numam-dpdk/examples/load_balancer/config.c
Intel b6df9fc871 update copyright date to 2013
Signed-off-by: Intel
2013-07-25 16:07:52 +02:00

1058 lines
25 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <string.h>
#include <sys/queue.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_launch.h>
#include <rte_atomic.h>
#include <rte_cycles.h>
#include <rte_prefetch.h>
#include <rte_lcore.h>
#include <rte_per_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_random.h>
#include <rte_debug.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_ring.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_ip.h>
#include <rte_tcp.h>
#include <rte_lpm.h>
#include <rte_string_fns.h>
#include "main.h"
struct app_params app;
static const char usage[] =
" \n"
" load_balancer <EAL PARAMS> -- <APP PARAMS> \n"
" \n"
"Application manadatory parameters: \n"
" --rx \"(PORT, QUEUE, LCORE), ...\" : List of NIC RX ports and queues \n"
" handled by the I/O RX lcores \n"
" --tx \"(PORT, LCORE), ...\" : List of NIC TX ports handled by the I/O TX \n"
" lcores \n"
" --w \"LCORE, ...\" : List of the worker lcores \n"
" --lpm \"IP / PREFIX => PORT; ...\" : List of LPM rules used by the worker \n"
" lcores for packet forwarding \n"
" \n"
"Application optional parameters: \n"
" --rsz \"A, B, C, D\" : Ring sizes \n"
" A = Size (in number of buffer descriptors) of each of the NIC RX \n"
" rings read by the I/O RX lcores (default value is %u) \n"
" B = Size (in number of elements) of each of the SW rings used by the\n"
" I/O RX lcores to send packets to worker lcores (default value is\n"
" %u) \n"
" C = Size (in number of elements) of each of the SW rings used by the\n"
" worker lcores to send packets to I/O TX lcores (default value is\n"
" %u) \n"
" D = Size (in number of buffer descriptors) of each of the NIC TX \n"
" rings written by I/O TX lcores (default value is %u) \n"
" --bsz \"(A, B), (C, D), (E, F)\" : Burst sizes \n"
" A = I/O RX lcore read burst size from NIC RX (default value is %u) \n"
" B = I/O RX lcore write burst size to output SW rings (default value \n"
" is %u) \n"
" C = Worker lcore read burst size from input SW rings (default value \n"
" is %u) \n"
" D = Worker lcore write burst size to output SW rings (default value \n"
" is %u) \n"
" E = I/O TX lcore read burst size from input SW rings (default value \n"
" is %u) \n"
" F = I/O TX lcore write burst size to NIC TX (default value is %u) \n"
" --pos-lb POS : Position of the 1-byte field within the input packet used by\n"
" the I/O RX lcores to identify the worker lcore for the current \n"
" packet (default value is %u) \n";
void
app_print_usage(void)
{
printf(usage,
APP_DEFAULT_NIC_RX_RING_SIZE,
APP_DEFAULT_RING_RX_SIZE,
APP_DEFAULT_RING_TX_SIZE,
APP_DEFAULT_NIC_TX_RING_SIZE,
APP_DEFAULT_BURST_SIZE_IO_RX_READ,
APP_DEFAULT_BURST_SIZE_IO_RX_WRITE,
APP_DEFAULT_BURST_SIZE_WORKER_READ,
APP_DEFAULT_BURST_SIZE_WORKER_WRITE,
APP_DEFAULT_BURST_SIZE_IO_TX_READ,
APP_DEFAULT_BURST_SIZE_IO_TX_WRITE,
APP_DEFAULT_IO_RX_LB_POS
);
}
#ifndef APP_ARG_RX_MAX_CHARS
#define APP_ARG_RX_MAX_CHARS 4096
#endif
#ifndef APP_ARG_RX_MAX_TUPLES
#define APP_ARG_RX_MAX_TUPLES 128
#endif
static int
str_to_unsigned_array(
const char *s, size_t sbuflen,
char separator,
unsigned num_vals,
unsigned *vals)
{
char str[sbuflen+1];
char *splits[num_vals];
char *endptr = NULL;
int i, num_splits = 0;
/* copy s so we don't modify original string */
rte_snprintf(str, sizeof(str), "%s", s);
num_splits = rte_strsplit(str, sizeof(str), splits, num_vals, separator);
errno = 0;
for (i = 0; i < num_splits; i++) {
vals[i] = strtoul(splits[i], &endptr, 0);
if (errno != 0 || *endptr != '\0')
return -1;
}
return num_splits;
}
static int
str_to_unsigned_vals(
const char *s,
size_t sbuflen,
char separator,
unsigned num_vals, ...)
