numam-dpdk/lib/eal/common/rte_service.c
Erik Gabriel Carrillo 329280c53e service: fix early move to inactive status
Assume thread T2 is a service lcore that is in the middle of executing
a service function.  Also, assume thread T1 concurrently calls
rte_service_lcore_stop(), which will set the "service_active_on_lcore"
state to false.  If thread T1 then calls rte_service_may_be_active(),
it can return zero even though T2 is still running the service function.
If T1 then proceeds to free data being used by T2, a crash can ensue.

Move the logic that clears the "service_active_on_lcore" state from the
rte_service_lcore_stop() function to the service_runner_func() to
ensure that we:
- don't let the "service_active_on_lcore" state linger as 1
- don't clear the state early

Fixes: 6550113be6 ("service: fix lingering active status")
Cc: stable@dpdk.org

Signed-off-by: Erik Gabriel Carrillo <erik.g.carrillo@intel.com>
Acked-by: Harry van Haaren <harry.van.haaren@intel.com>
2022-10-21 14:54:26 +02:00

1045 lines
24 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <stdio.h>
#include <inttypes.h>
#include <string.h>
#include <rte_service.h>
#include <rte_service_component.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_atomic.h>
#include <rte_malloc.h>
#include <rte_spinlock.h>
#include "eal_private.h"
#define RTE_SERVICE_NUM_MAX 64
#define SERVICE_F_REGISTERED (1 << 0)
#define SERVICE_F_STATS_ENABLED (1 << 1)
#define SERVICE_F_START_CHECK (1 << 2)
/* runstates for services and lcores, denoting if they are active or not */
#define RUNSTATE_STOPPED 0
#define RUNSTATE_RUNNING 1
/* internal representation of a service */
struct rte_service_spec_impl {
/* public part of the struct */
struct rte_service_spec spec;
/* spin lock that when set indicates a service core is currently
* running this service callback. When not set, a core may take the
* lock and then run the service callback.
*/
rte_spinlock_t execute_lock;
/* API set/get-able variables */
int8_t app_runstate;
int8_t comp_runstate;
uint8_t internal_flags;
/* per service statistics */
/* Indicates how many cores the service is mapped to run on.
* It does not indicate the number of cores the service is running
* on currently.
*/
uint32_t num_mapped_cores;
} __rte_cache_aligned;
struct service_stats {
uint64_t calls;
uint64_t cycles;
};
/* the internal values of a service core */
struct core_state {
/* map of services IDs are run on this core */
uint64_t service_mask;
uint8_t runstate; /* running or stopped */
uint8_t thread_active; /* indicates when thread is in service_run() */
uint8_t is_service_core; /* set if core is currently a service core */
uint8_t service_active_on_lcore[RTE_SERVICE_NUM_MAX];
uint64_t loops;
uint64_t cycles;
struct service_stats service_stats[RTE_SERVICE_NUM_MAX];
} __rte_cache_aligned;
static uint32_t rte_service_count;
static struct rte_service_spec_impl *rte_services;
static struct core_state *lcore_states;
static uint32_t rte_service_library_initialized;
int32_t
rte_service_init(void)
{
/* Hard limit due to the use of an uint64_t-based bitmask (and the
* clzl intrinsic).
