numam-dpdk/drivers/net/sfc/sfc.c
Andrew Rybchenko 5259739677 net/sfc: clarify interrupts support function names
Make it clear that corresponding functions should be called on device
configure and close operations. No functional change.

Fixes: 06bc197796 ("net/sfc: interrupts support sufficient for event queue init")
Cc: stable@dpdk.org

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
2017-04-04 19:02:59 +02:00

746 lines
16 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) 2016-2017 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* sysconf() */
#include <unistd.h>
#include <rte_errno.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_log.h"
#include "sfc_ev.h"
#include "sfc_rx.h"
#include "sfc_tx.h"
int
sfc_dma_alloc(const struct sfc_adapter *sa, const char *name, uint16_t id,
size_t len, int socket_id, efsys_mem_t *esmp)
{
const struct rte_memzone *mz;
sfc_log_init(sa, "name=%s id=%u len=%lu socket_id=%d",
name, id, len, socket_id);
mz = rte_eth_dma_zone_reserve(sa->eth_dev, name, id, len,
sysconf(_SC_PAGESIZE), socket_id);
if (mz == NULL) {
sfc_err(sa, "cannot reserve DMA zone for %s:%u %#x@%d: %s",
name, (unsigned int)id, (unsigned int)len, socket_id,
rte_strerror(rte_errno));
return ENOMEM;
}
esmp->esm_addr = rte_mem_phy2mch(mz->memseg_id, mz->phys_addr);
if (esmp->esm_addr == RTE_BAD_PHYS_ADDR) {
(void)rte_memzone_free(mz);
return EFAULT;
}
esmp->esm_mz = mz;
esmp->esm_base = mz->addr;
return 0;
}
void
sfc_dma_free(const struct sfc_adapter *sa, efsys_mem_t *esmp)
{
int rc;
sfc_log_init(sa, "name=%s", esmp->esm_mz->name);
rc = rte_memzone_free(esmp->esm_mz);
if (rc != 0)
sfc_err(sa, "rte_memzone_free(() failed: %d", rc);
memset(esmp, 0, sizeof(*esmp));
}
static uint32_t
sfc_phy_cap_from_link_speeds(uint32_t speeds)
{
uint32_t phy_caps = 0;
if (~speeds & ETH_LINK_SPEED_FIXED) {
phy_caps |= (1 << EFX_PHY_CAP_AN);
/*
* If no speeds are specified in the mask, any supported
* may be negotiated
*/
if (speeds == ETH_LINK_SPEED_AUTONEG)
phy_caps |=
(1 << EFX_PHY_CAP_1000FDX) |
(1 << EFX_PHY_CAP_10000FDX) |
(1 << EFX_PHY_CAP_40000FDX);
}
if (speeds & ETH_LINK_SPEED_1G)
phy_caps |= (1 << EFX_PHY_CAP_1000FDX);
if (speeds & ETH_LINK_SPEED_10G)
phy_caps |= (1 << EFX_PHY_CAP_10000FDX);
if (speeds & ETH_LINK_SPEED_40G)
phy_caps |= (1 << EFX_PHY_CAP_40000FDX);
return phy_caps;
}
/*
* Check requested device level configuration.
* Receive and transmit configuration is checked in corresponding
* modules.