{
unsigned i, vals[num_vals];
va_list ap;
num_vals = str_to_unsigned_array(s, sbuflen, separator, num_vals, vals);
va_start(ap, num_vals);
for (i = 0; i < num_vals; i++) {
unsigned *u = va_arg(ap, unsigned *);
*u = vals[i];
}
va_end(ap);
return num_vals;
}
static int
parse_arg_rx(const char *arg)
{
const char *p0 = arg, *p = arg;
uint32_t n_tuples;
if (strnlen(arg, APP_ARG_RX_MAX_CHARS + 1) == APP_ARG_RX_MAX_CHARS + 1) {
return -1;
}
n_tuples = 0;
while ((p = strchr(p0,'(')) != NULL) {
struct app_lcore_params *lp;
uint32_t port, queue, lcore, i;
p0 = strchr(p++, ')');
if ((p0 == NULL) ||
(str_to_unsigned_vals(p, p0 - p, ',', 3, &port, &queue, &lcore) != 3)) {
return -2;
}
/* Enable port and queue for later initialization */
if ((port >= APP_MAX_NIC_PORTS) || (queue >= APP_MAX_RX_QUEUES_PER_NIC_PORT)) {
return -3;
}
if (app.nic_rx_queue_mask[port][queue] != 0) {
return -4;
}
app.nic_rx_queue_mask[port][queue] = 1;
/* Check and assign (port, queue) to I/O lcore */
if (rte_lcore_is_enabled(lcore) == 0) {
return -5;
}
if (lcore >= APP_MAX_LCORES) {
return -6;
}
lp = &app.lcore_params[lcore];
if (lp->type == e_APP_LCORE_WORKER) {
return -7;
}
lp->type = e_APP_LCORE_IO;
for (i = 0; i < lp->io.rx.n_nic_queues; i ++) {
if ((lp->io.rx.nic_queues[i].port == port) &&
(lp->io.rx.nic_queues[i].queue == queue)) {
return -8;
}
}
if (lp->io.rx.n_nic_queues >= APP_MAX_NIC_RX_QUEUES_PER_IO_LCORE) {
return -9;
}
lp->io.rx.nic_queues[lp->io.rx.n_nic_queues].port = (uint8_t) port;
lp->io.rx.nic_queues[lp->io.rx.n_nic_queues].queue = (uint8_t) queue;
lp->io.rx.n_nic_queues ++;
n_tuples ++;
if (n_tuples > APP_ARG_RX_MAX_TUPLES) {
return -10;
}
}
if (n_tuples == 0) {
return -11;
}
return 0;
}
#ifndef APP_ARG_TX_MAX_CHARS
#define APP_ARG_TX_MAX_CHARS 4096
#endif
#ifndef APP_ARG_TX_MAX_TUPLES
#define APP_ARG_TX_MAX_TUPLES 128
#endif
static int
parse_arg_tx(const char *arg)
{
const char *p0 = arg, *p = arg;
uint32_t n_tuples;
if (strnlen(arg, APP_ARG_TX_MAX_CHARS + 1) == APP_ARG_TX_MAX_CHARS + 1) {
return -1;
}
n_tuples = 0;
while ((p = strchr(p0,'(')) != NULL) {
struct app_lcore_params *lp;
uint32_t port, lcore, i;
p0 = strchr(p++, ')');
if ((p0 == NULL) ||
(str_to_unsigned_vals(p, p0 - p, ',', 2, &port, &lcore) != 2)) {
return -2;
}
/* Enable port and queue for later initialization */
if (port >= APP_MAX_NIC_PORTS) {
return -3;
}
if (app.nic_tx_port_mask[port] != 0) {
return -4;
}
app.nic_tx_port_mask[port] = 1;
/* Check and assign (port, queue) to I/O lcore */
if (rte_lcore_is_enabled(lcore) == 0) {
return -5;
}
if (lcore >= APP_MAX_LCORES) {
return -6;
}
lp = &app.lcore_params[lcore];
if (lp->type == e_APP_LCORE_WORKER) {
return -7;
}
lp->type = e_APP_LCORE_IO;
for (i = 0; i < lp->io.tx.n_nic_ports; i ++) {
if (lp->io.tx.nic_ports[i] == port) {
return -8;
}
}
if (lp->io.tx.n_nic_ports >= APP_MAX_NIC_TX_PORTS_PER_IO_LCORE) {
