329280c53e
Assume thread T2 is a service lcore that is in the middle of executing
a service function. Also, assume thread T1 concurrently calls
rte_service_lcore_stop(), which will set the "service_active_on_lcore"
state to false. If thread T1 then calls rte_service_may_be_active(),
it can return zero even though T2 is still running the service function.
If T1 then proceeds to free data being used by T2, a crash can ensue.
Move the logic that clears the "service_active_on_lcore" state from the
rte_service_lcore_stop() function to the service_runner_func() to
ensure that we:
- don't let the "service_active_on_lcore" state linger as 1
- don't clear the state early
Fixes: 6550113be6
("service: fix lingering active status")
Cc: stable@dpdk.org
Signed-off-by: Erik Gabriel Carrillo <erik.g.carrillo@intel.com>
Acked-by: Harry van Haaren <harry.van.haaren@intel.com>
1045 lines
24 KiB
C
1045 lines
24 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Intel Corporation
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
|
|
#include <rte_service.h>
|
|
#include <rte_service_component.h>
|
|
|
|
#include <rte_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_common.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_spinlock.h>
|
|
|
|
#include "eal_private.h"
|
|
|
|
#define RTE_SERVICE_NUM_MAX 64
|
|
|
|
#define SERVICE_F_REGISTERED (1 << 0)
|
|
#define SERVICE_F_STATS_ENABLED (1 << 1)
|
|
#define SERVICE_F_START_CHECK (1 << 2)
|
|
|
|
/* runstates for services and lcores, denoting if they are active or not */
|
|
#define RUNSTATE_STOPPED 0
|
|
#define RUNSTATE_RUNNING 1
|
|
|
|
/* internal representation of a service */
|
|
struct rte_service_spec_impl {
|
|
/* public part of the struct */
|
|
struct rte_service_spec spec;
|
|
|
|
/* spin lock that when set indicates a service core is currently
|
|
* running this service callback. When not set, a core may take the
|
|
* lock and then run the service callback.
|
|
*/
|
|
rte_spinlock_t execute_lock;
|
|
|
|
/* API set/get-able variables */
|
|
int8_t app_runstate;
|
|
int8_t comp_runstate;
|
|
uint8_t internal_flags;
|
|
|
|
/* per service statistics */
|
|
/* Indicates how many cores the service is mapped to run on.
|
|
* It does not indicate the number of cores the service is running
|
|
* on currently.
|
|
*/
|
|
uint32_t num_mapped_cores;
|
|
} __rte_cache_aligned;
|
|
|
|
struct service_stats {
|
|
uint64_t calls;
|
|
uint64_t cycles;
|
|
};
|
|
|
|
/* the internal values of a service core */
|
|
struct core_state {
|
|
/* map of services IDs are run on this core */
|
|
uint64_t service_mask;
|
|
uint8_t runstate; /* running or stopped */
|
|
uint8_t thread_active; /* indicates when thread is in service_run() */
|
|
uint8_t is_service_core; /* set if core is currently a service core */
|
|
uint8_t service_active_on_lcore[RTE_SERVICE_NUM_MAX];
|
|
uint64_t loops;
|
|
uint64_t cycles;
|
|
struct service_stats service_stats[RTE_SERVICE_NUM_MAX];
|
|
} __rte_cache_aligned;
|
|
|
|
static uint32_t rte_service_count;
|
|
static struct rte_service_spec_impl *rte_services;
|
|
static struct core_state *lcore_states;
|
|
static uint32_t rte_service_library_initialized;
|
|
|
|
int32_t
|
|
rte_service_init(void)
|
|
{
|
|
/* Hard limit due to the use of an uint64_t-based bitmask (and the
|
|
* clzl intrinsic).
