bdd0c62c69
The memory of h->hash_rcu_cfg which is allocated in
rte_hash_rcu_qsbr_add was leaked.
Fixes: 769b2de7fb
("hash: implement RCU resources reclamation")
Cc: stable@dpdk.org
Signed-off-by: Jun Qiu <jun.qiu@jaguarmicro.com>
Reviewed-by: David Marchand <david.marchand@redhat.com>
2543 lines
68 KiB
C
2543 lines
68 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2016 Intel Corporation
|
|
* Copyright(c) 2018 Arm Limited
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_cpuflags.h>
|
|
#include <rte_rwlock.h>
|
|
#include <rte_ring_elem.h>
|
|
#include <rte_vect.h>
|
|
#include <rte_tailq.h>
|
|
|
|
#include "rte_hash.h"
|
|
#include "rte_cuckoo_hash.h"
|
|
|
|
/* Mask of all flags supported by this version */
|
|
#define RTE_HASH_EXTRA_FLAGS_MASK (RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT | \
|
|
RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD | \
|
|
RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY | \
|
|
RTE_HASH_EXTRA_FLAGS_EXT_TABLE | \
|
|
RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL | \
|
|
RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF)
|
|
|
|
#define FOR_EACH_BUCKET(CURRENT_BKT, START_BUCKET) \
|
|
for (CURRENT_BKT = START_BUCKET; \
|
|
CURRENT_BKT != NULL; \
|
|
CURRENT_BKT = CURRENT_BKT->next)
|
|
|
|
TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
|
|
|
|
static struct rte_tailq_elem rte_hash_tailq = {
|
|
.name = "RTE_HASH",
|
|
};
|
|
EAL_REGISTER_TAILQ(rte_hash_tailq)
|
|
|
|
struct __rte_hash_rcu_dq_entry {
|
|
uint32_t key_idx;
|
|
uint32_t ext_bkt_idx;
|
|
};
|
|
|
|
struct rte_hash *
|
|
rte_hash_find_existing(const char *name)
|
|
{
|
|
struct rte_hash *h = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_hash_list *hash_list;
|
|
|
|
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
|
|
|
|
rte_mcfg_tailq_read_lock();
|
|
TAILQ_FOREACH(te, hash_list, next) {
|
|
h = (struct rte_hash *) te->data;
|
|
if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
rte_mcfg_tailq_read_unlock();
|
|
|
|
if (te == NULL) {
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
return h;
|
|
}
|
|
|
|
static inline struct rte_hash_bucket *
|
|
rte_hash_get_last_bkt(struct rte_hash_bucket *lst_bkt)
|
|
{
|
|
while (lst_bkt->next != NULL)
|
|
lst_bkt = lst_bkt->next;
|
|
return lst_bkt;
|
|
}
|
|
|
|
void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
|
|
{
|
|
h->cmp_jump_table_idx = KEY_CUSTOM;
|
|
h->rte_hash_custom_cmp_eq = func;
|
|
}
|
|
|
|
static inline int
|
|
rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
|
|
{
|
|
if (h->cmp_jump_table_idx == KEY_CUSTOM)
|
|
return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
|
|
else
|
|
return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
|
|
}
|
|
|
|
/*
|
|
* We use higher 16 bits of hash as the signature value stored in table.
|
|
* We use the lower bits for the primary bucket
|
|
* location. Then we XOR primary bucket location and the signature
|
|
* to get the secondary bucket location. This is same as
|
|
* proposed in Bin Fan, et al's paper
|
|
* "MemC3: Compact and Concurrent MemCache with Dumber Caching and
|
|
* Smarter Hashing". The benefit to use
|
|
* XOR is that one could derive the alternative bucket location
|
|
* by only using the current bucket location and the signature.