return -9;
}
lp->io.tx.nic_ports[lp->io.tx.n_nic_ports] = (uint8_t) port;
lp->io.tx.n_nic_ports ++;
n_tuples ++;
if (n_tuples > APP_ARG_TX_MAX_TUPLES) {
return -10;
}
}
if (n_tuples == 0) {
return -11;
}
return 0;
}
#ifndef APP_ARG_W_MAX_CHARS
#define APP_ARG_W_MAX_CHARS 4096
#endif
#ifndef APP_ARG_W_MAX_TUPLES
#define APP_ARG_W_MAX_TUPLES APP_MAX_WORKER_LCORES
#endif
static int
parse_arg_w(const char *arg)
{
const char *p = arg;
uint32_t n_tuples;
if (strnlen(arg, APP_ARG_W_MAX_CHARS + 1) == APP_ARG_W_MAX_CHARS + 1) {
return -1;
}
n_tuples = 0;
while (*p != 0) {
struct app_lcore_params *lp;
uint32_t lcore;
errno = 0;
lcore = strtoul(p, NULL, 0);
if ((errno != 0)) {
return -2;
}
/* Check and enable worker lcore */
if (rte_lcore_is_enabled(lcore) == 0) {
return -3;
}
if (lcore >= APP_MAX_LCORES) {
return -4;
}
lp = &app.lcore_params[lcore];
if (lp->type == e_APP_LCORE_IO) {
return -5;
}
lp->type = e_APP_LCORE_WORKER;
n_tuples ++;
if (n_tuples > APP_ARG_W_MAX_TUPLES) {
return -6;
}
p = strchr(p, ',');
if (p == NULL) {
break;
}
p ++;
}
if (n_tuples == 0) {
return -7;
}
if ((n_tuples & (n_tuples - 1)) != 0) {
return -8;
}
return 0;
}
#ifndef APP_ARG_LPM_MAX_CHARS
#define APP_ARG_LPM_MAX_CHARS 4096
#endif
static int
parse_arg_lpm(const char *arg)
{
const char *p = arg, *p0;
if (strnlen(arg, APP_ARG_LPM_MAX_CHARS + 1) == APP_ARG_TX_MAX_CHARS + 1) {
return -1;
}
while (*p != 0) {
uint32_t ip_a, ip_b, ip_c, ip_d, ip, depth, if_out;
char *endptr;
p0 = strchr(p, '/');
if ((p0 == NULL) ||
(str_to_unsigned_vals(p, p0 - p, '.', 4, &ip_a, &ip_b, &ip_c, &ip_d) != 4)) {
return -2;
}
p = p0 + 1;
errno = 0;
depth = strtoul(p, &endptr, 0);
if (errno != 0 || *endptr != '=') {
return -3;
}
p = strchr(p, '>');
if (p == NULL) {
return -4;
}
if_out = strtoul(++p, &endptr, 0);
if (errno != 0 || (*endptr != '\0' && *endptr != ';')) {
return -5;
}
if ((ip_a >= 256) || (ip_b >= 256) || (ip_c >= 256) || (ip_d >= 256) ||
(depth == 0) || (depth >= 32) ||
(if_out >= APP_MAX_NIC_PORTS)) {
return -6;
}
ip = (ip_a << 24) | (ip_b << 16) | (ip_c << 8) | ip_d;
if (app.n_lpm_rules >= APP_MAX_LPM_RULES) {
return -7;
}
app.lpm_rules[app.n_lpm_rules].ip = ip;
app.lpm_rules[app.n_lpm_rules].depth = (uint8_t) depth;
app.lpm_rules[app.n_lpm_rules].if_out = (uint8_t) if_out;
app.n_lpm_rules ++;
p = strchr(p, ';');
if (p == NULL) {
return -8;
}
p ++;
}
if (app.n_lpm_rules == 0) {
return -9;
}
return 0;
}
static int
app_check_lpm_table(void)
{
uint32_t rule;
/* For each rule, check that the output I/F is enabled */
for (rule = 0; rule < app.n_lpm_rules; rule ++)
{
uint32_t port = app.lpm_rules[rule].if_out;
if (app.nic_tx_port_mask[port] == 0) {
return -1;
}
}
return 0;
}
static int
app_check_every_rx_port_is_tx_enabled(void)
{
uint8_t port;
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
if ((app_get_nic_rx_queues_per_port(port) > 0) && (app.nic_tx_port_mask[port] == 0)) {