|
|
*/
|
|
RTE_BUILD_BUG_ON(RTE_SERVICE_NUM_MAX > 64);
|
|
|
|
if (rte_service_library_initialized) {
|
|
RTE_LOG(NOTICE, EAL,
|
|
"service library init() called, init flag %d\n",
|
|
rte_service_library_initialized);
|
|
return -EALREADY;
|
|
}
|
|
|
|
rte_services = rte_calloc("rte_services", RTE_SERVICE_NUM_MAX,
|
|
sizeof(struct rte_service_spec_impl),
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (!rte_services) {
|
|
RTE_LOG(ERR, EAL, "error allocating rte services array\n");
|
|
goto fail_mem;
|
|
}
|
|
|
|
lcore_states = rte_calloc("rte_service_core_states", RTE_MAX_LCORE,
|
|
sizeof(struct core_state), RTE_CACHE_LINE_SIZE);
|
|
if (!lcore_states) {
|
|
RTE_LOG(ERR, EAL, "error allocating core states array\n");
|
|
goto fail_mem;
|
|
}
|
|
|
|
int i;
|
|
int count = 0;
|
|
struct rte_config *cfg = rte_eal_get_configuration();
|
|
for (i = 0; i < RTE_MAX_LCORE; i++) {
|
|
if (lcore_config[i].core_role == ROLE_SERVICE) {
|
|
if ((unsigned int)i == cfg->main_lcore)
|
|
continue;
|
|
rte_service_lcore_add(i);
|
|
count++;
|
|
}
|
|
}
|
|
|
|
rte_service_library_initialized = 1;
|
|
return 0;
|
|
fail_mem:
|
|
rte_free(rte_services);
|
|
rte_free(lcore_states);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void
|
|
rte_service_finalize(void)
|
|
{
|
|
if (!rte_service_library_initialized)
|
|
return;
|
|
|
|
rte_service_lcore_reset_all();
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
rte_free(rte_services);
|
|
rte_free(lcore_states);
|
|
|
|
rte_service_library_initialized = 0;
|
|
}
|
|
|
|
static inline bool
|
|
service_registered(uint32_t id)
|
|
{
|
|
return rte_services[id].internal_flags & SERVICE_F_REGISTERED;
|
|
}
|
|
|
|
static inline bool
|
|
service_valid(uint32_t id)
|
|
{
|
|
return id < RTE_SERVICE_NUM_MAX && service_registered(id);
|
|
}
|
|
|
|
static struct rte_service_spec_impl *
|
|
service_get(uint32_t id)
|
|
{
|
|
return &rte_services[id];
|
|
}
|
|
|
|
/* validate ID and retrieve service pointer, or return error value */
|
|
#define SERVICE_VALID_GET_OR_ERR_RET(id, service, retval) do { \
|
|
if (!service_valid(id)) \
|
|
return retval; \
|
|
service = &rte_services[id]; \
|
|
} while (0)
|
|
|
|
/* returns 1 if statistics should be collected for service
|
|
* Returns 0 if statistics should not be collected for service
|
|
*/
|
|
static inline int
|
|
service_stats_enabled(struct rte_service_spec_impl *impl)
|
|
{
|
|
return !!(impl->internal_flags & SERVICE_F_STATS_ENABLED);
|
|
}
|
|
|
|
static inline int
|
|
service_mt_safe(struct rte_service_spec_impl *s)
|
|
{
|
|
return !!(s->spec.capabilities & RTE_SERVICE_CAP_MT_SAFE);
|
|
}
|
|
|
|
int32_t
|
|
rte_service_set_stats_enable(uint32_t id, int32_t enabled)
|
|
{
|
|
struct rte_service_spec_impl *s;
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
|
|
|
|
if (enabled)
|
|
s->internal_flags |= SERVICE_F_STATS_ENABLED;
|
|
else
|
|
s->internal_flags &= ~(SERVICE_F_STATS_ENABLED);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_set_runstate_mapped_check(uint32_t id, int32_t enabled)
|
|
{
|
|
struct rte_service_spec_impl *s;
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
|
|
|
|
if (enabled)
|
|
s->internal_flags |= SERVICE_F_START_CHECK;
|
|
else
|
|
s->internal_flags &= ~(SERVICE_F_START_CHECK);
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
rte_service_get_count(void)
|
|
{
|
|
return rte_service_count;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_get_by_name(const char *name, uint32_t *service_id)
|
|
{
|
|
if (!service_id)
|
|
return -EINVAL;
|
|
|
|
int i;
|
|
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
|
|
if (service_registered(i) &&
|
|
strcmp(name, rte_services[i].spec.name) == 0) {
|
|
*service_id = i;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
|
|
const char *
|
|
rte_service_get_name(uint32_t id)
|
|
{
|
|
struct rte_service_spec_impl *s;
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
