c49c880ffe
Adding code snippet using literalinclude so that to keep automatically these structures in doc in sync with the bbdev source code. Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
1117 lines
38 KiB
C
1117 lines
38 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
||
* Copyright(c) 2017 Intel Corporation
|
||
*/
|
||
|
||
#ifndef _RTE_BBDEV_OP_H_
|
||
#define _RTE_BBDEV_OP_H_
|
||
|
||
/**
|
||
* @file rte_bbdev_op.h
|
||
*
|
||
* Defines wireless base band layer 1 operations and capabilities
|
||
*/
|
||
|
||
#ifdef __cplusplus
|
||
extern "C" {
|
||
#endif
|
||
|
||
#include <stdint.h>
|
||
|
||
#include <rte_common.h>
|
||
#include <rte_mbuf.h>
|
||
#include <rte_memory.h>
|
||
#include <rte_mempool.h>
|
||
|
||
/* Number of columns in sub-block interleaver (36.212, section 5.1.4.1.1) */
|
||
#define RTE_BBDEV_TURBO_C_SUBBLOCK (32)
|
||
/* Maximum size of Transport Block (36.213, Table, Table 7.1.7.2.5-1) */
|
||
#define RTE_BBDEV_TURBO_MAX_TB_SIZE (391656)
|
||
/* Maximum size of Code Block (36.212, Table 5.1.3-3) */
|
||
#define RTE_BBDEV_TURBO_MAX_CB_SIZE (6144)
|
||
/* Maximum size of Code Block */
|
||
#define RTE_BBDEV_LDPC_MAX_CB_SIZE (8448)
|
||
/* Minimum size of Code Block */
|
||
#define RTE_BBDEV_LDPC_MIN_CB_SIZE (40)
|
||
/* Maximum E size we can manage with default mbuf */
|
||
#define RTE_BBDEV_LDPC_E_MAX_MBUF (64000)
|
||
/* Minimum size of Code Block (36.212, Table 5.1.3-3) */
|
||
#define RTE_BBDEV_TURBO_MIN_CB_SIZE (40)
|
||
/* Maximum size of circular buffer */
|
||
#define RTE_BBDEV_TURBO_MAX_KW (18528)
|
||
/*
|
||
* Turbo: Maximum number of Code Blocks in Transport Block. It is calculated
|
||
* based on maximum size of one Code Block and one Transport Block
|
||
* (considering CRC24A and CRC24B):
|
||
* (391656 + 24) / (6144 - 24) = 64
|
||
*/
|
||
#define RTE_BBDEV_TURBO_MAX_CODE_BLOCKS (64)
|
||
/* LDPC: Maximum number of Code Blocks in Transport Block.*/
|
||
#define RTE_BBDEV_LDPC_MAX_CODE_BLOCKS (256)
|
||
/* 12 CS maximum */
|
||
#define RTE_BBDEV_MAX_CS_2 (6)
|
||
|
||
/*
|
||
* Maximum size to be used to manage the enum rte_bbdev_op_type
|
||
* including padding for future enum insertion.
|
||
* The enum values must be explicitly kept smaller or equal to this padded maximum size.
|
||
*/
|
||
#define RTE_BBDEV_OP_TYPE_SIZE_MAX 8
|
||
|
||
/** Flags for turbo decoder operation and capability structure */
|
||
enum rte_bbdev_op_td_flag_bitmasks {
|
||
/** If sub block de-interleaving is to be performed. */
|
||
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE = (1ULL << 0),
|
||
/** To use CRC Type 24B (otherwise use CRC Type 24A). */
|
||
RTE_BBDEV_TURBO_CRC_TYPE_24B = (1ULL << 1),
|
||
/** If turbo equalization is to be performed. */
|
||
RTE_BBDEV_TURBO_EQUALIZER = (1ULL << 2),
|
||
/** If set, saturate soft output to +/-127 */
|
||
RTE_BBDEV_TURBO_SOFT_OUT_SATURATE = (1ULL << 3),
|
||
/** Set to 1 to start iteration from even, else odd; one iteration =
|
||
* max_iteration + 0.5
|
||
*/
|
||
RTE_BBDEV_TURBO_HALF_ITERATION_EVEN = (1ULL << 4),
|
||
/** If 0, TD stops after CRC matches; else if 1, runs to end of next
|
||
* odd iteration after CRC matches
|
||
*/
|
||
RTE_BBDEV_TURBO_CONTINUE_CRC_MATCH = (1ULL << 5),
|
||
/** Set if soft output is required to be output */
|
||
RTE_BBDEV_TURBO_SOFT_OUTPUT = (1ULL << 6),
|
||
/** Set to enable early termination mode */
|
||
RTE_BBDEV_TURBO_EARLY_TERMINATION = (1ULL << 7),
|
||
/** Set if a device supports decoder dequeue interrupts */
|
||
RTE_BBDEV_TURBO_DEC_INTERRUPTS = (1ULL << 9),
|
||
/** Set if positive LLR encoded input is supported. Positive LLR value
|
||
* represents the level of confidence for bit '1', and vice versa for
|
||
* bit '0'.
|
||
* This is mutually exclusive with RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN
|
||
* when used to formalize the input data format.
|
||
*/
|
||
RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN = (1ULL << 10),
|
||
/** Set if negative LLR encoded input is supported. Negative LLR value
|
||
* represents the level of confidence for bit '1', and vice versa for
|
||
* bit '0'.
|
||
* This is mutually exclusive with RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN
|
||
* when used to formalize the input data format.
|
||
*/
|
||
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN = (1ULL << 11),
|
||
/** Set if positive LLR soft output is supported. Positive LLR value
|
||
* represents the level of confidence for bit '1', and vice versa for
|
||
* bit '0'.
|
||
* This is mutually exclusive with
|
||
* RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT when used to formalize
|
||
* the input data format.
|
||
*/
|
||
RTE_BBDEV_TURBO_POS_LLR_1_BIT_SOFT_OUT = (1ULL << 12),
|
||
/** Set if negative LLR soft output is supported. Negative LLR value
|
||
* represents the level of confidence for bit '1', and vice versa for
|
||
* bit '0'.
|
||
* This is mutually exclusive with
|
||
* RTE_BBDEV_TURBO_POS_LLR_1_BIT_SOFT_OUT when used to formalize the
|
||
* input data format.
|
||
*/
|
||
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT = (1ULL << 13),
|
||
/** Set if driver supports flexible parallel MAP engine decoding. If
|
||
* not supported, num_maps (number of MAP engines) argument is unusable.
|
||
*/
|
||
RTE_BBDEV_TURBO_MAP_DEC = (1ULL << 14),
|
||
/** Set if a device supports scatter-gather functionality */
|
||
RTE_BBDEV_TURBO_DEC_SCATTER_GATHER = (1ULL << 15),
|
||
/** Set to keep CRC24B bits appended while decoding. Only usable when
|
||
* decoding Transport Block mode.