|
|
*/
|
|
static inline uint16_t
|
|
get_short_sig(const hash_sig_t hash)
|
|
{
|
|
return hash >> 16;
|
|
}
|
|
|
|
static inline uint32_t
|
|
get_prim_bucket_index(const struct rte_hash *h, const hash_sig_t hash)
|
|
{
|
|
return hash & h->bucket_bitmask;
|
|
}
|
|
|
|
static inline uint32_t
|
|
get_alt_bucket_index(const struct rte_hash *h,
|
|
uint32_t cur_bkt_idx, uint16_t sig)
|
|
{
|
|
return (cur_bkt_idx ^ sig) & h->bucket_bitmask;
|
|
}
|
|
|
|
struct rte_hash *
|
|
rte_hash_create(const struct rte_hash_parameters *params)
|
|
{
|
|
struct rte_hash *h = NULL;
|
|
struct rte_tailq_entry *te = NULL;
|
|
struct rte_hash_list *hash_list;
|
|
struct rte_ring *r = NULL;
|
|
struct rte_ring *r_ext = NULL;
|
|
char hash_name[RTE_HASH_NAMESIZE];
|
|
void *k = NULL;
|
|
void *buckets = NULL;
|
|
void *buckets_ext = NULL;
|
|
char ring_name[RTE_RING_NAMESIZE];
|
|
char ext_ring_name[RTE_RING_NAMESIZE];
|
|
unsigned num_key_slots;
|
|
unsigned int hw_trans_mem_support = 0, use_local_cache = 0;
|
|
unsigned int ext_table_support = 0;
|
|
unsigned int readwrite_concur_support = 0;
|
|
unsigned int writer_takes_lock = 0;
|
|
unsigned int no_free_on_del = 0;
|
|
uint32_t *ext_bkt_to_free = NULL;
|
|
uint32_t *tbl_chng_cnt = NULL;
|
|
struct lcore_cache *local_free_slots = NULL;
|
|
unsigned int readwrite_concur_lf_support = 0;
|
|
uint32_t i;
|
|
|
|
rte_hash_function default_hash_func = (rte_hash_function)rte_jhash;
|
|
|
|
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
|
|
|
|
if (params == NULL) {
|
|
RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Check for valid parameters */
|
|
if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
|
|
(params->entries < RTE_HASH_BUCKET_ENTRIES) ||
|
|
(params->key_len == 0)) {
|
|
rte_errno = EINVAL;
|
|
RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (params->extra_flag & ~RTE_HASH_EXTRA_FLAGS_MASK) {
|
|
rte_errno = EINVAL;
|
|
RTE_LOG(ERR, HASH, "rte_hash_create: unsupported extra flags\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Validate correct usage of extra options */
|
|
if ((params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) &&
|
|
(params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF)) {
|
|
rte_errno = EINVAL;
|
|
RTE_LOG(ERR, HASH, "rte_hash_create: choose rw concurrency or "
|
|
"rw concurrency lock free\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Check extra flags field to check extra options. */
|
|
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
|
|
hw_trans_mem_support = 1;
|
|
|
|
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) {
|
|
use_local_cache = 1;
|
|
writer_takes_lock = 1;
|
|
}
|
|
|
|
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) {
|
|
readwrite_concur_support = 1;
|
|
writer_takes_lock = 1;
|
|
}
|
|
|
|
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_EXT_TABLE)
|
|
ext_table_support = 1;
|
|
|
|
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL)
|
|
no_free_on_del = 1;
|
|
|
|
if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF) {
|
|
readwrite_concur_lf_support = 1;
|
|
/* Enable not freeing internal memory/index on delete.