return -1;
}
}
return 0;
}
#ifndef APP_ARG_RSZ_CHARS
#define APP_ARG_RSZ_CHARS 63
#endif
static int
parse_arg_rsz(const char *arg)
{
if (strnlen(arg, APP_ARG_RSZ_CHARS + 1) == APP_ARG_RSZ_CHARS + 1) {
return -1;
}
if (str_to_unsigned_vals(arg, APP_ARG_RSZ_CHARS, ',', 4,
&app.nic_rx_ring_size,
&app.ring_rx_size,
&app.ring_tx_size,
&app.nic_tx_ring_size) != 4)
return -2;
if ((app.nic_rx_ring_size == 0) ||
(app.nic_tx_ring_size == 0) ||
(app.ring_rx_size == 0) ||
(app.ring_tx_size == 0)) {
return -3;
}
return 0;
}
#ifndef APP_ARG_BSZ_CHARS
#define APP_ARG_BSZ_CHARS 63
#endif
static int
parse_arg_bsz(const char *arg)
{
const char *p = arg, *p0;
if (strnlen(arg, APP_ARG_BSZ_CHARS + 1) == APP_ARG_BSZ_CHARS + 1) {
return -1;
}
p0 = strchr(p++, ')');
if ((p0 == NULL) ||
(str_to_unsigned_vals(p, p0 - p, ',', 2, &app.burst_size_io_rx_read, &app.burst_size_io_rx_write) != 2)) {
return -2;
}
p = strchr(p0, '(');
if (p == NULL) {
return -3;
}
p0 = strchr(p++, ')');
if ((p0 == NULL) ||
(str_to_unsigned_vals(p, p0 - p, ',', 2, &app.burst_size_worker_read, &app.burst_size_worker_write) != 2)) {
return -4;
}
p = strchr(p0, '(');
if (p == NULL) {
return -5;
}
p0 = strchr(p++, ')');
if ((p0 == NULL) ||
(str_to_unsigned_vals(p, p0 - p, ',', 2, &app.burst_size_io_tx_read, &app.burst_size_io_tx_write) != 2)) {
return -6;
}
if ((app.burst_size_io_rx_read == 0) ||
(app.burst_size_io_rx_write == 0) ||
(app.burst_size_worker_read == 0) ||
(app.burst_size_worker_write == 0) ||
(app.burst_size_io_tx_read == 0) ||
(app.burst_size_io_tx_write == 0)) {
return -7;
}
if ((app.burst_size_io_rx_read > APP_MBUF_ARRAY_SIZE) ||
(app.burst_size_io_rx_write > APP_MBUF_ARRAY_SIZE) ||
(app.burst_size_worker_read > APP_MBUF_ARRAY_SIZE) ||
(app.burst_size_worker_write > APP_MBUF_ARRAY_SIZE) ||
((2 * app.burst_size_io_tx_read) > APP_MBUF_ARRAY_SIZE) ||
(app.burst_size_io_tx_write > APP_MBUF_ARRAY_SIZE)) {
return -8;
}
return 0;
}
#ifndef APP_ARG_NUMERICAL_SIZE_CHARS
#define APP_ARG_NUMERICAL_SIZE_CHARS 15
#endif
static int
parse_arg_pos_lb(const char *arg)
{
uint32_t x;
char *endpt;
if (strnlen(arg, APP_ARG_NUMERICAL_SIZE_CHARS + 1) == APP_ARG_NUMERICAL_SIZE_CHARS + 1) {
return -1;
}
errno = 0;
x = strtoul(arg, &endpt, 10);
if (errno != 0 || endpt == arg || *endpt != '\0'){
return -2;
}
if (x >= 64) {
return -3;
}
app.pos_lb = (uint8_t) x;
return 0;
}
/* Parse the argument given in the command line of the application */
int
app_parse_args(int argc, char **argv)
{
int opt, ret;
char **argvopt;
int option_index;
char *prgname = argv[0];
static struct option lgopts[] = {
{"rx", 1, 0, 0},
{"tx", 1, 0, 0},
{"w", 1, 0, 0},
{"lpm", 1, 0, 0},
{"rsz", 1, 0, 0},
{"bsz", 1, 0, 0},
{"pos-lb", 1, 0, 0},
{NULL, 0, 0, 0}
};
uint32_t arg_w = 0;
uint32_t arg_rx = 0;
uint32_t arg_tx = 0;
uint32_t arg_lpm = 0;
uint32_t arg_rsz = 0;