|
|
return s->spec.name;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_probe_capability(uint32_t id, uint32_t capability)
|
|
{
|
|
struct rte_service_spec_impl *s;
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
|
|
return !!(s->spec.capabilities & capability);
|
|
}
|
|
|
|
int32_t
|
|
rte_service_component_register(const struct rte_service_spec *spec,
|
|
uint32_t *id_ptr)
|
|
{
|
|
uint32_t i;
|
|
int32_t free_slot = -1;
|
|
|
|
if (spec->callback == NULL || strlen(spec->name) == 0)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
|
|
if (!service_registered(i)) {
|
|
free_slot = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((free_slot < 0) || (i == RTE_SERVICE_NUM_MAX))
|
|
return -ENOSPC;
|
|
|
|
struct rte_service_spec_impl *s = &rte_services[free_slot];
|
|
s->spec = *spec;
|
|
s->internal_flags |= SERVICE_F_REGISTERED | SERVICE_F_START_CHECK;
|
|
|
|
rte_service_count++;
|
|
|
|
if (id_ptr)
|
|
*id_ptr = free_slot;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_component_unregister(uint32_t id)
|
|
{
|
|
uint32_t i;
|
|
struct rte_service_spec_impl *s;
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
|
|
|
|
rte_service_count--;
|
|
|
|
s->internal_flags &= ~(SERVICE_F_REGISTERED);
|
|
|
|
/* clear the run-bit in all cores */
|
|
for (i = 0; i < RTE_MAX_LCORE; i++)
|
|
lcore_states[i].service_mask &= ~(UINT64_C(1) << id);
|
|
|
|
memset(&rte_services[id], 0, sizeof(struct rte_service_spec_impl));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_component_runstate_set(uint32_t id, uint32_t runstate)
|
|
{
|
|
struct rte_service_spec_impl *s;
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
|
|
|
|
/* comp_runstate act as the guard variable. Use store-release
|
|
* memory order. This synchronizes with load-acquire in
|
|
* service_run and service_runstate_get function.
|
|
*/
|
|
if (runstate)
|
|
__atomic_store_n(&s->comp_runstate, RUNSTATE_RUNNING,
|
|
__ATOMIC_RELEASE);
|
|
else
|
|
__atomic_store_n(&s->comp_runstate, RUNSTATE_STOPPED,
|
|
__ATOMIC_RELEASE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_runstate_set(uint32_t id, uint32_t runstate)
|
|
{
|
|
struct rte_service_spec_impl *s;
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
|
|
|
|
/* app_runstate act as the guard variable. Use store-release
|
|
* memory order. This synchronizes with load-acquire in
|
|
* service_run runstate_get function.
|
|
*/
|
|
if (runstate)
|
|
__atomic_store_n(&s->app_runstate, RUNSTATE_RUNNING,
|
|
__ATOMIC_RELEASE);
|
|
else
|
|
__atomic_store_n(&s->app_runstate, RUNSTATE_STOPPED,
|
|
__ATOMIC_RELEASE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_runstate_get(uint32_t id)
|
|
{
|
|
struct rte_service_spec_impl *s;
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
|
|
|
|
/* comp_runstate and app_runstate act as the guard variables.
|
|
* Use load-acquire memory order. This synchronizes with
|
|
* store-release in service state set functions.
|
|
*/
|
|
if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) ==
|
|
RUNSTATE_RUNNING &&
|
|
__atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) ==
|
|
RUNSTATE_RUNNING) {
|
|
int check_disabled = !(s->internal_flags &
|
|
SERVICE_F_START_CHECK);
|
|
int lcore_mapped = (__atomic_load_n(&s->num_mapped_cores,
|
|
__ATOMIC_RELAXED) > 0);
|
|
|
|
return (check_disabled | lcore_mapped);
|
|
} else
|
|
return 0;
|
|
|
|
}
|
|
|
|
static inline void
|
|
service_runner_do_callback(struct rte_service_spec_impl *s,
|
|
struct core_state *cs, uint32_t service_idx)
|
|
{
|
|
void *userdata = s->spec.callback_userdata;
|
|
|
|
if (service_stats_enabled(s)) {
|
|
uint64_t start = rte_rdtsc();
|
|
int rc = s->spec.callback(userdata);
|
|
|
|
/* The lcore service worker thread is the only writer,
|
|
* and thus only a non-atomic load and an atomic store
|
|
* is needed, and not the more expensive atomic
|
|
* add.