|
||
*/
|
||
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP = (1ULL << 16),
|
||
/** Set to drop CRC24B bits not to be appended while decoding.
|
||
*/
|
||
RTE_BBDEV_TURBO_DEC_CRC_24B_DROP = (1ULL << 17)
|
||
};
|
||
|
||
|
||
/** Flags for turbo encoder operation and capability structure */
|
||
enum rte_bbdev_op_te_flag_bitmasks {
|
||
/** Ignore rv_index and set K0 = 0 */
|
||
RTE_BBDEV_TURBO_RV_INDEX_BYPASS = (1ULL << 0),
|
||
/** If rate matching is to be performed */
|
||
RTE_BBDEV_TURBO_RATE_MATCH = (1ULL << 1),
|
||
/** This bit must be set to enable CRC-24B generation */
|
||
RTE_BBDEV_TURBO_CRC_24B_ATTACH = (1ULL << 2),
|
||
/** This bit must be set to enable CRC-24A generation */
|
||
RTE_BBDEV_TURBO_CRC_24A_ATTACH = (1ULL << 3),
|
||
/** Set if a device supports encoder dequeue interrupts */
|
||
RTE_BBDEV_TURBO_ENC_INTERRUPTS = (1ULL << 4),
|
||
/** Set if a device supports scatter-gather functionality */
|
||
RTE_BBDEV_TURBO_ENC_SCATTER_GATHER = (1ULL << 5)
|
||
};
|
||
|
||
/** Flags for LDPC decoder operation and capability structure */
|
||
enum rte_bbdev_op_ldpcdec_flag_bitmasks {
|
||
/** Set for transport block CRC-24A checking */
|
||
RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK = (1ULL << 0),
|
||
/** Set for code block CRC-24B checking */
|
||
RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK = (1ULL << 1),
|
||
/** Set to drop the last CRC bits decoding output */
|
||
RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP = (1ULL << 2),
|
||
/** Set for transport block CRC-16 checking */
|
||
RTE_BBDEV_LDPC_CRC_TYPE_16_CHECK = (1ULL << 3),
|
||
/** Set for bit-level de-interleaver bypass on Rx stream. */
|
||
RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS = (1ULL << 4),
|
||
/** Set for HARQ combined input stream enable. */
|
||
RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE = (1ULL << 5),
|
||
/** Set for HARQ combined output stream enable. */
|
||
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE = (1ULL << 6),
|
||
/** Set for LDPC decoder bypass.
|
||
* RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE must be set.
|
||
*/
|
||
RTE_BBDEV_LDPC_DECODE_BYPASS = (1ULL << 7),
|
||
/** Set for soft-output stream enable */
|
||
RTE_BBDEV_LDPC_SOFT_OUT_ENABLE = (1ULL << 8),
|
||
/** Set for Rate-Matching bypass on soft-out stream. */
|
||
RTE_BBDEV_LDPC_SOFT_OUT_RM_BYPASS = (1ULL << 9),
|
||
/** Set for bit-level de-interleaver bypass on soft-output stream. */
|
||
RTE_BBDEV_LDPC_SOFT_OUT_DEINTERLEAVER_BYPASS = (1ULL << 10),
|
||
/** Set for iteration stopping on successful decode condition
|
||
* i.e. a successful syndrome check.
|
||
*/
|
||
RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE = (1ULL << 11),
|
||
/** Set if a device supports decoder dequeue interrupts. */
|
||
RTE_BBDEV_LDPC_DEC_INTERRUPTS = (1ULL << 12),
|
||
/** Set if a device supports scatter-gather functionality. */
|
||
RTE_BBDEV_LDPC_DEC_SCATTER_GATHER = (1ULL << 13),
|
||
/** Set if a device supports input/output HARQ compression. */
|
||
RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION = (1ULL << 14),
|
||
/** Set if a device supports input LLR compression. */
|
||
RTE_BBDEV_LDPC_LLR_COMPRESSION = (1ULL << 15),
|
||
/** Set if a device supports HARQ input from
|
||
* device's internal memory.
|
||
*/
|
||
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE = (1ULL << 16),
|
||
/** Set if a device supports HARQ output to
|
||
* device's internal memory.
|
||
*/
|
||
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE = (1ULL << 17),
|
||
/** Set if a device supports loop-back access to
|
||
* HARQ internal memory. Intended for troubleshooting.
|
||
*/
|
||
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK = (1ULL << 18),
|
||
/** Set if a device includes LLR filler bits in the circular buffer
|
||
* for HARQ memory. If not set, it is assumed the filler bits are not
|
||
* in HARQ memory and handled directly by the LDPC decoder.
|
||
*/
|
||
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS = (1ULL << 19)
|
||
};
|
||
|
||
/** Flags for LDPC encoder operation and capability structure */
|
||
enum rte_bbdev_op_ldpcenc_flag_bitmasks {
|
||
/** Set for bit-level interleaver bypass on output stream. */
|
||
RTE_BBDEV_LDPC_INTERLEAVER_BYPASS = (1ULL << 0),
|
||
/** If rate matching is to be performed */
|
||
RTE_BBDEV_LDPC_RATE_MATCH = (1ULL << 1),
|
||
/** Set for transport block CRC-24A attach */
|
||
RTE_BBDEV_LDPC_CRC_24A_ATTACH = (1ULL << 2),
|
||
/** Set for code block CRC-24B attach */
|
||
RTE_BBDEV_LDPC_CRC_24B_ATTACH = (1ULL << 3),
|
||
/** Set for code block CRC-16 attach */
|
||
RTE_BBDEV_LDPC_CRC_16_ATTACH = (1ULL << 4),
|
||
/** Set if a device supports encoder dequeue interrupts. */
|
||
RTE_BBDEV_LDPC_ENC_INTERRUPTS = (1ULL << 5),
|
||
/** Set if a device supports scatter-gather functionality. */
|
||
RTE_BBDEV_LDPC_ENC_SCATTER_GATHER = (1ULL << 6),
|
||
/** Set if a device supports concatenation of non byte aligned output */
|
||
RTE_BBDEV_LDPC_ENC_CONCATENATION = (1ULL << 7)
|
||
};
|
||
|
||
/** Flags for FFT operation and capability structure. */
|
||
enum rte_bbdev_op_fft_flag_bitmasks {
|
||
/** Flexible windowing capability. */
|
||
RTE_BBDEV_FFT_WINDOWING = (1ULL << 0),
|
||
/** Flexible adjustment of Cyclic Shift time offset. */
|
||
RTE_BBDEV_FFT_CS_ADJUSTMENT = (1ULL << 1),
|
||
/** Set for bypass the DFT and get directly into iDFT input. */
|
||
RTE_BBDEV_FFT_DFT_BYPASS = (1ULL << 2),
|
||
/** Set for bypass the IDFT and get directly the DFT output. */
|
||
RTE_BBDEV_FFT_IDFT_BYPASS = (1ULL << 3),
|
||
/** Set for bypass time domain windowing. */
|
||
RTE_BBDEV_FFT_WINDOWING_BYPASS = (1ULL << 4),
|
||
/** Set for optional power measurement on DFT output. */
|
||
RTE_BBDEV_FFT_POWER_MEAS = (1ULL << 5),
|
||
/** Set if the input data used FP16 format. */
|
||
RTE_BBDEV_FFT_FP16_INPUT = (1ULL << 6),
|
||
/** Set if the output data uses FP16 format. */
|
||
RTE_BBDEV_FFT_FP16_OUTPUT = (1ULL << 7)
|
||
};
|
||
|
||
/** Flags for the Code Block/Transport block mode */
|
||
enum rte_bbdev_op_cb_mode {
|
||
/** One operation is one or fraction of one transport block */
|
||
RTE_BBDEV_TRANSPORT_BLOCK = 0,
|
||
/** One operation is one code block mode */
|
||
RTE_BBDEV_CODE_BLOCK = 1,
|
||
};
|
||
|
||
/** Data input and output buffer for BBDEV operations */
|
||
struct rte_bbdev_op_data {
|
||
/** The mbuf data structure representing the data for BBDEV operation.