*/
RTE_BUILD_BUG_ON(RTE_SERVICE_NUM_MAX > 64);
if (rte_service_library_initialized) {
RTE_LOG(NOTICE, EAL,
"service library init() called, init flag %d\n",
rte_service_library_initialized);
return -EALREADY;
}
rte_services = rte_calloc("rte_services", RTE_SERVICE_NUM_MAX,
sizeof(struct rte_service_spec_impl),
RTE_CACHE_LINE_SIZE);
if (!rte_services) {
RTE_LOG(ERR, EAL, "error allocating rte services array\n");
goto fail_mem;
}
lcore_states = rte_calloc("rte_service_core_states", RTE_MAX_LCORE,
sizeof(struct core_state), RTE_CACHE_LINE_SIZE);
if (!lcore_states) {
RTE_LOG(ERR, EAL, "error allocating core states array\n");
goto fail_mem;
}
int i;
int count = 0;
struct rte_config *cfg = rte_eal_get_configuration();
for (i = 0; i < RTE_MAX_LCORE; i++) {
if (lcore_config[i].core_role == ROLE_SERVICE) {
if ((unsigned int)i == cfg->main_lcore)
continue;
rte_service_lcore_add(i);
count++;
}
}
rte_service_library_initialized = 1;
return 0;
fail_mem:
rte_free(rte_services);
rte_free(lcore_states);
return -ENOMEM;
}
void
rte_service_finalize(void)
{
if (!rte_service_library_initialized)
return;
rte_service_lcore_reset_all();
rte_eal_mp_wait_lcore();
rte_free(rte_services);
rte_free(lcore_states);
rte_service_library_initialized = 0;
}
static inline bool
service_registered(uint32_t id)
{
return rte_services[id].internal_flags & SERVICE_F_REGISTERED;
}
static inline bool
service_valid(uint32_t id)
{
return id < RTE_SERVICE_NUM_MAX && service_registered(id);
}
static struct rte_service_spec_impl *
service_get(uint32_t id)
{
return &rte_services[id];
}
/* validate ID and retrieve service pointer, or return error value */
#define SERVICE_VALID_GET_OR_ERR_RET(id, service, retval) do { \
if (!service_valid(id)) \
return retval; \
service = &rte_services[id]; \
} while (0)
/* returns 1 if statistics should be collected for service
* Returns 0 if statistics should not be collected for service
*/
static inline int
service_stats_enabled(struct rte_service_spec_impl *impl)
{
return !!(impl->internal_flags & SERVICE_F_STATS_ENABLED);
}
static inline int
service_mt_safe(struct rte_service_spec_impl *s)
{
return !!(s->spec.capabilities & RTE_SERVICE_CAP_MT_SAFE);
}
int32_t
rte_service_set_stats_enable(uint32_t id, int32_t enabled)
{
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
if (enabled)
s->internal_flags |= SERVICE_F_STATS_ENABLED;
else
s->internal_flags &= ~(SERVICE_F_STATS_ENABLED);
return 0;
}
int32_t
rte_service_set_runstate_mapped_check(uint32_t id, int32_t enabled)
{
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
if (enabled)
s->internal_flags |= SERVICE_F_START_CHECK;
else
s->internal_flags &= ~(SERVICE_F_START_CHECK);
return 0;
}
uint32_t
rte_service_get_count(void)
{
return rte_service_count;
}
int32_t
rte_service_get_by_name(const char *name, uint32_t *service_id)
{
if (!service_id)
return -EINVAL;
int i;
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
if (service_registered(i) &&
strcmp(name, rte_services[i].spec.name) == 0) {
*service_id = i;
return 0;
}
}
return -ENODEV;
}
const char *
rte_service_get_name(uint32_t id)
{
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, 0);
return s->spec.name;
}
int32_t
rte_service_probe_capability(uint32_t id, uint32_t capability)
{
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
return !!(s->spec.capabilities & capability);
}
int32_t
rte_service_component_register(const struct rte_service_spec *spec,
uint32_t *id_ptr)
{
uint32_t i;
int32_t free_slot = -1;
if (spec->callback == NULL || strlen(spec->name) == 0)
return -EINVAL;
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
if (!service_registered(i)) {
free_slot = i;
break;
}
}
if ((free_slot < 0) || (i == RTE_SERVICE_NUM_MAX))
return -ENOSPC;
struct rte_service_spec_impl *s = &rte_services[free_slot];
s->spec = *spec;
s->internal_flags |= SERVICE_F_REGISTERED | SERVICE_F_START_CHECK;
rte_service_count++;
if (id_ptr)
*id_ptr = free_slot;
return 0;
}
int32_t
rte_service_component_unregister(uint32_t id)
{
uint32_t i;
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
rte_service_count--;
s->internal_flags &= ~(SERVICE_F_REGISTERED);
/* clear the run-bit in all cores */
for (i = 0; i < RTE_MAX_LCORE; i++)
lcore_states[i].service_mask &= ~(UINT64_C(1) << id);
memset(&rte_services[id], 0, sizeof(struct rte_service_spec_impl));
return 0;
}
int32_t
rte_service_component_runstate_set(uint32_t id, uint32_t runstate)
{
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
/* comp_runstate act as the guard variable. Use store-release
* memory order. This synchronizes with load-acquire in
* service_run and service_runstate_get function.