|
|
*/
|
|
struct service_stats *service_stats =
|
|
&cs->service_stats[service_idx];
|
|
|
|
if (likely(rc != -EAGAIN)) {
|
|
uint64_t end = rte_rdtsc();
|
|
uint64_t cycles = end - start;
|
|
|
|
__atomic_store_n(&cs->cycles, cs->cycles + cycles,
|
|
__ATOMIC_RELAXED);
|
|
__atomic_store_n(&service_stats->cycles,
|
|
service_stats->cycles + cycles,
|
|
__ATOMIC_RELAXED);
|
|
}
|
|
|
|
__atomic_store_n(&service_stats->calls,
|
|
service_stats->calls + 1, __ATOMIC_RELAXED);
|
|
} else
|
|
s->spec.callback(userdata);
|
|
}
|
|
|
|
|
|
/* Expects the service 's' is valid. */
|
|
static int32_t
|
|
service_run(uint32_t i, struct core_state *cs, uint64_t service_mask,
|
|
struct rte_service_spec_impl *s, uint32_t serialize_mt_unsafe)
|
|
{
|
|
if (!s)
|
|
return -EINVAL;
|
|
|
|
/* comp_runstate and app_runstate act as the guard variables.
|
|
* Use load-acquire memory order. This synchronizes with
|
|
* store-release in service state set functions.
|
|
*/
|
|
if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) !=
|
|
RUNSTATE_RUNNING ||
|
|
__atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) !=
|
|
RUNSTATE_RUNNING ||
|
|
!(service_mask & (UINT64_C(1) << i))) {
|
|
cs->service_active_on_lcore[i] = 0;
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
cs->service_active_on_lcore[i] = 1;
|
|
|
|
if ((service_mt_safe(s) == 0) && (serialize_mt_unsafe == 1)) {
|
|
if (!rte_spinlock_trylock(&s->execute_lock))
|
|
return -EBUSY;
|
|
|
|
service_runner_do_callback(s, cs, i);
|
|
rte_spinlock_unlock(&s->execute_lock);
|
|
} else
|
|
service_runner_do_callback(s, cs, i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_may_be_active(uint32_t id)
|
|
{
|
|
uint32_t ids[RTE_MAX_LCORE] = {0};
|
|
int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE);
|
|
int i;
|
|
|
|
if (!service_valid(id))
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < lcore_count; i++) {
|
|
if (lcore_states[ids[i]].service_active_on_lcore[id])
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_run_iter_on_app_lcore(uint32_t id, uint32_t serialize_mt_unsafe)
|
|
{
|
|
struct core_state *cs = &lcore_states[rte_lcore_id()];
|
|
struct rte_service_spec_impl *s;
|
|
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
|
|
|
|
/* Increment num_mapped_cores to reflect that this core is
|
|
* now mapped capable of running the service.
|
|
*/
|
|
__atomic_add_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED);
|
|
|
|
int ret = service_run(id, cs, UINT64_MAX, s, serialize_mt_unsafe);
|
|
|
|
__atomic_sub_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int32_t
|
|
service_runner_func(void *arg)
|
|
{
|
|
RTE_SET_USED(arg);
|
|
uint8_t i;
|
|
const int lcore = rte_lcore_id();
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
|
|
__atomic_store_n(&cs->thread_active, 1, __ATOMIC_SEQ_CST);
|
|
|
|
/* runstate act as the guard variable. Use load-acquire
|
|
* memory order here to synchronize with store-release
|
|
* in runstate update functions.
|
|
*/
|
|
while (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) ==
|
|
RUNSTATE_RUNNING) {
|
|
|
|
const uint64_t service_mask = cs->service_mask;
|
|
uint8_t start_id;
|
|
uint8_t end_id;
|
|
|
|
if (service_mask == 0)
|
|
continue;
|
|
|
|
start_id = __builtin_ctzl(service_mask);
|
|
end_id = 64 - __builtin_clzl(service_mask);
|
|
|
|
for (i = start_id; i < end_id; i++) {
|
|
/* return value ignored as no change to code flow */
|
|
service_run(i, cs, service_mask, service_get(i), 1);
|
|
}
|
|
|
|
__atomic_store_n(&cs->loops, cs->loops + 1, __ATOMIC_RELAXED);
|
|
}
|
|
|
|
/* Switch off this core for all services, to ensure that future
|
|
* calls to may_be_active() know this core is switched off.