|
||
*
|
||
* This mbuf pointer can point to one Code Block (CB) data buffer or
|
||
* multiple CBs contiguously located next to each other.
|
||
* A Transport Block (TB) represents a whole piece of data that is
|
||
* divided into one or more CBs. Maximum number of CBs can be contained
|
||
* in one TB is defined by RTE_BBDEV_(TURBO/LDPC)_MAX_CODE_BLOCKS.
|
||
*
|
||
* An mbuf data structure cannot represent more than one TB. The
|
||
* smallest piece of data that can be contained in one mbuf is one CB.
|
||
* An mbuf can include one contiguous CB, subset of contiguous CBs that
|
||
* are belonging to one TB, or all contiguous CBs that are belonging to
|
||
* one TB.
|
||
*
|
||
* If a BBDEV PMD supports the extended capability "Scatter-Gather",
|
||
* then it is capable of collecting (gathering) non-contiguous
|
||
* (scattered) data from multiple locations in the memory.
|
||
* This capability is reported by the capability flags:
|
||
* - RTE_BBDEV_(TURBO/LDPC)_ENC_SCATTER_GATHER and
|
||
* - RTE_BBDEV_(TURBO/LDPC)_DEC_SCATTER_GATHER.
|
||
* Only if a BBDEV PMD supports this feature, chained mbuf data
|
||
* structures are accepted. A chained mbuf can represent one
|
||
* non-contiguous CB or multiple non-contiguous CBs.
|
||
* If BBDEV PMD does not support this feature, it will assume inbound
|
||
* mbuf data contains one segment.
|
||
*
|
||
* The output mbuf data though is always one segment, even if the input
|
||
* was a chained mbuf.
|
||
*/
|
||
struct rte_mbuf *data;
|
||
/** The starting point of the BBDEV (encode/decode) operation,
|
||
* in bytes.
|
||
*
|
||
* BBDEV starts to read data past this offset.
|
||
* In case of chained mbuf, this offset applies only to the first mbuf
|
||
* segment.
|
||
*/
|
||
uint32_t offset;
|
||
/** The total data length to be processed in one operation, in bytes.
|
||
*
|
||
* In case the mbuf data is representing one CB, this is the length of
|
||
* the CB undergoing the operation.
|
||
* If it's for multiple CBs, this is the total length of those CBs
|
||
* undergoing the operation.
|
||
* If it is for one TB, this is the total length of the TB under
|
||
* operation.
|
||
*
|
||
* In case of chained mbuf, this data length includes the lengths of the
|
||
* "scattered" data segments undergoing the operation.
|
||
*/
|
||
uint32_t length;
|
||
};
|
||
|
||
/** Turbo decode code block parameters */
|
||
struct rte_bbdev_op_dec_turbo_cb_params {
|
||
/** The K size of the input CB, in bits [40:6144], as specified in
|
||
* 3GPP TS 36.212.
|
||
* This size is inclusive of CRC bits, regardless whether it was
|
||
* pre-calculated by the application or not.
|
||
*/
|
||
uint16_t k;
|
||
/** The E length of the CB rate matched LLR output, in bytes, as in
|
||
* 3GPP TS 36.212.
|
||
*/
|
||
uint32_t e;
|
||
};
|
||
|
||
/** LDPC decode code block parameters */
|
||
struct rte_bbdev_op_dec_ldpc_cb_params {
|
||
/** Rate matching output sequence length in bits or LLRs.
|
||
* [3GPP TS38.212, section 5.4.2.1]
|
||
*/
|
||
uint32_t e;
|
||
};
|
||
|
||
/** Turbo decode transport block parameters */
|
||
struct rte_bbdev_op_dec_turbo_tb_params {
|
||
/** The K- size of the input CB, in bits [40:6144], that is in the
|
||
* Turbo operation when r < C-, as in 3GPP TS 36.212.
|
||
*/
|
||
uint16_t k_neg;
|
||
/** The K+ size of the input CB, in bits [40:6144], that is in the
|
||
* Turbo operation when r >= C-, as in 3GPP TS 36.212.
|
||
*/
|
||
uint16_t k_pos;
|
||
/** The number of CBs that have K- size, [0:63] */
|
||
uint8_t c_neg;
|
||
/** The total number of CBs in the TB,
|
||
* [1:RTE_BBDEV_TURBO_MAX_CODE_BLOCKS]
|
||
*/
|
||
uint8_t c;
|
||
/** The number of CBs that uses Ea before switching to Eb, [0:63] */
|
||
uint8_t cab;
|
||
/** The E size of the CB rate matched output to use in the Turbo
|
||
* operation when r < cab
|
||
*/
|
||
uint32_t ea;
|
||
/** The E size of the CB rate matched output to use in the Turbo
|
||
* operation when r >= cab
|
||
*/
|
||
uint32_t eb;
|
||
/** The index of the first CB in the inbound mbuf data, default is 0 */
|
||
uint8_t r;
|
||
};
|
||
|
||
/** LDPC decode transport block parameters */
|
||
struct rte_bbdev_op_dec_ldpc_tb_params {
|
||
/** Ea, length after rate matching in bits, r < cab.
|
||
* [3GPP TS38.212, section 5.4.2.1]
|
||
*/
|
||
uint32_t ea;
|
||
/** Eb, length after rate matching in bits, r >= cab.