*/
if (runstate)
__atomic_store_n(&s->comp_runstate, RUNSTATE_RUNNING,
__ATOMIC_RELEASE);
else
__atomic_store_n(&s->comp_runstate, RUNSTATE_STOPPED,
__ATOMIC_RELEASE);
return 0;
}
int32_t
rte_service_runstate_set(uint32_t id, uint32_t runstate)
{
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
/* app_runstate act as the guard variable. Use store-release
* memory order. This synchronizes with load-acquire in
* service_run runstate_get function.
*/
if (runstate)
__atomic_store_n(&s->app_runstate, RUNSTATE_RUNNING,
__ATOMIC_RELEASE);
else
__atomic_store_n(&s->app_runstate, RUNSTATE_STOPPED,
__ATOMIC_RELEASE);
return 0;
}
int32_t
rte_service_runstate_get(uint32_t id)
{
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
/* comp_runstate and app_runstate act as the guard variables.
* Use load-acquire memory order. This synchronizes with
* store-release in service state set functions.
*/
if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) ==
RUNSTATE_RUNNING &&
__atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) ==
RUNSTATE_RUNNING) {
int check_disabled = !(s->internal_flags &
SERVICE_F_START_CHECK);
int lcore_mapped = (__atomic_load_n(&s->num_mapped_cores,
__ATOMIC_RELAXED) > 0);
return (check_disabled | lcore_mapped);
} else
return 0;
}
static inline void
service_runner_do_callback(struct rte_service_spec_impl *s,
struct core_state *cs, uint32_t service_idx)
{
void *userdata = s->spec.callback_userdata;
if (service_stats_enabled(s)) {
uint64_t start = rte_rdtsc();
int rc = s->spec.callback(userdata);
/* The lcore service worker thread is the only writer,
* and thus only a non-atomic load and an atomic store
* is needed, and not the more expensive atomic
* add.
*/
struct service_stats *service_stats =
&cs->service_stats[service_idx];
if (likely(rc != -EAGAIN)) {
uint64_t end = rte_rdtsc();
uint64_t cycles = end - start;
__atomic_store_n(&cs->cycles, cs->cycles + cycles,
__ATOMIC_RELAXED);
__atomic_store_n(&service_stats->cycles,
service_stats->cycles + cycles,
__ATOMIC_RELAXED);
}
__atomic_store_n(&service_stats->calls,
service_stats->calls + 1, __ATOMIC_RELAXED);
} else
s->spec.callback(userdata);
}
/* Expects the service 's' is valid. */
static int32_t
service_run(uint32_t i, struct core_state *cs, uint64_t service_mask,
struct rte_service_spec_impl *s, uint32_t serialize_mt_unsafe)
{
if (!s)
return -EINVAL;
/* comp_runstate and app_runstate act as the guard variables.
* Use load-acquire memory order. This synchronizes with
* store-release in service state set functions.
*/
if (__atomic_load_n(&s->comp_runstate, __ATOMIC_ACQUIRE) !=
RUNSTATE_RUNNING ||
__atomic_load_n(&s->app_runstate, __ATOMIC_ACQUIRE) !=
RUNSTATE_RUNNING ||
!(service_mask & (UINT64_C(1) << i))) {
cs->service_active_on_lcore[i] = 0;
return -ENOEXEC;
}
cs->service_active_on_lcore[i] = 1;
if ((service_mt_safe(s) == 0) && (serialize_mt_unsafe == 1)) {
if (!rte_spinlock_trylock(&s->execute_lock))
return -EBUSY;
service_runner_do_callback(s, cs, i);
rte_spinlock_unlock(&s->execute_lock);
} else
service_runner_do_callback(s, cs, i);
return 0;
}
int32_t
rte_service_may_be_active(uint32_t id)
{
uint32_t ids[RTE_MAX_LCORE] = {0};
int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE);
int i;
if (!service_valid(id))
return -EINVAL;
for (i = 0; i < lcore_count; i++) {
if (lcore_states[ids[i]].service_active_on_lcore[id])
return 1;
}
return 0;
}
int32_t
rte_service_run_iter_on_app_lcore(uint32_t id, uint32_t serialize_mt_unsafe)
{
struct core_state *cs = &lcore_states[rte_lcore_id()];
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
/* Increment num_mapped_cores to reflect that this core is
* now mapped capable of running the service.