uint32_t arg_bsz = 0;
uint32_t arg_pos_lb = 0;
argvopt = argv;
while ((opt = getopt_long(argc, argvopt, "",
lgopts, &option_index)) != EOF) {
switch (opt) {
/* long options */
case 0:
if (!strcmp(lgopts[option_index].name, "rx")) {
arg_rx = 1;
ret = parse_arg_rx(optarg);
if (ret) {
printf("Incorrect value for --rx argument (%d)\n", ret);
return -1;
}
}
if (!strcmp(lgopts[option_index].name, "tx")) {
arg_tx = 1;
ret = parse_arg_tx(optarg);
if (ret) {
printf("Incorrect value for --tx argument (%d)\n", ret);
return -1;
}
}
if (!strcmp(lgopts[option_index].name, "w")) {
arg_w = 1;
ret = parse_arg_w(optarg);
if (ret) {
printf("Incorrect value for --w argument (%d)\n", ret);
return -1;
}
}
if (!strcmp(lgopts[option_index].name, "lpm")) {
arg_lpm = 1;
ret = parse_arg_lpm(optarg);
if (ret) {
printf("Incorrect value for --lpm argument (%d)\n", ret);
return -1;
}
}
if (!strcmp(lgopts[option_index].name, "rsz")) {
arg_rsz = 1;
ret = parse_arg_rsz(optarg);
if (ret) {
printf("Incorrect value for --rsz argument (%d)\n", ret);
return -1;
}
}
if (!strcmp(lgopts[option_index].name, "bsz")) {
arg_bsz = 1;
ret = parse_arg_bsz(optarg);
if (ret) {
printf("Incorrect value for --bsz argument (%d)\n", ret);
return -1;
}
}
if (!strcmp(lgopts[option_index].name, "pos-lb")) {
arg_pos_lb = 1;
ret = parse_arg_pos_lb(optarg);
if (ret) {
printf("Incorrect value for --pos-lb argument (%d)\n", ret);
return -1;
}
}
break;
default:
return -1;
}
}
/* Check that all mandatory arguments are provided */
if ((arg_rx == 0) || (arg_tx == 0) || (arg_w == 0) || (arg_lpm == 0)){
printf("Not all mandatory arguments are present\n");
return -1;
}
/* Assign default values for the optional arguments not provided */
if (arg_rsz == 0) {
app.nic_rx_ring_size = APP_DEFAULT_NIC_RX_RING_SIZE;
app.nic_tx_ring_size = APP_DEFAULT_NIC_TX_RING_SIZE;
app.ring_rx_size = APP_DEFAULT_RING_RX_SIZE;
app.ring_tx_size = APP_DEFAULT_RING_TX_SIZE;
}
if (arg_bsz == 0) {
app.burst_size_io_rx_read = APP_DEFAULT_BURST_SIZE_IO_RX_READ;
app.burst_size_io_rx_write = APP_DEFAULT_BURST_SIZE_IO_RX_WRITE;
app.burst_size_io_tx_read = APP_DEFAULT_BURST_SIZE_IO_TX_READ;
app.burst_size_io_tx_write = APP_DEFAULT_BURST_SIZE_IO_TX_WRITE;
app.burst_size_worker_read = APP_DEFAULT_BURST_SIZE_WORKER_READ;
app.burst_size_worker_write = APP_DEFAULT_BURST_SIZE_WORKER_WRITE;
}
if (arg_pos_lb == 0) {
app.pos_lb = APP_DEFAULT_IO_RX_LB_POS;
}
/* Check cross-consistency of arguments */
if ((ret = app_check_lpm_table()) < 0) {
printf("At least one LPM rule is inconsistent (%d)\n", ret);
return -1;
}
if (app_check_every_rx_port_is_tx_enabled() < 0) {
printf("On LPM lookup miss, packet is sent back on the input port.\n");
printf("At least one RX port is not enabled for TX.\n");
return -2;
}
if (optind >= 0)
argv[optind - 1] = prgname;
ret = optind - 1;
optind = 0; /* reset getopt lib */
return ret;
}
int