*/
static int
sfc_check_conf(struct sfc_adapter *sa)
{
const struct rte_eth_conf *conf = &sa->eth_dev->data->dev_conf;
int rc = 0;
sa->port.phy_adv_cap =
sfc_phy_cap_from_link_speeds(conf->link_speeds) &
sa->port.phy_adv_cap_mask;
if ((sa->port.phy_adv_cap & ~(1 << EFX_PHY_CAP_AN)) == 0) {
sfc_err(sa, "No link speeds from mask %#x are supported",
conf->link_speeds);
rc = EINVAL;
}
if (conf->lpbk_mode != 0) {
sfc_err(sa, "Loopback not supported");
rc = EINVAL;
}
if (conf->dcb_capability_en != 0) {
sfc_err(sa, "Priority-based flow control not supported");
rc = EINVAL;
}
if (conf->fdir_conf.mode != RTE_FDIR_MODE_NONE) {
sfc_err(sa, "Flow Director not supported");
rc = EINVAL;
}
if ((conf->intr_conf.lsc != 0) &&
(sa->intr.type != EFX_INTR_LINE) &&
(sa->intr.type != EFX_INTR_MESSAGE)) {
sfc_err(sa, "Link status change interrupt not supported");
rc = EINVAL;
}
if (conf->intr_conf.rxq != 0) {
sfc_err(sa, "Receive queue interrupt not supported");
rc = EINVAL;
}
return rc;
}
/*
* Find out maximum number of receive and transmit queues which could be
* advertised.
*
* NIC is kept initialized on success to allow other modules acquire
* defaults and capabilities.
*/
static int
sfc_estimate_resource_limits(struct sfc_adapter *sa)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
efx_drv_limits_t limits;
int rc;
uint32_t evq_allocated;
uint32_t rxq_allocated;
uint32_t txq_allocated;
memset(&limits, 0, sizeof(limits));
/* Request at least one Rx and Tx queue */
limits.edl_min_rxq_count = 1;
limits.edl_min_txq_count = 1;
/* Management event queue plus event queue for each Tx and Rx queue */
limits.edl_min_evq_count =
1 + limits.edl_min_rxq_count + limits.edl_min_txq_count;
/* Divide by number of functions to guarantee that all functions
* will get promised resources
*/
/* FIXME Divide by number of functions (not 2) below */
limits.edl_max_evq_count = encp->enc_evq_limit / 2;
SFC_ASSERT(limits.edl_max_evq_count >= limits.edl_min_rxq_count);
/* Split equally between receive and transmit */
limits.edl_max_rxq_count =
MIN(encp->enc_rxq_limit, (limits.edl_max_evq_count - 1) / 2);
SFC_ASSERT(limits.edl_max_rxq_count >= limits.edl_min_rxq_count);
limits.edl_max_txq_count =
MIN(encp->enc_txq_limit,
limits.edl_max_evq_count - 1 - limits.edl_max_rxq_count);
if (sa->tso)
limits.edl_max_txq_count =
MIN(limits.edl_max_txq_count,
encp->enc_fw_assisted_tso_v2_n_contexts /
encp->enc_hw_pf_count);
SFC_ASSERT(limits.edl_max_txq_count >= limits.edl_min_rxq_count);
/* Configure the minimum required resources needed for the
* driver to operate, and the maximum desired resources that the
* driver is capable of using.
*/
efx_nic_set_drv_limits(sa->nic, &limits);
sfc_log_init(sa, "init nic");
rc = efx_nic_init(sa->nic);
if (rc != 0)
goto fail_nic_init;
/* Find resource dimensions assigned by firmware to this function */
rc = efx_nic_get_vi_pool(sa->nic, &evq_allocated, &rxq_allocated,
&txq_allocated);
if (rc != 0)
goto fail_get_vi_pool;
/* It still may allocate more than maximum, ensure limit */