*/
__atomic_add_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED);
int ret = service_run(id, cs, UINT64_MAX, s, serialize_mt_unsafe);
__atomic_sub_fetch(&s->num_mapped_cores, 1, __ATOMIC_RELAXED);
return ret;
}
static int32_t
service_runner_func(void *arg)
{
RTE_SET_USED(arg);
uint8_t i;
const int lcore = rte_lcore_id();
struct core_state *cs = &lcore_states[lcore];
__atomic_store_n(&cs->thread_active, 1, __ATOMIC_SEQ_CST);
/* runstate act as the guard variable. Use load-acquire
* memory order here to synchronize with store-release
* in runstate update functions.
*/
while (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) ==
RUNSTATE_RUNNING) {
const uint64_t service_mask = cs->service_mask;
uint8_t start_id;
uint8_t end_id;
if (service_mask == 0)
continue;
start_id = __builtin_ctzl(service_mask);
end_id = 64 - __builtin_clzl(service_mask);
for (i = start_id; i < end_id; i++) {
/* return value ignored as no change to code flow */
service_run(i, cs, service_mask, service_get(i), 1);
}
__atomic_store_n(&cs->loops, cs->loops + 1, __ATOMIC_RELAXED);
}
/* Switch off this core for all services, to ensure that future
* calls to may_be_active() know this core is switched off.
*/
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++)
cs->service_active_on_lcore[i] = 0;
/* Use SEQ CST memory ordering to avoid any re-ordering around
* this store, ensuring that once this store is visible, the service
* lcore thread really is done in service cores code.
*/
__atomic_store_n(&cs->thread_active, 0, __ATOMIC_SEQ_CST);
return 0;
}
int32_t
rte_service_lcore_may_be_active(uint32_t lcore)
{
if (lcore >= RTE_MAX_LCORE || !lcore_states[lcore].is_service_core)
return -EINVAL;
/* Load thread_active using ACQUIRE to avoid instructions dependent on
* the result being re-ordered before this load completes.
*/
return __atomic_load_n(&lcore_states[lcore].thread_active,
__ATOMIC_ACQUIRE);
}
int32_t
rte_service_lcore_count(void)
{
int32_t count = 0;
uint32_t i;
for (i = 0; i < RTE_MAX_LCORE; i++)
count += lcore_states[i].is_service_core;
return count;
}
int32_t
rte_service_lcore_list(uint32_t array[], uint32_t n)
{
uint32_t count = rte_service_lcore_count();
if (count > n)
return -ENOMEM;
if (!array)
return -EINVAL;
uint32_t i;
uint32_t idx = 0;
for (i = 0; i < RTE_MAX_LCORE; i++) {
struct core_state *cs = &lcore_states[i];
if (cs->is_service_core) {
array[idx] = i;
idx++;
}
}
return count;
}
int32_t
rte_service_lcore_count_services(uint32_t lcore)
{
if (lcore >= RTE_MAX_LCORE)
return -EINVAL;
struct core_state *cs = &lcore_states[lcore];
if (!cs->is_service_core)
return -ENOTSUP;
return __builtin_popcountll(cs->service_mask);
}
int32_t
rte_service_start_with_defaults(void)
{
/* create a default mapping from cores to services, then start the
* services to make them transparent to unaware applications.
