
|
|
if (rc != 0)
|
|
goto fail_nic_reset;
|
|
|
|
encp = efx_nic_cfg_get(sa->nic);
|
|
|
|
sa->tso = encp->enc_fw_assisted_tso_v2_enabled;
|
|
if (!sa->tso)
|
|
sfc_warn(sa, "TSO support isn't available on this adapter");
|
|
|
|
sfc_log_init(sa, "estimate resource limits");
|
|
rc = sfc_estimate_resource_limits(sa);
|
|
if (rc != 0)
|
|
goto fail_estimate_rsrc_limits;
|
|
|
|
sa->txq_max_entries = encp->enc_txq_max_ndescs;
|
|
SFC_ASSERT(rte_is_power_of_2(sa->txq_max_entries));
|
|
|
|
rc = sfc_intr_attach(sa);
|
|
if (rc != 0)
|
|
goto fail_intr_attach;
|
|
|
|
efx_phy_adv_cap_get(sa->nic, EFX_PHY_CAP_PERM,
|
|
&sa->port.phy_adv_cap_mask);
|
|
|
|
rc = sfc_set_rss_defaults(sa);
|
|
if (rc != 0)
|
|
goto fail_set_rss_defaults;
|
|
|
|
sfc_log_init(sa, "fini nic");
|
|
efx_nic_fini(enp);
|
|
|
|
sa->state = SFC_ADAPTER_INITIALIZED;
|
|
|
|
sfc_log_init(sa, "done");
|
|
return 0;
|
|
|
|
fail_set_rss_defaults:
|
|
sfc_intr_detach(sa);
|
|
|
|
fail_intr_attach:
|
|
efx_nic_fini(sa->nic);
|
|
|
|
fail_estimate_rsrc_limits:
|
|
fail_nic_reset:
|
|
sfc_log_init(sa, "unprobe nic");
|
|
efx_nic_unprobe(enp);
|
|
|
|
fail_nic_probe:
|
|
sfc_mcdi_fini(sa);
|
|
|
|
fail_mcdi_init:
|
|
sfc_log_init(sa, "destroy nic");
|
|
sa->nic = NULL;
|
|
efx_nic_destroy(enp);
|
|
|
|
fail_nic_create:
|
|
fail_family:
|
|
sfc_mem_bar_fini(sa);
|
|
|
|
fail_mem_bar_init:
|
|
sfc_log_init(sa, "failed %d", rc);
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
sfc_detach(struct sfc_adapter *sa)
|
|
{
|
|
efx_nic_t *enp = sa->nic;
|
|
|
|
sfc_log_init(sa, "entry");
|
|
|
|
SFC_ASSERT(sfc_adapter_is_locked(sa));
|
|
|
|
sfc_intr_detach(sa);
|
|
|
|
sfc_log_init(sa, "unprobe nic");
|
|
efx_nic_unprobe(enp);
|
|
|
|
sfc_mcdi_fini(sa);
|
|
|
|
sfc_log_init(sa, "destroy nic");
|
|
sa->nic = NULL;
|
|
efx_nic_destroy(enp);
|
|
|
|
sfc_mem_bar_fini(sa);
|
|
|
|
sa->state = SFC_ADAPTER_UNINITIALIZED;
|
|
}
|