evq_allocated = MIN(evq_allocated, limits.edl_max_evq_count);
rxq_allocated = MIN(rxq_allocated, limits.edl_max_rxq_count);
txq_allocated = MIN(txq_allocated, limits.edl_max_txq_count);
/* Subtract management EVQ not used for traffic */
SFC_ASSERT(evq_allocated > 0);
evq_allocated--;
/* Right now we use separate EVQ for Rx and Tx */
sa->rxq_max = MIN(rxq_allocated, evq_allocated / 2);
sa->txq_max = MIN(txq_allocated, evq_allocated - sa->rxq_max);
/* Keep NIC initialized */
return 0;
fail_get_vi_pool:
fail_nic_init:
efx_nic_fini(sa->nic);
return rc;
}
static int
sfc_set_drv_limits(struct sfc_adapter *sa)
{
const struct rte_eth_dev_data *data = sa->eth_dev->data;
efx_drv_limits_t lim;
memset(&lim, 0, sizeof(lim));
/* Limits are strict since take into account initial estimation */
lim.edl_min_evq_count = lim.edl_max_evq_count =
1 + data->nb_rx_queues + data->nb_tx_queues;
lim.edl_min_rxq_count = lim.edl_max_rxq_count = data->nb_rx_queues;
lim.edl_min_txq_count = lim.edl_max_txq_count = data->nb_tx_queues;
return efx_nic_set_drv_limits(sa->nic, &lim);
}
int
sfc_start(struct sfc_adapter *sa)
{
int rc;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
switch (sa->state) {
case SFC_ADAPTER_CONFIGURED:
break;
case SFC_ADAPTER_STARTED:
sfc_info(sa, "already started");
return 0;
default:
rc = EINVAL;
goto fail_bad_state;
}
sa->state = SFC_ADAPTER_STARTING;
sfc_log_init(sa, "set resource limits");
rc = sfc_set_drv_limits(sa);
if (rc != 0)
goto fail_set_drv_limits;
sfc_log_init(sa, "init nic");
rc = efx_nic_init(sa->nic);
if (rc != 0)
goto fail_nic_init;
rc = sfc_intr_start(sa);
if (rc != 0)
goto fail_intr_start;
rc = sfc_ev_start(sa);
if (rc != 0)
goto fail_ev_start;
rc = sfc_port_start(sa);
if (rc != 0)
goto fail_port_start;
rc = sfc_rx_start(sa);
if (rc != 0)
goto fail_rx_start;
rc = sfc_tx_start(sa);
if (rc != 0)
goto fail_tx_start;
rc = sfc_flow_start(sa);
if (rc != 0)
goto fail_flows_insert;
sa->state = SFC_ADAPTER_STARTED;
sfc_log_init(sa, "done");
return 0;
fail_flows_insert:
sfc_tx_stop(sa);
fail_tx_start:
sfc_rx_stop(sa);
fail_rx_start:
sfc_port_stop(sa);
fail_port_start:
sfc_ev_stop(sa);
fail_ev_start:
sfc_intr_stop(sa);
fail_intr_start:
efx_nic_fini(sa->nic);
fail_nic_init:
fail_set_drv_limits:
sa->state = SFC_ADAPTER_CONFIGURED;
fail_bad_state:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_stop(struct sfc_adapter *sa)
{
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
switch (sa->state) {
case SFC_ADAPTER_STARTED:
break;
case SFC_ADAPTER_CONFIGURED:
sfc_info(sa, "already stopped");
return;
default:
sfc_err(sa, "stop in unexpected state %u", sa->state);
SFC_ASSERT(B_FALSE);
return;
}
sa->state = SFC_ADAPTER_STOPPING;
sfc_flow_stop(sa);
sfc_tx_stop(sa);
sfc_rx_stop(sa);
sfc_port_stop(sa);
sfc_ev_stop(sa);
sfc_intr_stop(sa);
efx_nic_fini(sa->nic);
sa->state = SFC_ADAPTER_CONFIGURED;
sfc_log_init(sa, "done");
}
int
sfc_configure(struct sfc_adapter *sa)
{
int rc;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(sa->state == SFC_ADAPTER_INITIALIZED);