|
|
*/
|
|
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++)
|
|
cs->service_active_on_lcore[i] = 0;
|
|
|
|
/* Use SEQ CST memory ordering to avoid any re-ordering around
|
|
* this store, ensuring that once this store is visible, the service
|
|
* lcore thread really is done in service cores code.
|
|
*/
|
|
__atomic_store_n(&cs->thread_active, 0, __ATOMIC_SEQ_CST);
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_may_be_active(uint32_t lcore)
|
|
{
|
|
if (lcore >= RTE_MAX_LCORE || !lcore_states[lcore].is_service_core)
|
|
return -EINVAL;
|
|
|
|
/* Load thread_active using ACQUIRE to avoid instructions dependent on
|
|
* the result being re-ordered before this load completes.
|
|
*/
|
|
return __atomic_load_n(&lcore_states[lcore].thread_active,
|
|
__ATOMIC_ACQUIRE);
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_count(void)
|
|
{
|
|
int32_t count = 0;
|
|
uint32_t i;
|
|
for (i = 0; i < RTE_MAX_LCORE; i++)
|
|
count += lcore_states[i].is_service_core;
|
|
return count;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_list(uint32_t array[], uint32_t n)
|
|
{
|
|
uint32_t count = rte_service_lcore_count();
|
|
if (count > n)
|
|
return -ENOMEM;
|
|
|
|
if (!array)
|
|
return -EINVAL;
|
|
|
|
uint32_t i;
|
|
uint32_t idx = 0;
|
|
for (i = 0; i < RTE_MAX_LCORE; i++) {
|
|
struct core_state *cs = &lcore_states[i];
|
|
if (cs->is_service_core) {
|
|
array[idx] = i;
|
|
idx++;
|
|
}
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_count_services(uint32_t lcore)
|
|
{
|
|
if (lcore >= RTE_MAX_LCORE)
|
|
return -EINVAL;
|
|
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
if (!cs->is_service_core)
|
|
return -ENOTSUP;
|
|
|
|
return __builtin_popcountll(cs->service_mask);
|
|
}
|
|
|
|
int32_t
|
|
rte_service_start_with_defaults(void)
|
|
{
|
|
/* create a default mapping from cores to services, then start the
|
|
* services to make them transparent to unaware applications.
|
|
*/
|
|
uint32_t i;
|
|
int ret;
|
|
uint32_t count = rte_service_get_count();
|
|
|
|
int32_t lcore_iter = 0;
|
|
uint32_t ids[RTE_MAX_LCORE] = {0};
|
|
int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE);
|
|
|
|
if (lcore_count == 0)
|
|
return -ENOTSUP;
|
|
|
|
for (i = 0; (int)i < lcore_count; i++)
|
|
rte_service_lcore_start(ids[i]);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
/* do 1:1 core mapping here, with each service getting
|
|
* assigned a single core by default. Adding multiple services
|
|
* should multiplex to a single core, or 1:1 if there are the
|
|
* same amount of services as service-cores
|
|
*/
|
|
ret = rte_service_map_lcore_set(i, ids[lcore_iter], 1);
|
|
if (ret)
|
|
return -ENODEV;
|
|
|
|
lcore_iter++;
|
|
if (lcore_iter >= lcore_count)
|
|
lcore_iter = 0;
|
|
|
|
ret = rte_service_runstate_set(i, 1);
|
|
if (ret)
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int32_t
|
|
service_update(uint32_t sid, uint32_t lcore, uint32_t *set, uint32_t *enabled)
|
|
{
|
|
/* validate ID, or return error value */
|
|
if (!service_valid(sid) || lcore >= RTE_MAX_LCORE ||
|
|
!lcore_states[lcore].is_service_core)
|
|
return -EINVAL;
|
|
|
|
uint64_t sid_mask = UINT64_C(1) << sid;
|
|
if (set) {
|
|
uint64_t lcore_mapped = lcore_states[lcore].service_mask &
|
|
sid_mask;
|
|
|
|
if (*set && !lcore_mapped) {
|
|
lcore_states[lcore].service_mask |= sid_mask;
|
|
__atomic_add_fetch(&rte_services[sid].num_mapped_cores,
|
|
1, __ATOMIC_RELAXED);