|
|
* If internal RCU is enabled, freeing of internal memory/index
|
|
* is done on delete
|
|
*/
|
|
no_free_on_del = 1;
|
|
}
|
|
|
|
/* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
|
|
if (use_local_cache)
|
|
/*
|
|
* Increase number of slots by total number of indices
|
|
* that can be stored in the lcore caches
|
|
* except for the first cache
|
|
*/
|
|
num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
|
|
(LCORE_CACHE_SIZE - 1) + 1;
|
|
else
|
|
num_key_slots = params->entries + 1;
|
|
|
|
snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
|
|
/* Create ring (Dummy slot index is not enqueued) */
|
|
r = rte_ring_create_elem(ring_name, sizeof(uint32_t),
|
|
rte_align32pow2(num_key_slots), params->socket_id, 0);
|
|
if (r == NULL) {
|
|
RTE_LOG(ERR, HASH, "memory allocation failed\n");
|
|
goto err;
|
|
}
|
|
|
|
const uint32_t num_buckets = rte_align32pow2(params->entries) /
|
|
RTE_HASH_BUCKET_ENTRIES;
|
|
|
|
/* Create ring for extendable buckets. */
|
|
if (ext_table_support) {
|
|
snprintf(ext_ring_name, sizeof(ext_ring_name), "HT_EXT_%s",
|
|
params->name);
|
|
r_ext = rte_ring_create_elem(ext_ring_name, sizeof(uint32_t),
|
|
rte_align32pow2(num_buckets + 1),
|
|
params->socket_id, 0);
|
|
|
|
if (r_ext == NULL) {
|
|
RTE_LOG(ERR, HASH, "ext buckets memory allocation "
|
|
"failed\n");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
|
|
|
|
rte_mcfg_tailq_write_lock();
|
|
|
|
/* guarantee there's no existing: this is normally already checked
|
|
* by ring creation above */
|
|
TAILQ_FOREACH(te, hash_list, next) {
|
|
h = (struct rte_hash *) te->data;
|
|
if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
h = NULL;
|
|
if (te != NULL) {
|
|
rte_errno = EEXIST;
|
|
te = NULL;
|
|
goto err_unlock;
|
|
}
|
|
|
|
te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
|
|
if (te == NULL) {
|
|
RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
|
|
h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
|
|
if (h == NULL) {
|
|
RTE_LOG(ERR, HASH, "memory allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
|
|
buckets = rte_zmalloc_socket(NULL,
|
|
num_buckets * sizeof(struct rte_hash_bucket),
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
|
|
if (buckets == NULL) {
|
|
RTE_LOG(ERR, HASH, "buckets memory allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
|
|
/* Allocate same number of extendable buckets */
|
|
if (ext_table_support) {
|
|
buckets_ext = rte_zmalloc_socket(NULL,
|
|
num_buckets * sizeof(struct rte_hash_bucket),
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
if (buckets_ext == NULL) {
|
|
RTE_LOG(ERR, HASH, "ext buckets memory allocation "
|
|
"failed\n");
|
|
goto err_unlock;
|
|
}
|
|
/* Populate ext bkt ring. We reserve 0 similar to the
|
|
* key-data slot, just in case in future we want to
|
|
* use bucket index for the linked list and 0 means NULL
|
|
* for next bucket
|
|
*/
|
|
for (i = 1; i <= num_buckets; i++)
|
|
rte_ring_sp_enqueue_elem(r_ext, &i, sizeof(uint32_t));
|
|
|
|
if (readwrite_concur_lf_support) {
|
|
ext_bkt_to_free = rte_zmalloc(NULL, sizeof(uint32_t) *
|
|
num_key_slots, 0);
|
|
if (ext_bkt_to_free == NULL) {
|
|
RTE_LOG(ERR, HASH, "ext bkt to free memory allocation "
|
|
"failed\n");
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
const uint32_t key_entry_size =
|
|
RTE_ALIGN(sizeof(struct rte_hash_key) + params->key_len,
|
|
KEY_ALIGNMENT);
|
|