sa->state = SFC_ADAPTER_CONFIGURING;
rc = sfc_check_conf(sa);
if (rc != 0)
goto fail_check_conf;
rc = sfc_intr_configure(sa);
if (rc != 0)
goto fail_intr_configure;
rc = sfc_ev_init(sa);
if (rc != 0)
goto fail_ev_init;
rc = sfc_port_init(sa);
if (rc != 0)
goto fail_port_init;
rc = sfc_rx_init(sa);
if (rc != 0)
goto fail_rx_init;
rc = sfc_tx_init(sa);
if (rc != 0)
goto fail_tx_init;
sa->state = SFC_ADAPTER_CONFIGURED;
sfc_log_init(sa, "done");
return 0;
fail_tx_init:
sfc_rx_fini(sa);
fail_rx_init:
sfc_port_fini(sa);
fail_port_init:
sfc_ev_fini(sa);
fail_ev_init:
sfc_intr_close(sa);
fail_intr_configure:
fail_check_conf:
sa->state = SFC_ADAPTER_INITIALIZED;
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_close(struct sfc_adapter *sa)
{
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
SFC_ASSERT(sa->state == SFC_ADAPTER_CONFIGURED);
sa->state = SFC_ADAPTER_CLOSING;
sfc_tx_fini(sa);
sfc_rx_fini(sa);
sfc_port_fini(sa);
sfc_ev_fini(sa);
sfc_intr_close(sa);
sa->state = SFC_ADAPTER_INITIALIZED;
sfc_log_init(sa, "done");
}
static int
sfc_mem_bar_init(struct sfc_adapter *sa)
{
struct rte_eth_dev *eth_dev = sa->eth_dev;
struct rte_pci_device *pci_dev = SFC_DEV_TO_PCI(eth_dev);
efsys_bar_t *ebp = &sa->mem_bar;
unsigned int i;
struct rte_mem_resource *res;
for (i = 0; i < RTE_DIM(pci_dev->mem_resource); i++) {
res = &pci_dev->mem_resource[i];
if ((res->len != 0) && (res->phys_addr != 0)) {
/* Found first memory BAR */
SFC_BAR_LOCK_INIT(ebp, eth_dev->data->name);
ebp->esb_rid = i;
ebp->esb_dev = pci_dev;
ebp->esb_base = res->addr;
return 0;
}
}
return EFAULT;
}
static void
sfc_mem_bar_fini(struct sfc_adapter *sa)
{
efsys_bar_t *ebp = &sa->mem_bar;
SFC_BAR_LOCK_DESTROY(ebp);
memset(ebp, 0, sizeof(*ebp));
}
#if EFSYS_OPT_RX_SCALE
/*
* A fixed RSS key which has a property of being symmetric
* (symmetrical flows are distributed to the same CPU)
* and also known to give a uniform distribution
* (a good distribution of traffic between different CPUs)
*/
static const uint8_t default_rss_key[SFC_RSS_KEY_SIZE] = {
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a, 0x6d, 0x5a,
};
#endif
static int
sfc_set_rss_defaults(struct sfc_adapter *sa)
{
#if EFSYS_OPT_RX_SCALE
int rc;
rc = efx_intr_init(sa->nic, sa->intr.type, NULL);
if (rc != 0)
goto fail_intr_init;
rc = efx_ev_init(sa->nic);
if (rc != 0)
goto fail_ev_init;
rc = efx_rx_init(sa->nic);
if (rc != 0)
goto fail_rx_init;
rc = efx_rx_scale_support_get(sa->nic, &sa->rss_support);
if (rc != 0)
goto fail_scale_support_get;
rc = efx_rx_hash_support_get(sa->nic, &sa->hash_support);
if (rc != 0)
goto fail_hash_support_get;
efx_rx_fini(sa->nic);
efx_ev_fini(sa->nic);
efx_intr_fini(sa->nic);
sa->rss_hash_types = sfc_rte_to_efx_hash_type(SFC_RSS_OFFLOADS);
rte_memcpy(sa->rss_key, default_rss_key, sizeof(sa->rss_key));
return 0;
fail_hash_support_get:
fail_scale_support_get:
fail_rx_init:
efx_ev_fini(sa->nic);
fail_ev_init:
efx_intr_fini(sa->nic);
fail_intr_init:
return rc;
#else
return 0;
#endif