|
|
}
|
|
if (!*set && lcore_mapped) {
|
|
lcore_states[lcore].service_mask &= ~(sid_mask);
|
|
__atomic_sub_fetch(&rte_services[sid].num_mapped_cores,
|
|
1, __ATOMIC_RELAXED);
|
|
}
|
|
}
|
|
|
|
if (enabled)
|
|
*enabled = !!(lcore_states[lcore].service_mask & (sid_mask));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_map_lcore_set(uint32_t id, uint32_t lcore, uint32_t enabled)
|
|
{
|
|
uint32_t on = enabled > 0;
|
|
return service_update(id, lcore, &on, 0);
|
|
}
|
|
|
|
int32_t
|
|
rte_service_map_lcore_get(uint32_t id, uint32_t lcore)
|
|
{
|
|
uint32_t enabled;
|
|
int ret = service_update(id, lcore, 0, &enabled);
|
|
if (ret == 0)
|
|
return enabled;
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
set_lcore_state(uint32_t lcore, int32_t state)
|
|
{
|
|
/* mark core state in hugepage backed config */
|
|
struct rte_config *cfg = rte_eal_get_configuration();
|
|
cfg->lcore_role[lcore] = state;
|
|
|
|
/* mark state in process local lcore_config */
|
|
lcore_config[lcore].core_role = state;
|
|
|
|
/* update per-lcore optimized state tracking */
|
|
lcore_states[lcore].is_service_core = (state == ROLE_SERVICE);
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_reset_all(void)
|
|
{
|
|
/* loop over cores, reset all to mask 0 */
|
|
uint32_t i;
|
|
for (i = 0; i < RTE_MAX_LCORE; i++) {
|
|
if (lcore_states[i].is_service_core) {
|
|
lcore_states[i].service_mask = 0;
|
|
set_lcore_state(i, ROLE_RTE);
|
|
/* runstate act as guard variable Use
|
|
* store-release memory order here to synchronize
|
|
* with load-acquire in runstate read functions.
|
|
*/
|
|
__atomic_store_n(&lcore_states[i].runstate,
|
|
RUNSTATE_STOPPED, __ATOMIC_RELEASE);
|
|
}
|
|
}
|
|
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++)
|
|
__atomic_store_n(&rte_services[i].num_mapped_cores, 0,
|
|
__ATOMIC_RELAXED);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_add(uint32_t lcore)
|
|
{
|
|
if (lcore >= RTE_MAX_LCORE)
|
|
return -EINVAL;
|
|
if (lcore_states[lcore].is_service_core)
|
|
return -EALREADY;
|
|
|
|
set_lcore_state(lcore, ROLE_SERVICE);
|
|
|
|
/* ensure that after adding a core the mask and state are defaults */
|
|
lcore_states[lcore].service_mask = 0;
|
|
/* Use store-release memory order here to synchronize with
|
|
* load-acquire in runstate read functions.
|
|
*/
|
|
__atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED,
|
|
__ATOMIC_RELEASE);
|
|
|
|
return rte_eal_wait_lcore(lcore);
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_del(uint32_t lcore)
|
|
{
|
|
if (lcore >= RTE_MAX_LCORE)
|
|
return -EINVAL;
|
|
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
if (!cs->is_service_core)
|
|
return -EINVAL;
|
|
|
|
/* runstate act as the guard variable. Use load-acquire
|
|
* memory order here to synchronize with store-release
|
|
* in runstate update functions.
|
|
*/
|
|
if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) !=
|
|
RUNSTATE_STOPPED)
|
|
return -EBUSY;
|
|
|
|
set_lcore_state(lcore, ROLE_RTE);
|
|
|
|
rte_smp_wmb();
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_start(uint32_t lcore)
|
|
{
|
|
if (lcore >= RTE_MAX_LCORE)
|
|
return -EINVAL;
|
|
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
if (!cs->is_service_core)
|
|
return -EINVAL;
|
|
|
|
/* runstate act as the guard variable. Use load-acquire
|
|
* memory order here to synchronize with store-release
|
|
* in runstate update functions.