*/
uint32_t i;
int ret;
uint32_t count = rte_service_get_count();
int32_t lcore_iter = 0;
uint32_t ids[RTE_MAX_LCORE] = {0};
int32_t lcore_count = rte_service_lcore_list(ids, RTE_MAX_LCORE);
if (lcore_count == 0)
return -ENOTSUP;
for (i = 0; (int)i < lcore_count; i++)
rte_service_lcore_start(ids[i]);
for (i = 0; i < count; i++) {
/* do 1:1 core mapping here, with each service getting
* assigned a single core by default. Adding multiple services
* should multiplex to a single core, or 1:1 if there are the
* same amount of services as service-cores
*/
ret = rte_service_map_lcore_set(i, ids[lcore_iter], 1);
if (ret)
return -ENODEV;
lcore_iter++;
if (lcore_iter >= lcore_count)
lcore_iter = 0;
ret = rte_service_runstate_set(i, 1);
if (ret)
return -ENOEXEC;
}
return 0;
}
static int32_t
service_update(uint32_t sid, uint32_t lcore, uint32_t *set, uint32_t *enabled)
{
/* validate ID, or return error value */
if (!service_valid(sid) || lcore >= RTE_MAX_LCORE ||
!lcore_states[lcore].is_service_core)
return -EINVAL;
uint64_t sid_mask = UINT64_C(1) << sid;
if (set) {
uint64_t lcore_mapped = lcore_states[lcore].service_mask &
sid_mask;
if (*set && !lcore_mapped) {
lcore_states[lcore].service_mask |= sid_mask;
__atomic_add_fetch(&rte_services[sid].num_mapped_cores,
1, __ATOMIC_RELAXED);
}
if (!*set && lcore_mapped) {
lcore_states[lcore].service_mask &= ~(sid_mask);
__atomic_sub_fetch(&rte_services[sid].num_mapped_cores,
1, __ATOMIC_RELAXED);
}
}
if (enabled)
*enabled = !!(lcore_states[lcore].service_mask & (sid_mask));
return 0;
}
int32_t
rte_service_map_lcore_set(uint32_t id, uint32_t lcore, uint32_t enabled)
{
uint32_t on = enabled > 0;
return service_update(id, lcore, &on, 0);
}
int32_t
rte_service_map_lcore_get(uint32_t id, uint32_t lcore)
{
uint32_t enabled;
int ret = service_update(id, lcore, 0, &enabled);
if (ret == 0)
return enabled;
return ret;
}
static void
set_lcore_state(uint32_t lcore, int32_t state)
{
/* mark core state in hugepage backed config */
struct rte_config *cfg = rte_eal_get_configuration();
cfg->lcore_role[lcore] = state;
/* mark state in process local lcore_config */
lcore_config[lcore].core_role = state;
/* update per-lcore optimized state tracking */
lcore_states[lcore].is_service_core = (state == ROLE_SERVICE);
}
int32_t
rte_service_lcore_reset_all(void)
{
/* loop over cores, reset all to mask 0 */
uint32_t i;
for (i = 0; i < RTE_MAX_LCORE; i++) {
if (lcore_states[i].is_service_core) {
lcore_states[i].service_mask = 0;
set_lcore_state(i, ROLE_RTE);
/* runstate act as guard variable Use
* store-release memory order here to synchronize
* with load-acquire in runstate read functions.
*/
__atomic_store_n(&lcore_states[i].runstate,
RUNSTATE_STOPPED, __ATOMIC_RELEASE);
}
}
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++)
__atomic_store_n(&rte_services[i].num_mapped_cores, 0,
__ATOMIC_RELAXED);
return 0;
}
int32_t
rte_service_lcore_add(uint32_t lcore)
{
if (lcore >= RTE_MAX_LCORE)
return -EINVAL;
if (lcore_states[lcore].is_service_core)
return -EALREADY;
set_lcore_state(lcore, ROLE_SERVICE);
/* ensure that after adding a core the mask and state are defaults */
lcore_states[lcore].service_mask = 0;
/* Use store-release memory order here to synchronize with
* load-acquire in runstate read functions.