}
int
sfc_attach(struct sfc_adapter *sa)
{
const efx_nic_cfg_t *encp;
efx_nic_t *enp = sa->nic;
int rc;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
efx_mcdi_new_epoch(enp);
sfc_log_init(sa, "reset nic");
rc = efx_nic_reset(enp);
if (rc != 0)
goto fail_nic_reset;
encp = efx_nic_cfg_get(sa->nic);
if (sa->dp_tx->features & SFC_DP_TX_FEAT_TSO) {
sa->tso = encp->enc_fw_assisted_tso_v2_enabled;
if (!sa->tso)
sfc_warn(sa,
"TSO support isn't available on this adapter");
}
sfc_log_init(sa, "estimate resource limits");
rc = sfc_estimate_resource_limits(sa);
if (rc != 0)
goto fail_estimate_rsrc_limits;
sa->txq_max_entries = encp->enc_txq_max_ndescs;
SFC_ASSERT(rte_is_power_of_2(sa->txq_max_entries));
rc = sfc_intr_attach(sa);
if (rc != 0)
goto fail_intr_attach;
efx_phy_adv_cap_get(sa->nic, EFX_PHY_CAP_PERM,
&sa->port.phy_adv_cap_mask);
rc = sfc_set_rss_defaults(sa);
if (rc != 0)
goto fail_set_rss_defaults;
rc = sfc_filter_attach(sa);
if (rc != 0)
goto fail_filter_attach;
sfc_log_init(sa, "fini nic");
efx_nic_fini(enp);
sfc_flow_init(sa);
sa->state = SFC_ADAPTER_INITIALIZED;
sfc_log_init(sa, "done");
return 0;
fail_filter_attach:
fail_set_rss_defaults:
sfc_intr_detach(sa);
fail_intr_attach:
efx_nic_fini(sa->nic);
fail_estimate_rsrc_limits:
fail_nic_reset:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_detach(struct sfc_adapter *sa)
{
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
sfc_flow_fini(sa);
sfc_filter_detach(sa);
sfc_intr_detach(sa);
sa->state = SFC_ADAPTER_UNINITIALIZED;
}
int
sfc_probe(struct sfc_adapter *sa)
{
struct rte_pci_device *pci_dev = SFC_DEV_TO_PCI(sa->eth_dev);
efx_nic_t *enp;
int rc;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
sa->socket_id = rte_socket_id();
sfc_log_init(sa, "init mem bar");
rc = sfc_mem_bar_init(sa);
if (rc != 0)
goto fail_mem_bar_init;
sfc_log_init(sa, "get family");
rc = efx_family(pci_dev->id.vendor_id, pci_dev->id.device_id,
&sa->family);
if (rc != 0)
goto fail_family;
sfc_log_init(sa, "family is %u", sa->family);
sfc_log_init(sa, "create nic");
rte_spinlock_init(&sa->nic_lock);
rc = efx_nic_create(sa->family, (efsys_identifier_t *)sa,
&sa->mem_bar, &sa->nic_lock, &enp);
if (rc != 0)
goto fail_nic_create;
sa->nic = enp;
rc = sfc_mcdi_init(sa);
if (rc != 0)
goto fail_mcdi_init;
sfc_log_init(sa, "probe nic");
rc = efx_nic_probe(enp);
if (rc != 0)
goto fail_nic_probe;
sfc_log_init(sa, "done");
return 0;
fail_nic_probe:
sfc_mcdi_fini(sa);
fail_mcdi_init:
sfc_log_init(sa, "destroy nic");
sa->nic = NULL;
efx_nic_destroy(enp);
fail_nic_create:
fail_family:
sfc_mem_bar_fini(sa);
fail_mem_bar_init:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_unprobe(struct sfc_adapter *sa)
{
efx_nic_t *enp = sa->nic;
sfc_log_init(sa, "entry");
SFC_ASSERT(sfc_adapter_is_locked(sa));
sfc_log_init(sa, "unprobe nic");
efx_nic_unprobe(enp);
sfc_mcdi_fini(sa);
sfc_log_init(sa, "destroy nic");
sa->nic = NULL;
efx_nic_destroy(enp);
sfc_mem_bar_fini(sa);
sfc_flow_fini(sa);
sa->state = SFC_ADAPTER_UNINITIALIZED;
}