|
||
* [3GPP TS38.212, section 5.4.2.1]
|
||
*/
|
||
uint32_t eb;
|
||
/** The total number of CBs in the TB or partial TB
|
||
* [1:RTE_BBDEV_LDPC_MAX_CODE_BLOCKS]
|
||
*/
|
||
uint8_t c;
|
||
/** The index of the first CB in the inbound mbuf data, default is 0 */
|
||
uint8_t r;
|
||
/** The number of CBs that use Ea before switching to Eb, [0:63] */
|
||
uint8_t cab;
|
||
};
|
||
|
||
/** Operation structure for Turbo decode.
|
||
* An operation can be performed on one CB at a time "CB-mode".
|
||
* An operation can be performed on one or multiple CBs that logically
|
||
* belong to one TB "TB-mode".
|
||
* The provided K size parameter of the CB is its size coming from the
|
||
* decode operation.
|
||
* CRC24A/B check is requested by the application by setting the flag
|
||
* RTE_BBDEV_TURBO_CRC_TYPE_24B for CRC24B check or CRC24A otherwise.
|
||
* In TB-mode, BBDEV concatenates the decoded CBs one next to the other with
|
||
* relevant CRC24B in between.
|
||
*
|
||
* The input encoded CB data is the Virtual Circular Buffer data stream, wk,
|
||
* with the null padding included as described in 3GPP TS 36.212
|
||
* section 5.1.4.1.2 and shown in 3GPP TS 36.212 section 5.1.4.1 Figure 5.1.4-1.
|
||
* The size of the virtual circular buffer is 3*Kpi, where Kpi is the 32 byte
|
||
* aligned value of K, as specified in 3GPP TS 36.212 section 5.1.4.1.1.
|
||
*
|
||
* Each byte in the input circular buffer is the LLR value of each bit of the
|
||
* original CB.
|
||
*
|
||
* Hard output is a mandatory capability that all BBDEV PMDs support. This is
|
||
* the decoded CBs of K sizes (CRC24A/B is the last 24-bit in each decoded CB).
|
||
* Soft output is an optional capability for BBDEV PMDs. If supported, an LLR
|
||
* rate matched output is computed in the soft_output buffer structure.
|
||
*
|
||
* The output mbuf data structure is expected to be allocated by the
|
||
* application with enough room for the output data.
|
||
*/
|
||
|
||
/* Structure rte_bbdev_op_turbo_dec 8< */
|
||
struct rte_bbdev_op_turbo_dec {
|
||
/** The Virtual Circular Buffer, wk, size 3*Kpi for each CB */
|
||
struct rte_bbdev_op_data input;
|
||
/** The hard decisions buffer for the decoded output,
|
||
* size K for each CB
|
||
*/
|
||
struct rte_bbdev_op_data hard_output;
|
||
/** The soft LLR output buffer - optional */
|
||
struct rte_bbdev_op_data soft_output;
|
||
|
||
/** Flags from rte_bbdev_op_td_flag_bitmasks */
|
||
uint32_t op_flags;
|
||
|
||
/** Rv index for rate matching [0:3] */
|
||
uint8_t rv_index;
|
||
/** The minimum number of iterations to perform in decoding all CBs in
|
||
* this operation - input
|
||
*/
|
||
uint8_t iter_min:4;
|
||
/** The maximum number of iterations to perform in decoding all CBs in
|
||
* this operation - input
|
||
*/
|
||
uint8_t iter_max:4;
|
||
/** The maximum number of iterations that were performed in decoding
|
||
* all CBs in this decode operation - output
|
||
*/
|
||
uint8_t iter_count;
|
||
/** 5 bit extrinsic scale (scale factor on extrinsic info) */
|
||
uint8_t ext_scale;
|
||
/** Number of MAP engines to use in decode,
|
||
* must be power of 2 (or 0 to auto-select)
|
||
*/
|
||
uint8_t num_maps;
|
||
|
||
/** [0 - TB : 1 - CB] */
|
||
uint8_t code_block_mode;
|
||
union {
|
||
/** Struct which stores Code Block specific parameters */
|
||
struct rte_bbdev_op_dec_turbo_cb_params cb_params;
|
||
/** Struct which stores Transport Block specific parameters */
|
||
struct rte_bbdev_op_dec_turbo_tb_params tb_params;
|
||
};
|
||
};
|
||
/* >8 End of structure rte_bbdev_op_turbo_dec. */
|
||
|
||
/** Operation structure for LDPC decode.
|
||
*
|
||
* An operation can be performed on one CB at a time "CB-mode".
|
||
* An operation can also be performed on one or multiple CBs that logically
|
||
* belong to a TB "TB-mode" (Currently not supported).
|
||
*
|
||
* The input encoded CB data is the Virtual Circular Buffer data stream.
|
||
*
|
||
* Each byte in the input circular buffer is the LLR value of each bit of the
|
||
* original CB.
|
||
*
|
||
* Hard output is a mandatory capability that all BBDEV PMDs support. This is
|
||
* the decoded CBs (CRC24A/B is the last 24-bit in each decoded CB).
|
||
*
|
||
* Soft output is an optional capability for BBDEV PMDs. If supported, an LLR
|
||
* rate matched output is computed in the soft_output buffer structure.
|
||
* These are A Posteriori Probabilities (APP) LLR samples for coded bits.
|
||
*
|
||
* HARQ combined output is an optional capability for BBDEV PMDs.
|
||
* If supported, a LLR output is streamed to the harq_combined_output
|
||
* buffer.
|
||
*
|
||
* HARQ combined input is an optional capability for BBDEV PMDs.
|
||
* If supported, a LLR input is streamed from the harq_combined_input
|
||
* buffer.
|
||
*
|
||
* The output mbuf data structure is expected to be allocated by the
|
||
* application with enough room for the output data.
|
||
*/
|
||
|
||
/* Structure rte_bbdev_op_ldpc_dec 8< */
|
||
struct rte_bbdev_op_ldpc_dec {
|
||
/** The Virtual Circular Buffer for this code block, one LLR
|
||
* per bit of the original CB.
|
||
*/
|
||
struct rte_bbdev_op_data input;
|
||
/** The hard decisions buffer for the decoded output,
|
||
* size K for each CB
|
||
*/
|
||
struct rte_bbdev_op_data hard_output;
|
||
/** The soft LLR output LLR stream buffer - optional */
|
||
struct rte_bbdev_op_data soft_output;
|
||
/** The HARQ combined LLR stream input buffer - optional */
|
||
struct rte_bbdev_op_data harq_combined_input;
|
||
/** The HARQ combined LLR stream output buffer - optional */
|
||
struct rte_bbdev_op_data harq_combined_output;
|
||
|
||
/** Flags from rte_bbdev_op_ldpcdec_flag_bitmasks */
|
||
uint32_t op_flags;
|
||
|
||
/** Rate matching redundancy version
|
||
* [3GPP TS38.212, section 5.4.2.1]
|
||
*/
|
||
uint8_t rv_index;
|
||
/** The maximum number of iterations to perform in decoding CB in
|
||
* this operation - input
|
||
*/
|
||
uint8_t iter_max;
|
||
/** The number of iterations that were performed in decoding
|
||
* CB in this decode operation - output
|
||
*/
|
||
uint8_t iter_count;
|
||
/** 1: LDPC Base graph 1, 2: LDPC Base graph 2.