app_get_nic_rx_queues_per_port(uint8_t port)
{
uint32_t i, count;
if (port >= APP_MAX_NIC_PORTS) {
return -1;
}
count = 0;
for (i = 0; i < APP_MAX_RX_QUEUES_PER_NIC_PORT; i ++) {
if (app.nic_rx_queue_mask[port][i] == 1) {
count ++;
}
}
return count;
}
int
app_get_lcore_for_nic_rx(uint8_t port, uint8_t queue, uint32_t *lcore_out)
{
uint32_t lcore;
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp = &app.lcore_params[lcore].io;
uint32_t i;
if (app.lcore_params[lcore].type != e_APP_LCORE_IO) {
continue;
}
for (i = 0; i < lp->rx.n_nic_queues; i ++) {
if ((lp->rx.nic_queues[i].port == port) &&
(lp->rx.nic_queues[i].queue == queue)) {
*lcore_out = lcore;
return 0;
}
}
}
return -1;
}
int
app_get_lcore_for_nic_tx(uint8_t port, uint32_t *lcore_out)
{
uint32_t lcore;
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp = &app.lcore_params[lcore].io;
uint32_t i;
if (app.lcore_params[lcore].type != e_APP_LCORE_IO) {
continue;
}
for (i = 0; i < lp->tx.n_nic_ports; i ++) {
if (lp->tx.nic_ports[i] == port) {
*lcore_out = lcore;
return 0;
}
}
}
return -1;
}
int
app_is_socket_used(uint32_t socket)
{
uint32_t lcore;
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
if (app.lcore_params[lcore].type == e_APP_LCORE_DISABLED) {
continue;
}
if (socket == rte_lcore_to_socket_id(lcore)) {
return 1;
}
}
return 0;
}
uint32_t
app_get_lcores_io_rx(void)
{
uint32_t lcore, count;
count = 0;
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp_io = &app.lcore_params[lcore].io;
if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) ||
(lp_io->rx.n_nic_queues == 0)) {
continue;
}
count ++;
}
return count;
}
uint32_t
app_get_lcores_worker(void)
{
uint32_t lcore, count;
count = 0;
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
count ++;
}
if (count > APP_MAX_WORKER_LCORES) {
rte_panic("Algorithmic error (too many worker lcores)\n");
return 0;
}
return count;
}
void
app_print_params(void)
{
unsigned port, queue, lcore, rule, i, j;
/* Print NIC RX configuration */
printf("NIC RX ports: ");
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
uint32_t n_rx_queues = app_get_nic_rx_queues_per_port((uint8_t) port);
if (n_rx_queues == 0) {
continue;
}
printf("%u (", port);
for (queue = 0; queue < APP_MAX_RX_QUEUES_PER_NIC_PORT; queue ++) {
if (app.nic_rx_queue_mask[port][queue] == 1) {
printf("%u ", queue);
}
}
printf(") ");
}
printf(";\n");
/* Print I/O lcore RX params */
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp = &app.lcore_params[lcore].io;
if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) ||
(lp->rx.n_nic_queues == 0)) {
continue;
}
printf("I/O lcore %u (socket %u): ", lcore, rte_lcore_to_socket_id(lcore));
printf("RX ports ");
for (i = 0; i < lp->rx.n_nic_queues; i ++) {
printf("(%u, %u) ",
(unsigned) lp->rx.nic_queues[i].port,
(unsigned) lp->rx.nic_queues[i].queue);
}
printf("; ");
printf("Output rings ");