const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;
|
|
|
|
k = rte_zmalloc_socket(NULL, key_tbl_size,
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
|
|
if (k == NULL) {
|
|
RTE_LOG(ERR, HASH, "memory allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
|
|
tbl_chng_cnt = rte_zmalloc_socket(NULL, sizeof(uint32_t),
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
|
|
if (tbl_chng_cnt == NULL) {
|
|
RTE_LOG(ERR, HASH, "memory allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
|
|
/*
|
|
* If x86 architecture is used, select appropriate compare function,
|
|
* which may use x86 intrinsics, otherwise use memcmp
|
|
*/
|
|
#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
|
|
/* Select function to compare keys */
|
|
switch (params->key_len) {
|
|
case 16:
|
|
h->cmp_jump_table_idx = KEY_16_BYTES;
|
|
break;
|
|
case 32:
|
|
h->cmp_jump_table_idx = KEY_32_BYTES;
|
|
break;
|
|
case 48:
|
|
h->cmp_jump_table_idx = KEY_48_BYTES;
|
|
break;
|
|
case 64:
|
|
h->cmp_jump_table_idx = KEY_64_BYTES;
|
|
break;
|
|
case 80:
|
|
h->cmp_jump_table_idx = KEY_80_BYTES;
|
|
break;
|
|
case 96:
|
|
h->cmp_jump_table_idx = KEY_96_BYTES;
|
|
break;
|
|
case 112:
|
|
h->cmp_jump_table_idx = KEY_112_BYTES;
|
|
break;
|
|
case 128:
|
|
h->cmp_jump_table_idx = KEY_128_BYTES;
|
|
break;
|
|
default:
|
|
/* If key is not multiple of 16, use generic memcmp */
|
|
h->cmp_jump_table_idx = KEY_OTHER_BYTES;
|
|
}
|
|
#else
|
|
h->cmp_jump_table_idx = KEY_OTHER_BYTES;
|
|
#endif
|
|
|
|
if (use_local_cache) {
|
|
local_free_slots = rte_zmalloc_socket(NULL,
|
|
sizeof(struct lcore_cache) * RTE_MAX_LCORE,
|
|
RTE_CACHE_LINE_SIZE, params->socket_id);
|
|
if (local_free_slots == NULL) {
|
|
RTE_LOG(ERR, HASH, "local free slots memory allocation failed\n");
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
/* Default hash function */
|
|
#if defined(RTE_ARCH_X86)
|
|
default_hash_func = (rte_hash_function)rte_hash_crc;
|
|
#elif defined(RTE_ARCH_ARM64)
|
|
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_CRC32))
|
|
default_hash_func = (rte_hash_function)rte_hash_crc;
|
|
#endif
|
|
/* Setup hash context */
|
|
strlcpy(h->name, params->name, sizeof(h->name));
|
|
h->entries = params->entries;
|
|
h->key_len = params->key_len;
|
|
h->key_entry_size = key_entry_size;
|
|
h->hash_func_init_val = params->hash_func_init_val;
|
|
|
|
h->num_buckets = num_buckets;
|
|
h->bucket_bitmask = h->num_buckets - 1;
|
|
h->buckets = buckets;
|
|
h->buckets_ext = buckets_ext;
|
|
h->free_ext_bkts = r_ext;
|
|
h->hash_func = (params->hash_func == NULL) ?
|
|
default_hash_func : params->hash_func;
|
|
h->key_store = k;
|
|
h->free_slots = r;
|
|
h->ext_bkt_to_free = ext_bkt_to_free;
|
|
h->tbl_chng_cnt = tbl_chng_cnt;
|
|
*h->tbl_chng_cnt = 0;
|
|
h->hw_trans_mem_support = hw_trans_mem_support;
|
|
h->use_local_cache = use_local_cache;
|
|
h->local_free_slots = local_free_slots;
|
|
h->readwrite_concur_support = readwrite_concur_support;
|
|
h->ext_table_support = ext_table_support;
|
|
h->writer_takes_lock = writer_takes_lock;
|
|
h->no_free_on_del = no_free_on_del;
|
|
h->readwrite_concur_lf_support = readwrite_concur_lf_support;
|
|
|
|
#if defined(RTE_ARCH_X86)
|
|
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE2))
|
|
h->sig_cmp_fn = RTE_HASH_COMPARE_SSE;
|
|
else
|
|
#elif defined(RTE_ARCH_ARM64)
|
|
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