|
||
* [3GPP TS38.212, section 5.2.2]
|
||
*/
|
||
uint8_t basegraph;
|
||
/** Zc, LDPC lifting size.
|
||
* [3GPP TS38.212, section 5.2.2]
|
||
*/
|
||
uint16_t z_c;
|
||
/** Ncb, length of the circular buffer in bits.
|
||
* [3GPP TS38.212, section 5.4.2.1]
|
||
*/
|
||
uint16_t n_cb;
|
||
/** Qm, modulation order {1,2,4,6,8}.
|
||
* [3GPP TS38.212, section 5.4.2.2]
|
||
*/
|
||
uint8_t q_m;
|
||
/** Number of Filler bits, n_filler = K – K’
|
||
* [3GPP TS38.212 section 5.2.2]
|
||
*/
|
||
uint16_t n_filler;
|
||
/** [0 - TB : 1 - CB] */
|
||
uint8_t code_block_mode;
|
||
union {
|
||
/** Struct which stores Code Block specific parameters */
|
||
struct rte_bbdev_op_dec_ldpc_cb_params cb_params;
|
||
/** Struct which stores Transport Block specific parameters */
|
||
struct rte_bbdev_op_dec_ldpc_tb_params tb_params;
|
||
};
|
||
};
|
||
/* >8 End of structure rte_bbdev_op_ldpc_dec. */
|
||
|
||
/** Turbo encode code block parameters */
|
||
struct rte_bbdev_op_enc_turbo_cb_params {
|
||
/** The K size of the input CB, in bits [40:6144], as specified in
|
||
* 3GPP TS 36.212.
|
||
* This size is inclusive of CRC24A, regardless whether it was
|
||
* pre-calculated by the application or not.
|
||
*/
|
||
uint16_t k;
|
||
/** The E length of the CB rate matched output, in bits, as in
|
||
* 3GPP TS 36.212.
|
||
*/
|
||
uint32_t e;
|
||
/** The Ncb soft buffer size of the CB rate matched output [K:3*Kpi],
|
||
* in bits, as specified in 3GPP TS 36.212.
|
||
*/
|
||
uint16_t ncb;
|
||
};
|
||
|
||
/** Turbo encode transport block parameters */
|
||
struct rte_bbdev_op_enc_turbo_tb_params {
|
||
/** The K- size of the input CB, in bits [40:6144], that is in the
|
||
* Turbo operation when r < C-, as in 3GPP TS 36.212.
|
||
* This size is inclusive of CRC24B, regardless whether it was
|
||
* pre-calculated and appended by the application or not.
|
||
*/
|
||
uint16_t k_neg;
|
||
/** The K+ size of the input CB, in bits [40:6144], that is in the
|
||
* Turbo operation when r >= C-, as in 3GPP TS 36.212.
|
||
* This size is inclusive of CRC24B, regardless whether it was
|
||
* pre-calculated and appended by the application or not.
|
||
*/
|
||
uint16_t k_pos;
|
||
/** The number of CBs that have K- size, [0:63] */
|
||
uint8_t c_neg;
|
||
/** The total number of CBs in the TB,
|
||
* [1:RTE_BBDEV_TURBO_MAX_CODE_BLOCKS]
|
||
*/
|
||
uint8_t c;
|
||
/** The number of CBs that uses Ea before switching to Eb, [0:63] */
|
||
uint8_t cab;
|
||
/** The E size of the CB rate matched output to use in the Turbo
|
||
* operation when r < cab
|
||
*/
|
||
uint32_t ea;
|
||
/** The E size of the CB rate matched output to use in the Turbo
|
||
* operation when r >= cab
|
||
*/
|
||
uint32_t eb;
|
||
/** The Ncb soft buffer size for the rate matched CB that is used in
|
||
* the Turbo operation when r < C-, [K:3*Kpi]
|
||
*/
|
||
uint16_t ncb_neg;
|
||
/** The Ncb soft buffer size for the rate matched CB that is used in
|
||
* the Turbo operation when r >= C-, [K:3*Kpi]
|
||
*/
|
||
uint16_t ncb_pos;
|
||
/** The index of the first CB in the inbound mbuf data, default is 0 */
|
||
uint8_t r;
|
||
};
|
||
|
||
/** LDPC encode code block parameters */
|
||
struct rte_bbdev_op_enc_ldpc_cb_params {
|
||
/** E, length after rate matching in bits.
|
||
* [3GPP TS38.212, section 5.4.2.1]
|
||
*/
|
||
uint32_t e;
|
||
};
|
||
|
||
/** LDPC encode transport block parameters */
|
||
struct rte_bbdev_op_enc_ldpc_tb_params {
|
||
/** Ea, length after rate matching in bits, r < cab.
|
||
* [3GPP TS38.212, section 5.4.2.1]
|
||
*/
|
||
uint32_t ea;
|
||
/** Eb, length after rate matching in bits, r >= cab.
|
||
* [3GPP TS38.212, section 5.4.2.1]
|
||
*/
|
||
uint32_t eb;
|
||
/** The total number of CBs in the TB or partial TB
|
||
* [1:RTE_BBDEV_LDPC_MAX_CODE_BLOCKS]
|
||
*/
|
||
uint8_t c;
|
||
/** The index of the first CB in the inbound mbuf data, default is 0 */
|
||
uint8_t r;
|
||
/** The number of CBs that use Ea before switching to Eb, [0:63] */
|
||
uint8_t cab;
|
||
};
|
||
|
||
/** Operation structure for Turbo encode.
|
||
* An operation can be performed on one CB at a time "CB-mode".
|
||
* An operation can pbe erformd on one or multiple CBs that logically
|
||
* belong to one TB "TB-mode".
|
||
*
|
||
* In CB-mode, CRC24A/B is an optional operation. K size parameter is not
|
||
* affected by CRC24A/B inclusion, this only affects the inbound mbuf data
|
||
* length. Not all BBDEV PMDs are capable of CRC24A/B calculation. Flags
|
||
* RTE_BBDEV_TURBO_CRC_24A_ATTACH and RTE_BBDEV_TURBO_CRC_24B_ATTACH informs
|
||
* the application with relevant capability. These flags can be set in the
|
||
* op_flags parameter to indicate BBDEV to calculate and append CRC24A to CB
|
||
* before going forward with Turbo encoding.
|
||
*
|
||
* In TB-mode, CRC24A is assumed to be pre-calculated and appended to the
|
||
* inbound TB mbuf data buffer.
|
||
*
|
||
* The output mbuf data structure is expected to be allocated by the
|
||
* application with enough room for the output data.