*/
__atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED,
__ATOMIC_RELEASE);
return rte_eal_wait_lcore(lcore);
}
int32_t
rte_service_lcore_del(uint32_t lcore)
{
if (lcore >= RTE_MAX_LCORE)
return -EINVAL;
struct core_state *cs = &lcore_states[lcore];
if (!cs->is_service_core)
return -EINVAL;
/* runstate act as the guard variable. Use load-acquire
* memory order here to synchronize with store-release
* in runstate update functions.
*/
if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) !=
RUNSTATE_STOPPED)
return -EBUSY;
set_lcore_state(lcore, ROLE_RTE);
rte_smp_wmb();
return 0;
}
int32_t
rte_service_lcore_start(uint32_t lcore)
{
if (lcore >= RTE_MAX_LCORE)
return -EINVAL;
struct core_state *cs = &lcore_states[lcore];
if (!cs->is_service_core)
return -EINVAL;
/* runstate act as the guard variable. Use load-acquire
* memory order here to synchronize with store-release
* in runstate update functions.
*/
if (__atomic_load_n(&cs->runstate, __ATOMIC_ACQUIRE) ==
RUNSTATE_RUNNING)
return -EALREADY;
/* set core to run state first, and then launch otherwise it will
* return immediately as runstate keeps it in the service poll loop
*/
/* Use load-acquire memory order here to synchronize with
* store-release in runstate update functions.
*/
__atomic_store_n(&cs->runstate, RUNSTATE_RUNNING, __ATOMIC_RELEASE);
int ret = rte_eal_remote_launch(service_runner_func, 0, lcore);
/* returns -EBUSY if the core is already launched, 0 on success */
return ret;
}
int32_t
rte_service_lcore_stop(uint32_t lcore)
{
if (lcore >= RTE_MAX_LCORE)
return -EINVAL;
/* runstate act as the guard variable. Use load-acquire
* memory order here to synchronize with store-release
* in runstate update functions.
*/
if (__atomic_load_n(&lcore_states[lcore].runstate, __ATOMIC_ACQUIRE) ==
RUNSTATE_STOPPED)
return -EALREADY;
uint32_t i;
struct core_state *cs = &lcore_states[lcore];
uint64_t service_mask = cs->service_mask;
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
int32_t enabled = service_mask & (UINT64_C(1) << i);
int32_t service_running = rte_service_runstate_get(i);
int32_t only_core = (1 ==
__atomic_load_n(&rte_services[i].num_mapped_cores,
__ATOMIC_RELAXED));
/* if the core is mapped, and the service is running, and this
* is the only core that is mapped, the service would cease to
* run if this core stopped, so fail instead.
*/
if (enabled && service_running && only_core)
return -EBUSY;
}
/* Use store-release memory order here to synchronize with
* load-acquire in runstate read functions.
*/
__atomic_store_n(&lcore_states[lcore].runstate, RUNSTATE_STOPPED,
__ATOMIC_RELEASE);
return 0;
}
static uint64_t
lcore_attr_get_loops(unsigned int lcore)
{
struct core_state *cs = &lcore_states[lcore];
return __atomic_load_n(&cs->loops, __ATOMIC_RELAXED);
}
static uint64_t
lcore_attr_get_cycles(unsigned int lcore)
{
struct core_state *cs = &lcore_states[lcore];
return __atomic_load_n(&cs->cycles, __ATOMIC_RELAXED);
}
static uint64_t
lcore_attr_get_service_calls(uint32_t service_id, unsigned int lcore)
{
struct core_state *cs = &lcore_states[lcore];
return __atomic_load_n(&cs->service_stats[service_id].calls,
__ATOMIC_RELAXED);
}
static uint64_t
lcore_attr_get_service_cycles(uint32_t service_id, unsigned int lcore)
{
struct core_state *cs = &lcore_states[lcore];
return __atomic_load_n(&cs->service_stats[service_id].cycles,
__ATOMIC_RELAXED);
}
typedef uint64_t (*lcore_attr_get_fun)(uint32_t service_id,