|
|
h->sig_cmp_fn = RTE_HASH_COMPARE_NEON;
|
|
else
|
|
#endif
|
|
h->sig_cmp_fn = RTE_HASH_COMPARE_SCALAR;
|
|
|
|
/* Writer threads need to take the lock when:
|
|
* 1) RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY is enabled OR
|
|
* 2) RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD is enabled
|
|
*/
|
|
if (h->writer_takes_lock) {
|
|
h->readwrite_lock = rte_malloc(NULL, sizeof(rte_rwlock_t),
|
|
RTE_CACHE_LINE_SIZE);
|
|
if (h->readwrite_lock == NULL)
|
|
goto err_unlock;
|
|
|
|
rte_rwlock_init(h->readwrite_lock);
|
|
}
|
|
|
|
/* Populate free slots ring. Entry zero is reserved for key misses. */
|
|
for (i = 1; i < num_key_slots; i++)
|
|
rte_ring_sp_enqueue_elem(r, &i, sizeof(uint32_t));
|
|
|
|
te->data = (void *) h;
|
|
TAILQ_INSERT_TAIL(hash_list, te, next);
|
|
rte_mcfg_tailq_write_unlock();
|
|
|
|
return h;
|
|
err_unlock:
|
|
rte_mcfg_tailq_write_unlock();
|
|
err:
|
|
rte_ring_free(r);
|
|
rte_ring_free(r_ext);
|
|
rte_free(te);
|
|
rte_free(local_free_slots);
|
|
rte_free(h);
|
|
rte_free(buckets);
|
|
rte_free(buckets_ext);
|
|
rte_free(k);
|
|
rte_free(tbl_chng_cnt);
|
|
rte_free(ext_bkt_to_free);
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
rte_hash_free(struct rte_hash *h)
|
|
{
|
|
struct rte_tailq_entry *te;
|
|
struct rte_hash_list *hash_list;
|
|
|
|
if (h == NULL)
|
|
return;
|
|
|
|
hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
|
|
|
|
rte_mcfg_tailq_write_lock();
|
|
|
|
/* find out tailq entry */
|
|
TAILQ_FOREACH(te, hash_list, next) {
|
|
if (te->data == (void *) h)
|
|
break;
|
|
}
|
|
|
|
if (te == NULL) {
|
|
rte_mcfg_tailq_write_unlock();
|
|
return;
|
|
}
|
|
|
|
TAILQ_REMOVE(hash_list, te, next);
|
|
|
|
rte_mcfg_tailq_write_unlock();
|
|
|
|
if (h->dq)
|
|
rte_rcu_qsbr_dq_delete(h->dq);
|
|
|
|
if (h->use_local_cache)
|
|
rte_free(h->local_free_slots);
|
|
if (h->writer_takes_lock)
|
|
rte_free(h->readwrite_lock);
|
|
rte_ring_free(h->free_slots);
|
|
rte_ring_free(h->free_ext_bkts);
|
|
rte_free(h->key_store);
|
|
rte_free(h->buckets);
|
|
rte_free(h->buckets_ext);
|
|
rte_free(h->tbl_chng_cnt);
|
|
rte_free(h->ext_bkt_to_free);
|
|
rte_free(h->hash_rcu_cfg);
|
|
rte_free(h);
|
|
rte_free(te);
|
|
}
|
|
|
|
hash_sig_t
|
|
rte_hash_hash(const struct rte_hash *h, const void *key)
|
|
{
|
|
/* calc hash result by key */
|
|
return h->hash_func(key, h->key_len, h->hash_func_init_val);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_max_key_id(const struct rte_hash *h)
|
|
{
|
|
RETURN_IF_TRUE((h == NULL), -EINVAL);
|
|
if (h->use_local_cache)
|
|
/*
|
|
* Increase number of slots by total number of indices
|
|
* that can be stored in the lcore caches
|
|
*/
|
|
return (h->entries + ((RTE_MAX_LCORE - 1) *
|
|
(LCORE_CACHE_SIZE - 1)));
|
|
else
|
|
return h->entries;
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_count(const struct rte_hash *h)
|
|
{
|
|
uint32_t tot_ring_cnt, cached_cnt = 0;
|
|
uint32_t i, ret;
|
|
|
|
if (h == NULL)
|
|
return -EINVAL;
|
|
|
|
if (h->use_local_cache) {
|
|
tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
|
|
(LCORE_CACHE_SIZE - 1);
|
|
for (i = 0; i < RTE_MAX_LCORE; i++)
|
|
cached_cnt += h->local_free_slots[i].len;
|
|
|
|
ret = tot_ring_cnt - rte_ring_count(h->free_slots) -
|
|
cached_cnt;
|
|
} else {
|
|
tot_ring_cnt = h->entries;
|
|
ret = tot_ring_cnt - rte_ring_count(h->free_slots);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Read write locks implemented using rte_rwlock */