|
||
*/
|
||
|
||
/* Structure rte_bbdev_op_turbo_enc 8< */
|
||
struct rte_bbdev_op_turbo_enc {
|
||
/** The input CB or TB data */
|
||
struct rte_bbdev_op_data input;
|
||
/** The rate matched CB or TB output buffer */
|
||
struct rte_bbdev_op_data output;
|
||
/** Flags from rte_bbdev_op_te_flag_bitmasks */
|
||
uint32_t op_flags;
|
||
|
||
/** Rv index for rate matching [0:3] */
|
||
uint8_t rv_index;
|
||
/** [0 - TB : 1 - CB] */
|
||
uint8_t code_block_mode;
|
||
union {
|
||
/** Struct which stores Code Block specific parameters */
|
||
struct rte_bbdev_op_enc_turbo_cb_params cb_params;
|
||
/** Struct which stores Transport Block specific parameters */
|
||
struct rte_bbdev_op_enc_turbo_tb_params tb_params;
|
||
};
|
||
};
|
||
/* >8 End of structure rte_bbdev_op_turbo_enc. */
|
||
|
||
/** Operation structure for LDPC encode.
|
||
* An operation can be performed on one CB at a time "CB-mode".
|
||
* An operation can be performed on one or multiple CBs that logically
|
||
* belong to a TB "TB-mode".
|
||
*
|
||
* The input data is the CB or TB input to the decoder.
|
||
*
|
||
* The output data is the ratematched CB or TB data, or the output after
|
||
* bit-selection if RTE_BBDEV_LDPC_INTERLEAVER_BYPASS is set.
|
||
*
|
||
* The output mbuf data structure is expected to be allocated by the
|
||
* application with enough room for the output data.
|
||
*/
|
||
|
||
/* Structure rte_bbdev_op_ldpc_enc 8< */
|
||
struct rte_bbdev_op_ldpc_enc {
|
||
/** The input TB or CB data */
|
||
struct rte_bbdev_op_data input;
|
||
/** The rate matched TB or CB output buffer */
|
||
struct rte_bbdev_op_data output;
|
||
|
||
/** Flags from rte_bbdev_op_ldpcenc_flag_bitmasks */
|
||
uint32_t op_flags;
|
||
|
||
/** Rate matching redundancy version */
|
||
uint8_t rv_index;
|
||
/** 1: LDPC Base graph 1, 2: LDPC Base graph 2.
|
||
* [3GPP TS38.212, section 5.2.2]
|
||
*/
|
||
uint8_t basegraph;
|
||
/** Zc, LDPC lifting size.
|
||
* [3GPP TS38.212, section 5.2.2]
|
||
*/
|
||
uint16_t z_c;
|
||
/** Ncb, length of the circular buffer in bits.
|
||
* [3GPP TS38.212, section 5.4.2.1]
|
||
*/
|
||
uint16_t n_cb;
|
||
/** Qm, modulation order {2,4,6,8,10}.
|
||
* [3GPP TS38.212, section 5.4.2.2]
|
||
*/
|
||
uint8_t q_m;
|
||
/** Number of Filler bits, n_filler = K – K’
|
||
* [3GPP TS38.212 section 5.2.2]
|
||
*/
|
||
uint16_t n_filler;
|
||
/** [0 - TB : 1 - CB] */
|
||
uint8_t code_block_mode;
|
||
union {
|
||
/** Struct which stores Code Block specific parameters */
|
||
struct rte_bbdev_op_enc_ldpc_cb_params cb_params;
|
||
/** Struct which stores Transport Block specific parameters */
|
||
struct rte_bbdev_op_enc_ldpc_tb_params tb_params;
|
||
};
|
||
};
|
||
/* >8 End of structure rte_bbdev_op_ldpc_enc. */
|
||
|
||
/** Operation structure for FFT processing.
|
||
*
|
||
* The operation processes the data for multiple antennas in a single call
|
||
* (i.e. for all the REs belonging to a given SRS sequence for instance).
|
||
*
|
||
* The output mbuf data structure is expected to be allocated by the
|
||
* application with enough room for the output data.
|
||
*/
|
||
|
||
/* Structure rte_bbdev_op_fft 8< */
|
||
struct rte_bbdev_op_fft {
|
||
/** Input data starting from first antenna. */
|
||
struct rte_bbdev_op_data base_input;
|
||
/** Output data starting from first antenna and first cyclic shift. */
|
||
struct rte_bbdev_op_data base_output;
|
||
/** Optional power measurement output data. */
|
||
struct rte_bbdev_op_data power_meas_output;
|
||
/** Flags from rte_bbdev_op_fft_flag_bitmasks. */
|
||
uint32_t op_flags;
|
||
/** Input sequence size in 32-bits points. */
|
||
uint16_t input_sequence_size;
|
||
/** Padding at the start of the sequence. */
|
||
uint16_t input_leading_padding;
|
||
/** Output sequence size in 32-bits points. */
|
||
uint16_t output_sequence_size;
|
||
/** Depadding at the start of the DFT output. */
|
||
uint16_t output_leading_depadding;
|
||
/** Window index being used for each cyclic shift output. */
|
||
uint8_t window_index[RTE_BBDEV_MAX_CS_2];
|
||
/** Bitmap of the cyclic shift output requested. */
|
||
uint16_t cs_bitmap;
|
||
/** Number of antennas as a log2 – 8 to 128. */
|
||
uint8_t num_antennas_log2;
|
||
/** iDFT size as a log2 - 32 to 2048. */
|
||
uint8_t idft_log2;
|
||
/** DFT size as a log2 - 8 to 2048. */
|
||
uint8_t dft_log2;
|
||
/** Adjustment of position of the cyclic shifts - -31 to 31. */
|
||
int8_t cs_time_adjustment;
|
||
/** iDFT shift down. */
|
||
int8_t idft_shift;
|
||
/** DFT shift down. */
|
||
int8_t dft_shift;
|
||
/** NCS reciprocal factor. */
|
||
uint16_t ncs_reciprocal;
|
||
/** Power measurement out shift down. */
|
||
uint16_t power_shift;
|
||
/** Adjust the FP6 exponent for INT<->FP16 conversion. */
|
||
uint16_t fp16_exp_adjust;
|
||
};
|
||
/* >8 End of structure rte_bbdev_op_fft. */
|
||
|
||
/** List of the capabilities for the Turbo Decoder */
|
||
struct rte_bbdev_op_cap_turbo_dec {
|
||
/** Flags from rte_bbdev_op_td_flag_bitmasks */
|
||
uint32_t capability_flags;
|
||
/** Maximal LLR absolute value. Acceptable LLR values lie in range
|
||
* [-max_llr_modulus, max_llr_modulus].