unsigned int lcore);
static uint64_t
attr_get(uint32_t id, lcore_attr_get_fun lcore_attr_get)
{
unsigned int lcore;
uint64_t sum = 0;
for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
if (lcore_states[lcore].is_service_core)
sum += lcore_attr_get(id, lcore);
}
return sum;
}
static uint64_t
attr_get_service_calls(uint32_t service_id)
{
return attr_get(service_id, lcore_attr_get_service_calls);
}
static uint64_t
attr_get_service_cycles(uint32_t service_id)
{
return attr_get(service_id, lcore_attr_get_service_cycles);
}
int32_t
rte_service_attr_get(uint32_t id, uint32_t attr_id, uint64_t *attr_value)
{
if (!service_valid(id))
return -EINVAL;
if (!attr_value)
return -EINVAL;
switch (attr_id) {
case RTE_SERVICE_ATTR_CALL_COUNT:
*attr_value = attr_get_service_calls(id);
return 0;
case RTE_SERVICE_ATTR_CYCLES:
*attr_value = attr_get_service_cycles(id);
return 0;
default:
return -EINVAL;
}
}
int32_t
rte_service_lcore_attr_get(uint32_t lcore, uint32_t attr_id,
uint64_t *attr_value)
{
struct core_state *cs;
if (lcore >= RTE_MAX_LCORE || !attr_value)
return -EINVAL;
cs = &lcore_states[lcore];
if (!cs->is_service_core)
return -ENOTSUP;
switch (attr_id) {
case RTE_SERVICE_LCORE_ATTR_LOOPS:
*attr_value = lcore_attr_get_loops(lcore);
return 0;
case RTE_SERVICE_LCORE_ATTR_CYCLES:
*attr_value = lcore_attr_get_cycles(lcore);
return 0;
default:
return -EINVAL;
}
}
int32_t
rte_service_attr_reset_all(uint32_t id)
{
unsigned int lcore;
if (!service_valid(id))
return -EINVAL;
for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
struct core_state *cs = &lcore_states[lcore];
cs->service_stats[id] = (struct service_stats) {};
}
return 0;
}
int32_t
rte_service_lcore_attr_reset_all(uint32_t lcore)
{
struct core_state *cs;
if (lcore >= RTE_MAX_LCORE)
return -EINVAL;
cs = &lcore_states[lcore];
if (!cs->is_service_core)
return -ENOTSUP;
cs->loops = 0;
return 0;
}
static void
service_dump_one(FILE *f, uint32_t id)
{
struct rte_service_spec_impl *s;
uint64_t service_calls;
uint64_t service_cycles;
service_calls = attr_get_service_calls(id);
service_cycles = attr_get_service_cycles(id);
/* avoid divide by zero */
if (service_calls == 0)
service_calls = 1;
s = service_get(id);
fprintf(f, " %s: stats %d\tcalls %"PRIu64"\tcycles %"
PRIu64"\tavg: %"PRIu64"\n",
s->spec.name, service_stats_enabled(s), service_calls,
service_cycles, service_cycles / service_calls);
}
static void
service_dump_calls_per_lcore(FILE *f, uint32_t lcore)
{
uint32_t i;
struct core_state *cs = &lcore_states[lcore];
fprintf(f, "%02d\t", lcore);
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
if (!service_registered(i))
continue;
fprintf(f, "%"PRIu64"\t", cs->service_stats[i].calls);
}
fprintf(f, "\n");
}
int32_t
rte_service_dump(FILE *f, uint32_t id)
{
uint32_t i;
int print_one = (id != UINT32_MAX);
/* print only the specified service */
if (print_one) {
struct rte_service_spec_impl *s;
SERVICE_VALID_GET_OR_ERR_RET(id, s, -EINVAL);
fprintf(f, "Service %s Summary\n", s->spec.name);
service_dump_one(f, id);
return 0;
}
/* print all services, as UINT32_MAX was passed as id */
fprintf(f, "Services Summary\n");
for (i = 0; i < RTE_SERVICE_NUM_MAX; i++) {
if (!service_registered(i))
continue;
service_dump_one(f, i);
}
fprintf(f, "Service Cores Summary\n");
for (i = 0; i < RTE_MAX_LCORE; i++) {
if (lcore_config[i].core_role != ROLE_SERVICE)
continue;
service_dump_calls_per_lcore(f, i);
}
return 0;
}