|
|
static inline void
|
|
__hash_rw_writer_lock(const struct rte_hash *h)
|
|
{
|
|
if (h->writer_takes_lock && h->hw_trans_mem_support)
|
|
rte_rwlock_write_lock_tm(h->readwrite_lock);
|
|
else if (h->writer_takes_lock)
|
|
rte_rwlock_write_lock(h->readwrite_lock);
|
|
}
|
|
|
|
static inline void
|
|
__hash_rw_reader_lock(const struct rte_hash *h)
|
|
{
|
|
if (h->readwrite_concur_support && h->hw_trans_mem_support)
|
|
rte_rwlock_read_lock_tm(h->readwrite_lock);
|
|
else if (h->readwrite_concur_support)
|
|
rte_rwlock_read_lock(h->readwrite_lock);
|
|
}
|
|
|
|
static inline void
|
|
__hash_rw_writer_unlock(const struct rte_hash *h)
|
|
{
|
|
if (h->writer_takes_lock && h->hw_trans_mem_support)
|
|
rte_rwlock_write_unlock_tm(h->readwrite_lock);
|
|
else if (h->writer_takes_lock)
|
|
rte_rwlock_write_unlock(h->readwrite_lock);
|
|
}
|
|
|
|
static inline void
|
|
__hash_rw_reader_unlock(const struct rte_hash *h)
|
|
{
|
|
if (h->readwrite_concur_support && h->hw_trans_mem_support)
|
|
rte_rwlock_read_unlock_tm(h->readwrite_lock);
|
|
else if (h->readwrite_concur_support)
|
|
rte_rwlock_read_unlock(h->readwrite_lock);
|
|
}
|
|
|
|
void
|
|
rte_hash_reset(struct rte_hash *h)
|
|
{
|
|
uint32_t tot_ring_cnt, i;
|
|
unsigned int pending;
|
|
|
|
if (h == NULL)
|
|
return;
|
|
|
|
__hash_rw_writer_lock(h);
|
|
|
|
if (h->dq) {
|
|
/* Reclaim all the resources */
|
|
rte_rcu_qsbr_dq_reclaim(h->dq, ~0, NULL, &pending, NULL);
|
|
if (pending != 0)
|
|
RTE_LOG(ERR, HASH, "RCU reclaim all resources failed\n");
|
|
}
|
|
|
|
memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
|
|
memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
|
|
*h->tbl_chng_cnt = 0;
|
|
|
|
/* reset the free ring */
|
|
rte_ring_reset(h->free_slots);
|
|
|
|
/* flush free extendable bucket ring and memory */
|
|
if (h->ext_table_support) {
|
|
memset(h->buckets_ext, 0, h->num_buckets *
|
|
sizeof(struct rte_hash_bucket));
|
|
rte_ring_reset(h->free_ext_bkts);
|
|
}
|
|
|
|
/* Repopulate the free slots ring. Entry zero is reserved for key misses */
|
|
if (h->use_local_cache)
|
|
tot_ring_cnt = h->entries + (RTE_MAX_LCORE - 1) *
|
|
(LCORE_CACHE_SIZE - 1);
|
|
else
|
|
tot_ring_cnt = h->entries;
|
|
|
|
for (i = 1; i < tot_ring_cnt + 1; i++)
|
|
rte_ring_sp_enqueue_elem(h->free_slots, &i, sizeof(uint32_t));
|
|
|
|
/* Repopulate the free ext bkt ring. */
|
|
if (h->ext_table_support) {
|
|
for (i = 1; i <= h->num_buckets; i++)
|
|
rte_ring_sp_enqueue_elem(h->free_ext_bkts, &i,
|
|
sizeof(uint32_t));
|
|
}
|
|
|
|
if (h->use_local_cache) {
|
|
/* Reset local caches per lcore */
|
|
for (i = 0; i < RTE_MAX_LCORE; i++)
|
|
h->local_free_slots[i].len = 0;
|
|
}
|
|
__hash_rw_writer_unlock(h);
|
|
}
|
|
|
|
/*
|
|
* Function called to enqueue back an index in the cache/ring,
|
|
* as slot has not being used and it can be used in the
|
|
* next addition attempt.
|
|
*/
|
|
static inline void
|
|
enqueue_slot_back(const struct rte_hash *h,
|
|
struct lcore_cache *cached_free_slots,
|
|
uint32_t slot_id)
|
|
{
|
|
if (h->use_local_cache) {
|
|
cached_free_slots->objs[cached_free_slots->len] = slot_id;
|
|
cached_free_slots->len++;
|
|
} else
|
|
rte_ring_sp_enqueue_elem(h->free_slots, &slot_id,
|
|
sizeof(uint32_t));
|
|
}
|
|
|
|
/* Search a key from bucket and update its data.
|
|
* Writer holds the lock before calling this.