|
||
*/
|
||
int8_t max_llr_modulus;
|
||
/** Num input code block buffers */
|
||
uint8_t num_buffers_src; /**< Num input code block buffers */
|
||
/** Num hard output code block buffers */
|
||
uint8_t num_buffers_hard_out;
|
||
/** Num soft output code block buffers if supported by the driver */
|
||
uint8_t num_buffers_soft_out;
|
||
};
|
||
|
||
/** List of the capabilities for the Turbo Encoder */
|
||
struct rte_bbdev_op_cap_turbo_enc {
|
||
/** Flags from rte_bbdev_op_te_flag_bitmasks */
|
||
uint32_t capability_flags;
|
||
/** Num input code block buffers */
|
||
uint8_t num_buffers_src;
|
||
/** Num output code block buffers */
|
||
uint8_t num_buffers_dst;
|
||
};
|
||
|
||
/** List of the capabilities for the LDPC Decoder */
|
||
struct rte_bbdev_op_cap_ldpc_dec {
|
||
/** Flags from rte_bbdev_op_ldpcdec_flag_bitmasks */
|
||
uint32_t capability_flags;
|
||
/** LLR size in bits. LLR is a two’s complement number. */
|
||
int8_t llr_size;
|
||
/** LLR numbers of decimals bit for arithmetic representation */
|
||
int8_t llr_decimals;
|
||
/** Num input code block buffers */
|
||
uint16_t num_buffers_src;
|
||
/** Num hard output code block buffers */
|
||
uint16_t num_buffers_hard_out;
|
||
/** Num soft output code block buffers if supported by the driver */
|
||
uint16_t num_buffers_soft_out;
|
||
};
|
||
|
||
/** List of the capabilities for the LDPC Encoder */
|
||
struct rte_bbdev_op_cap_ldpc_enc {
|
||
/** Flags from rte_bbdev_op_ldpcenc_flag_bitmasks */
|
||
uint32_t capability_flags;
|
||
/** Num input code block buffers */
|
||
uint16_t num_buffers_src;
|
||
/** Num output code block buffers */
|
||
uint16_t num_buffers_dst;
|
||
};
|
||
|
||
/** List of the capabilities for the FFT. */
|
||
struct rte_bbdev_op_cap_fft {
|
||
/** Flags from *rte_bbdev_op_fft_flag_bitmasks*. */
|
||
uint32_t capability_flags;
|
||
/** Number of input code block buffers. */
|
||
uint16_t num_buffers_src;
|
||
/** Number of output code block buffers. */
|
||
uint16_t num_buffers_dst;
|
||
};
|
||
|
||
/** Different operation types supported by the device.
|
||
* The related macro RTE_BBDEV_OP_TYPE_SIZE_MAX can be used as an absolute maximum for
|
||
* notably sizing array while allowing for future enumeration insertion.
|
||
*/
|
||
enum rte_bbdev_op_type {
|
||
RTE_BBDEV_OP_NONE, /**< Dummy operation that does nothing */
|
||
RTE_BBDEV_OP_TURBO_DEC, /**< Turbo decode */
|
||
RTE_BBDEV_OP_TURBO_ENC, /**< Turbo encode */
|
||
RTE_BBDEV_OP_LDPC_DEC, /**< LDPC decode */
|
||
RTE_BBDEV_OP_LDPC_ENC, /**< LDPC encode */
|
||
RTE_BBDEV_OP_FFT, /**< FFT */
|
||
/* Note: RTE_BBDEV_OP_TYPE_SIZE_MAX must be larger or equal to maximum enum value */
|
||
};
|
||
|
||
/** Bit indexes of possible errors reported through status field */
|
||
enum {
|
||
RTE_BBDEV_DRV_ERROR,
|
||
RTE_BBDEV_DATA_ERROR,
|
||
RTE_BBDEV_CRC_ERROR,
|
||
RTE_BBDEV_SYNDROME_ERROR
|
||
};
|
||
|
||
/** Structure specifying a single encode operation */
|
||
struct rte_bbdev_enc_op {
|
||
/** Status of operation that was performed */
|
||
int status;
|
||
/** Mempool which op instance is in */
|
||
struct rte_mempool *mempool;
|
||
/** Opaque pointer for user data */
|
||
void *opaque_data;
|
||
union {
|
||
/** Contains turbo decoder specific parameters */
|
||
struct rte_bbdev_op_turbo_enc turbo_enc;
|
||
/** Contains LDPC decoder specific parameters */
|
||
struct rte_bbdev_op_ldpc_enc ldpc_enc;
|
||
};
|
||
};
|
||
|
||
/** Structure specifying a single decode operation */
|
||
struct rte_bbdev_dec_op {
|
||
/** Status of operation that was performed */
|
||
int status;
|
||
/** Mempool which op instance is in */
|
||
struct rte_mempool *mempool;
|
||
/** Opaque pointer for user data */
|
||
void *opaque_data;
|
||
union {
|
||
/** Contains turbo decoder specific parameters */
|
||
struct rte_bbdev_op_turbo_dec turbo_dec;
|
||
/** Contains LDPC decoder specific parameters */
|
||
struct rte_bbdev_op_ldpc_dec ldpc_dec;
|
||
};
|
||
};
|
||
|
||
/** Structure specifying a single FFT operation. */
|
||
struct rte_bbdev_fft_op {
|
||
/** Status of operation performed. */
|
||
int status;
|
||
/** Mempool used for op instance. */
|
||
struct rte_mempool *mempool;
|
||
/** Opaque pointer for user data. */
|
||
void *opaque_data;
|
||
/** Contains turbo decoder specific parameters. */
|
||
struct rte_bbdev_op_fft fft;
|
||
};
|
||
|
||
/** Operation capabilities supported by a device */
|
||
struct rte_bbdev_op_cap {
|
||
enum rte_bbdev_op_type type; /**< Type of operation */
|
||
union {
|
||
struct rte_bbdev_op_cap_turbo_dec turbo_dec;
|
||
struct rte_bbdev_op_cap_turbo_enc turbo_enc;
|
||
struct rte_bbdev_op_cap_ldpc_dec ldpc_dec;
|
||
struct rte_bbdev_op_cap_ldpc_enc ldpc_enc;
|
||
struct rte_bbdev_op_cap_fft fft;
|
||
} cap; /**< Operation-type specific capabilities */
|
||
};
|
||
|
||
/** @internal Private data structure stored with operation pool. */
|
||
struct rte_bbdev_op_pool_private {
|
||
enum rte_bbdev_op_type type; /**< Type of operations in a pool */
|
||
};
|
||
|
||
/**
|
||
* Converts queue operation type from enum to string
|
||
*
|
||
* @param op_type
|
||
* Operation type as enum
|
||
*
|
||
* @returns
|
||
* Operation type as string or NULL if op_type is invalid
|
||
*
|
||
*/
|
||
const char*
|
||
rte_bbdev_op_type_str(enum rte_bbdev_op_type op_type);
|
||
|
||
/**
|
||
* Creates a bbdev operation mempool
|
||
*
|
||
* @param name
|
||
* Pool name.