for (i = 0; i < lp->rx.n_rings; i ++) {
printf("%p ", lp->rx.rings[i]);
}
printf(";\n");
}
/* Print worker lcore RX params */
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_worker *lp = &app.lcore_params[lcore].worker;
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
printf("Worker lcore %u (socket %u) ID %u: ",
lcore,
rte_lcore_to_socket_id(lcore),
(unsigned)lp->worker_id);
printf("Input rings ");
for (i = 0; i < lp->n_rings_in; i ++) {
printf("%p ", lp->rings_in[i]);
}
printf(";\n");
}
printf("\n");
/* Print NIC TX configuration */
printf("NIC TX ports: ");
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
if (app.nic_tx_port_mask[port] == 1) {
printf("%u ", port);
}
}
printf(";\n");
/* Print I/O TX lcore params */
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_io *lp = &app.lcore_params[lcore].io;
uint32_t n_workers = app_get_lcores_worker();
if ((app.lcore_params[lcore].type != e_APP_LCORE_IO) ||
(lp->tx.n_nic_ports == 0)) {
continue;
}
printf("I/O lcore %u (socket %u): ", lcore, rte_lcore_to_socket_id(lcore));
printf("Input rings per TX port ");
for (i = 0; i < lp->tx.n_nic_ports; i ++) {
port = lp->tx.nic_ports[i];
printf("%u (", port);
for (j = 0; j < n_workers; j ++) {
printf("%p ", lp->tx.rings[port][j]);
}
printf(") ");
}
printf(";\n");
}
/* Print worker lcore TX params */
for (lcore = 0; lcore < APP_MAX_LCORES; lcore ++) {
struct app_lcore_params_worker *lp = &app.lcore_params[lcore].worker;
if (app.lcore_params[lcore].type != e_APP_LCORE_WORKER) {
continue;
}
printf("Worker lcore %u (socket %u) ID %u: \n",
lcore,
rte_lcore_to_socket_id(lcore),
(unsigned)lp->worker_id);
printf("Output rings per TX port ");
for (port = 0; port < APP_MAX_NIC_PORTS; port ++) {
if (lp->rings_out[port] != NULL) {
printf("%u (%p) ", port, lp->rings_out[port]);
}
}
printf(";\n");
}
/* Print LPM rules */
printf("LPM rules: \n");
for (rule = 0; rule < app.n_lpm_rules; rule ++) {
uint32_t ip = app.lpm_rules[rule].ip;
uint8_t depth = app.lpm_rules[rule].depth;
uint8_t if_out = app.lpm_rules[rule].if_out;
printf("\t%u: %u.%u.%u.%u/%u => %u;\n",
rule,
(unsigned) (ip & 0xFF000000) >> 24,
(unsigned) (ip & 0x00FF0000) >> 16,
(unsigned) (ip & 0x0000FF00) >> 8,
(unsigned) ip & 0x000000FF,
(unsigned) depth,
(unsigned) if_out
);
}
/* Rings */
printf("Ring sizes: NIC RX = %u; Worker in = %u; Worker out = %u; NIC TX = %u;\n",
(unsigned) app.nic_rx_ring_size,
(unsigned) app.ring_rx_size,
(unsigned) app.ring_tx_size,
(unsigned) app.nic_tx_ring_size);
/* Bursts */
printf("Burst sizes: I/O RX (rd = %u, wr = %u); Worker (rd = %u, wr = %u); I/O TX (rd = %u, wr = %u)\n",
(unsigned) app.burst_size_io_rx_read,
(unsigned) app.burst_size_io_rx_write,
(unsigned) app.burst_size_worker_read,
(unsigned) app.burst_size_worker_write,
(unsigned) app.burst_size_io_tx_read,
(unsigned) app.burst_size_io_tx_write);
}