|
|
*/
|
|
static inline int32_t
|
|
search_and_update(const struct rte_hash *h, void *data, const void *key,
|
|
struct rte_hash_bucket *bkt, uint16_t sig)
|
|
{
|
|
int i;
|
|
struct rte_hash_key *k, *keys = h->key_store;
|
|
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (bkt->sig_current[i] == sig) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
bkt->key_idx[i] * h->key_entry_size);
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
/* The store to application data at *data
|
|
* should not leak after the store to pdata
|
|
* in the key store. i.e. pdata is the guard
|
|
* variable. Release the application data
|
|
* to the readers.
|
|
*/
|
|
__atomic_store_n(&k->pdata,
|
|
data,
|
|
__ATOMIC_RELEASE);
|
|
/*
|
|
* Return index where key is stored,
|
|
* subtracting the first dummy index
|
|
*/
|
|
return bkt->key_idx[i] - 1;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Only tries to insert at one bucket (@prim_bkt) without trying to push
|
|
* buckets around.
|
|
* return 1 if matching existing key, return 0 if succeeds, return -1 for no
|
|
* empty entry.
|
|
*/
|
|
static inline int32_t
|
|
rte_hash_cuckoo_insert_mw(const struct rte_hash *h,
|
|
struct rte_hash_bucket *prim_bkt,
|
|
struct rte_hash_bucket *sec_bkt,
|
|
const struct rte_hash_key *key, void *data,
|
|
uint16_t sig, uint32_t new_idx,
|
|
int32_t *ret_val)
|
|
{
|
|
unsigned int i;
|
|
struct rte_hash_bucket *cur_bkt;
|
|
int32_t ret;
|
|
|
|
__hash_rw_writer_lock(h);
|
|
/* Check if key was inserted after last check but before this
|
|
* protected region in case of inserting duplicated keys.
|
|
*/
|
|
ret = search_and_update(h, data, key, prim_bkt, sig);
|
|
if (ret != -1) {
|
|
__hash_rw_writer_unlock(h);
|
|
*ret_val = ret;
|
|
return 1;
|
|
}
|
|
|
|
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
|
|
ret = search_and_update(h, data, key, cur_bkt, sig);
|
|
if (ret != -1) {
|
|
__hash_rw_writer_unlock(h);
|
|
*ret_val = ret;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Insert new entry if there is room in the primary
|
|
* bucket.
|
|
*/
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
/* Check if slot is available */
|
|
if (likely(prim_bkt->key_idx[i] == EMPTY_SLOT)) {
|
|
prim_bkt->sig_current[i] = sig;
|
|
/* Store to signature and key should not
|
|
* leak after the store to key_idx. i.e.
|
|
* key_idx is the guard variable for signature
|
|
* and key.
|
|
*/
|
|
__atomic_store_n(&prim_bkt->key_idx[i],
|
|
new_idx,
|
|
__ATOMIC_RELEASE);
|
|
break;
|
|
}
|
|
}
|
|
__hash_rw_writer_unlock(h);
|
|
|
|
if (i != RTE_HASH_BUCKET_ENTRIES)
|
|
return 0;
|
|
|
|
/* no empty entry */
|
|
return -1;
|
|
}
|
|
|
|
/* Shift buckets along provided cuckoo_path (@leaf and @leaf_slot) and fill
|
|
* the path head with new entry (sig, alt_hash, new_idx)
|
|
* return 1 if matched key found, return -1 if cuckoo path invalided and fail,
|
|
* return 0 if succeeds.
|
|
*/
|
|
static inline int
|
|
rte_hash_cuckoo_move_insert_mw(const struct rte_hash *h,
|
|
struct rte_hash_bucket *bkt,
|
|
struct rte_hash_bucket *alt_bkt,
|
|
const struct rte_hash_key *key, void *data,
|
|
struct queue_node *leaf, uint32_t leaf_slot,
|
|
uint16_t sig, uint32_t new_idx,
|
|
int32_t *ret_val)
|
|
{
|
|
uint32_t prev_alt_bkt_idx;
|
|
struct rte_hash_bucket *cur_bkt;
|
|
struct queue_node *prev_node, *curr_node = leaf;
|
|
struct rte_hash_bucket *prev_bkt, *curr_bkt = leaf->bkt;
|
|
uint32_t prev_slot, curr_slot = leaf_slot;
|
|
int32_t ret;
|
|
|
|
__hash_rw_writer_lock(h);
|
|
|
|
/* In case empty slot was gone before entering protected region */
|
|
if (curr_bkt->key_idx[curr_slot] != EMPTY_SLOT) {
|
|
__hash_rw_writer_unlock(h);
|
|
return -1;
|
|
}
|
|
|
|
/* Check if key was inserted after last check but before this
|
|
* protected region.