|
|
*/
|
|
if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) ==
|
|
RUNSTATE_RUNNING)
|
|
return -EALREADY;
|
|
|
|
/* set core to run state first, and then launch otherwise it will
|
|
* return immediately as runstate keeps it in the service poll loop
|
|
*/
|
|
/* Use load-acquire memory order here to synchronize with
|
|
* store-release in runstate update functions.
|
|
*/
|
|
__atomic_store_n(&cs->runstate, RUNSTATE_RUNNING, __ATOMIC_RELEASE);
|
|
|
|
int ret = rte_eal_remote_launch(service_runner_func, 0, lcore);
|
|
/* returns -EBUSY if the core is already launched, 0 on success */
|
|
return ret;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_stop(uint32_t lcore)
|
|
{
|
|
if (lcore >= RTE_MAX_LCORE)
|
|
return -EINVAL;
|
|
|
|
/* runstate act as the guard variable. Use load-acquire
|
|
* memory order here to synchronize with store-release
|
|
* in runstate update functions.
|
|
*/
|
|
if (__atomic_load_n(&lcore_states[lcore].runstate, __ATOMIC_ACQUIRE) ==
|
|
RUNSTATE_STOPPED)
|
|
return -EALREADY;
|
|
|
|
uint32_t i;
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
uint64_t service_mask = cs->service_mask;
|
|
|
|
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
|
|
int32_t enabled = service_mask & (UINT64_C(1) << i);
|
|
int32_t service_running = rte_service_runstate_get(i);
|
|
int32_t only_core = (1 ==
|
|
__atomic_load_n(&rte_services[i].num_mapped_cores,
|
|
__ATOMIC_RELAXED));
|
|
|
|
/* if the core is mapped, and the service is running, and this
|
|
* is the only core that is mapped, the service would cease to
|
|
* run if this core stopped, so fail instead.
|
|
*/
|
|
if (enabled && service_running && only_core)
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Use store-release memory order here to synchronize with
|
|
* load-acquire in runstate read functions.
|
|
*/
|
|
__atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED,
|
|
__ATOMIC_RELEASE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t
|
|
lcore_attr_get_loops(unsigned int lcore)
|
|
{
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
|
|
return __atomic_load_n(&cs->loops, __ATOMIC_RELAXED);
|
|
}
|
|
|
|
static uint64_t
|
|
lcore_attr_get_cycles(unsigned int lcore)
|
|
{
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
|
|
return __atomic_load_n(&cs->cycles, __ATOMIC_RELAXED);
|
|
}
|
|
|
|
static uint64_t
|
|
lcore_attr_get_service_calls(uint32_t service_id, unsigned int lcore)
|
|
{
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
|
|
return __atomic_load_n(&cs->service_stats[service_id].calls,
|
|
__ATOMIC_RELAXED);
|
|
}
|
|
|
|
static uint64_t
|
|
lcore_attr_get_service_cycles(uint32_t service_id, unsigned int lcore)
|
|
{
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
|
|
return __atomic_load_n(&cs->service_stats[service_id].cycles,
|
|
__ATOMIC_RELAXED);
|
|
}
|
|
|
|
typedef uint64_t (*lcore_attr_get_fun)(uint32_t service_id,
|
|
unsigned int lcore);
|
|
|
|
static uint64_t
|
|
attr_get(uint32_t id, lcore_attr_get_fun lcore_attr_get)
|
|
{
|
|
unsigned int lcore;
|
|
uint64_t sum = 0;
|
|
|
|
for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
|
|
if (lcore_states[lcore].is_service_core)
|
|
sum += lcore_attr_get(id, lcore);
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
static uint64_t
|
|
attr_get_service_calls(uint32_t service_id)
|
|
{
|
|
return attr_get(service_id, lcore_attr_get_service_calls);
|
|
}
|
|
|
|
static uint64_t
|
|
attr_get_service_cycles(uint32_t service_id)