|
||
* @param type
|
||
* Operation type, use RTE_BBDEV_OP_NONE for a pool which supports all
|
||
* operation types.
|
||
* @param num_elements
|
||
* Number of elements in the pool.
|
||
* @param cache_size
|
||
* Number of elements to cache on an lcore, see rte_mempool_create() for
|
||
* further details about cache size.
|
||
* @param socket_id
|
||
* Socket to allocate memory on.
|
||
*
|
||
* @return
|
||
* - Pointer to a mempool on success,
|
||
* - NULL pointer on failure.
|
||
*/
|
||
struct rte_mempool *
|
||
rte_bbdev_op_pool_create(const char *name, enum rte_bbdev_op_type type,
|
||
unsigned int num_elements, unsigned int cache_size,
|
||
int socket_id);
|
||
|
||
/**
|
||
* Bulk allocate encode operations from a mempool with parameter defaults reset.
|
||
*
|
||
* @param mempool
|
||
* Operation mempool, created by rte_bbdev_op_pool_create().
|
||
* @param ops
|
||
* Output array to place allocated operations
|
||
* @param num_ops
|
||
* Number of operations to allocate
|
||
*
|
||
* @returns
|
||
* - 0 on success
|
||
* - EINVAL if invalid mempool is provided
|
||
*/
|
||
static inline int
|
||
rte_bbdev_enc_op_alloc_bulk(struct rte_mempool *mempool,
|
||
struct rte_bbdev_enc_op **ops, uint16_t num_ops)
|
||
{
|
||
struct rte_bbdev_op_pool_private *priv;
|
||
|
||
/* Check type */
|
||
priv = (struct rte_bbdev_op_pool_private *)
|
||
rte_mempool_get_priv(mempool);
|
||
if (unlikely((priv->type != RTE_BBDEV_OP_TURBO_ENC) &&
|
||
(priv->type != RTE_BBDEV_OP_LDPC_ENC)))
|
||
return -EINVAL;
|
||
|
||
/* Get elements */
|
||
return rte_mempool_get_bulk(mempool, (void **)ops, num_ops);
|
||
}
|
||
|
||
/**
|
||
* Bulk allocate decode operations from a mempool with parameter defaults reset.
|
||
*
|
||
* @param mempool
|
||
* Operation mempool, created by rte_bbdev_op_pool_create().
|
||
* @param ops
|
||
* Output array to place allocated operations
|
||
* @param num_ops
|
||
* Number of operations to allocate
|
||
*
|
||
* @returns
|
||
* - 0 on success
|
||
* - EINVAL if invalid mempool is provided
|
||
*/
|
||
static inline int
|
||
rte_bbdev_dec_op_alloc_bulk(struct rte_mempool *mempool,
|
||
struct rte_bbdev_dec_op **ops, uint16_t num_ops)
|
||
{
|
||
struct rte_bbdev_op_pool_private *priv;
|
||
|
||
/* Check type */
|
||
priv = (struct rte_bbdev_op_pool_private *)
|
||
rte_mempool_get_priv(mempool);
|
||
if (unlikely((priv->type != RTE_BBDEV_OP_TURBO_DEC) &&
|
||
(priv->type != RTE_BBDEV_OP_LDPC_DEC)))
|
||
return -EINVAL;
|
||
|
||
/* Get elements */
|
||
return rte_mempool_get_bulk(mempool, (void **)ops, num_ops);
|
||
}
|
||
|
||
/**
|
||
* Bulk allocate FFT operations from a mempool with default parameters.
|
||
*
|
||
* @param mempool
|
||
* Operation mempool, created by *rte_bbdev_op_pool_create*.
|
||
* @param ops
|
||
* Output array to place allocated operations.
|
||
* @param num_ops
|
||
* Number of operations to allocate.
|
||
*
|
||
* @returns
|
||
* - 0 on success.
|
||
* - EINVAL if invalid mempool is provided.
|
||
*/
|
||
__rte_experimental
|
||
static inline int
|
||
rte_bbdev_fft_op_alloc_bulk(struct rte_mempool *mempool,
|
||
struct rte_bbdev_fft_op **ops, uint16_t num_ops)
|
||
{
|
||
struct rte_bbdev_op_pool_private *priv;
|
||
|
||
/* Check type */
|
||
priv = (struct rte_bbdev_op_pool_private *)rte_mempool_get_priv(mempool);
|
||
if (unlikely(priv->type != RTE_BBDEV_OP_FFT))
|
||
return -EINVAL;
|
||
|
||
/* Get elements */
|
||
return rte_mempool_get_bulk(mempool, (void **)ops, num_ops);
|
||
}
|
||
|
||
/**
|
||
* Free decode operation structures that were allocated by
|
||
* rte_bbdev_dec_op_alloc_bulk().
|
||
* All structures must belong to the same mempool.
|
||
*
|
||
* @param ops
|
||
* Operation structures
|
||
* @param num_ops
|
||
* Number of structures
|
||
*/
|
||
static inline void
|
||
rte_bbdev_dec_op_free_bulk(struct rte_bbdev_dec_op **ops, unsigned int num_ops)
|
||
{
|
||
if (num_ops > 0)
|
||
rte_mempool_put_bulk(ops[0]->mempool, (void **)ops, num_ops);
|
||
}
|
||
|
||
/**
|
||
* Free encode operation structures that were allocated by
|
||
* rte_bbdev_enc_op_alloc_bulk().
|
||
* All structures must belong to the same mempool.
|
||
*
|
||
* @param ops
|
||
* Operation structures
|
||
* @param num_ops
|
||
* Number of structures
|
||
*/
|
||
static inline void
|
||
rte_bbdev_enc_op_free_bulk(struct rte_bbdev_enc_op **ops, unsigned int num_ops)
|
||
{
|
||
if (num_ops > 0)
|
||
rte_mempool_put_bulk(ops[0]->mempool, (void **)ops, num_ops);
|
||
}
|
||
|
||
/**
|
||
* Free encode operation structures that were allocated by
|
||
* *rte_bbdev_fft_op_alloc_bulk*.
|
||
* All structures must belong to the same mempool.
|
||
*
|
||
* @param ops
|
||
* Operation structures.
|
||
* @param num_ops
|
||
* Number of structures.
|
||
*/
|
||
__rte_experimental
|
||
static inline void
|
||
rte_bbdev_fft_op_free_bulk(struct rte_bbdev_fft_op **ops, unsigned int num_ops)
|
||
{
|
||
if (num_ops > 0)
|
||
rte_mempool_put_bulk(ops[0]->mempool, (void **)ops, num_ops);
|
||
}
|
||
|
||
#ifdef __cplusplus
|
||
}
|
||
#endif
|
||
|
||
#endif /* _RTE_BBDEV_OP_H_ */
|