|
|
{
|
|
return attr_get(service_id, lcore_attr_get_service_cycles);
|
|
}
|
|
|
|
int32_t
|
|
rte_service_attr_get(uint32_t id, uint32_t attr_id, uint64_t *attr_value)
|
|
{
|
|
if (!service_valid(id))
|
|
return -EINVAL;
|
|
|
|
if (!attr_value)
|
|
return -EINVAL;
|
|
|
|
switch (attr_id) {
|
|
case RTE_SERVICE_ATTR_CALL_COUNT:
|
|
*attr_value = attr_get_service_calls(id);
|
|
return 0;
|
|
case RTE_SERVICE_ATTR_CYCLES:
|
|
*attr_value = attr_get_service_cycles(id);
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_attr_get(uint32_t lcore, uint32_t attr_id,
|
|
uint64_t *attr_value)
|
|
{
|
|
struct core_state *cs;
|
|
|
|
if (lcore >= RTE_MAX_LCORE || !attr_value)
|
|
return -EINVAL;
|
|
|
|
cs = &lcore_states[lcore];
|
|
if (!cs->is_service_core)
|
|
return -ENOTSUP;
|
|
|
|
switch (attr_id) {
|
|
case RTE_SERVICE_LCORE_ATTR_LOOPS:
|
|
*attr_value = lcore_attr_get_loops(lcore);
|
|
return 0;
|
|
case RTE_SERVICE_LCORE_ATTR_CYCLES:
|
|
*attr_value = lcore_attr_get_cycles(lcore);
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int32_t
|
|
rte_service_attr_reset_all(uint32_t id)
|
|
{
|
|
unsigned int lcore;
|
|
|
|
if (!service_valid(id))
|
|
return -EINVAL;
|
|
|
|
for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
|
|
cs->service_stats[id] = (struct service_stats) {};
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int32_t
|
|
rte_service_lcore_attr_reset_all(uint32_t lcore)
|
|
{
|
|
struct core_state *cs;
|
|
|
|
if (lcore >= RTE_MAX_LCORE)
|
|
return -EINVAL;
|
|
|
|
cs = &lcore_states[lcore];
|
|
if (!cs->is_service_core)
|
|
return -ENOTSUP;
|
|
|
|
cs->loops = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
service_dump_one(FILE *f, uint32_t id)
|
|
{
|
|
struct rte_service_spec_impl *s;
|
|
uint64_t service_calls;
|
|
uint64_t service_cycles;
|
|
|
|
service_calls = attr_get_service_calls(id);
|
|
service_cycles = attr_get_service_cycles(id);
|
|
|
|
/* avoid divide by zero */
|
|
if (service_calls == 0)
|
|
service_calls = 1;
|
|
|
|
s = service_get(id);
|
|
|
|
fprintf(f, " %s: stats %d\tcalls %"PRIu64"\tcycles %"
|
|
PRIu64"\tavg: %"PRIu64"\n",
|
|
s->spec.name, service_stats_enabled(s), service_calls,
|
|
service_cycles, service_cycles / service_calls);
|
|
}
|
|
|
|
static void
|
|
service_dump_calls_per_lcore(FILE *f, uint32_t lcore)
|
|
{
|
|
uint32_t i;
|
|
struct core_state *cs = &lcore_states[lcore];
|
|
|
|
fprintf(f, "%02d\t", lcore);
|
|
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
|
|
if (!service_registered(i))
|
|
continue;
|
|
fprintf(f, "%"PRIu64"\t", cs->service_stats[i].calls);
|
|
}
|
|
fprintf(f, "\n");
|
|
}
|
|
|
|
int32_t
|
|
rte_service_dump(FILE *f, uint32_t id)
|
|
{
|
|
uint32_t i;
|
|
int print_one = (id != UINT32_MAX);
|
|
|
|
/* print only the specified service */
|
|
if (print_one) {
|
|
struct rte_service_spec_impl *s;
|
|
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
|
|
fprintf(f, "Service %s Summary\n", s->spec.name);
|
|
service_dump_one(f, id);
|
|
return 0;
|
|
}
|
|
|
|
/* print all services, as UINT32_MAX was passed as id */
|
|
fprintf(f, "Services Summary\n");
|
|
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
|
|
if (!service_registered(i))
|
|
continue;
|
|
service_dump_one(f, i);
|
|
}
|
|
|
|
fprintf(f, "Service Cores Summary\n");
|
|
for (i = 0; i < RTE_MAX_LCORE; i++) {
|
|
if (lcore_config[i].core_role != ROLE_SERVICE)
|
|
continue;
|
|
|
|
service_dump_calls_per_lcore(f, i);
|
|
}
|
|
|
|
return 0;
|
|
}
|