|
|
*/
|
|
ret = search_and_update(h, data, key, bkt, sig);
|
|
if (ret != -1) {
|
|
__hash_rw_writer_unlock(h);
|
|
*ret_val = ret;
|
|
return 1;
|
|
}
|
|
|
|
FOR_EACH_BUCKET(cur_bkt, alt_bkt) {
|
|
ret = search_and_update(h, data, key, cur_bkt, sig);
|
|
if (ret != -1) {
|
|
__hash_rw_writer_unlock(h);
|
|
*ret_val = ret;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
while (likely(curr_node->prev != NULL)) {
|
|
prev_node = curr_node->prev;
|
|
prev_bkt = prev_node->bkt;
|
|
prev_slot = curr_node->prev_slot;
|
|
|
|
prev_alt_bkt_idx = get_alt_bucket_index(h,
|
|
prev_node->cur_bkt_idx,
|
|
prev_bkt->sig_current[prev_slot]);
|
|
|
|
if (unlikely(&h->buckets[prev_alt_bkt_idx]
|
|
!= curr_bkt)) {
|
|
/* revert it to empty, otherwise duplicated keys */
|
|
__atomic_store_n(&curr_bkt->key_idx[curr_slot],
|
|
EMPTY_SLOT,
|
|
__ATOMIC_RELEASE);
|
|
__hash_rw_writer_unlock(h);
|
|
return -1;
|
|
}
|
|
|
|
if (h->readwrite_concur_lf_support) {
|
|
/* Inform the previous move. The current move need
|
|
* not be informed now as the current bucket entry
|
|
* is present in both primary and secondary.
|
|
* Since there is one writer, load acquires on
|
|
* tbl_chng_cnt are not required.
|
|
*/
|
|
__atomic_store_n(h->tbl_chng_cnt,
|
|
*h->tbl_chng_cnt + 1,
|
|
__ATOMIC_RELEASE);
|
|
/* The store to sig_current should not
|
|
* move above the store to tbl_chng_cnt.
|
|
*/
|
|
__atomic_thread_fence(__ATOMIC_RELEASE);
|
|
}
|
|
|
|
/* Need to swap current/alt sig to allow later
|
|
* Cuckoo insert to move elements back to its
|
|
* primary bucket if available
|
|
*/
|
|
curr_bkt->sig_current[curr_slot] =
|
|
prev_bkt->sig_current[prev_slot];
|
|
/* Release the updated bucket entry */
|
|
__atomic_store_n(&curr_bkt->key_idx[curr_slot],
|
|
prev_bkt->key_idx[prev_slot],
|
|
__ATOMIC_RELEASE);
|
|
|
|
curr_slot = prev_slot;
|
|
curr_node = prev_node;
|
|
curr_bkt = curr_node->bkt;
|
|
}
|
|
|
|
if (h->readwrite_concur_lf_support) {
|
|
/* Inform the previous move. The current move need
|
|
* not be informed now as the current bucket entry
|
|
* is present in both primary and secondary.
|
|
* Since there is one writer, load acquires on
|
|
* tbl_chng_cnt are not required.
|
|
*/
|
|
__atomic_store_n(h->tbl_chng_cnt,
|
|
*h->tbl_chng_cnt + 1,
|
|
__ATOMIC_RELEASE);
|
|
/* The store to sig_current should not
|
|
* move above the store to tbl_chng_cnt.
|
|
*/
|
|
__atomic_thread_fence(__ATOMIC_RELEASE);
|
|
}
|
|
|
|
curr_bkt->sig_current[curr_slot] = sig;
|
|
/* Release the new bucket entry */
|
|
__atomic_store_n(&curr_bkt->key_idx[curr_slot],
|
|
new_idx,
|
|
__ATOMIC_RELEASE);
|
|
|
|
__hash_rw_writer_unlock(h);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*
|
|
* Make space for new key, using bfs Cuckoo Search and Multi-Writer safe
|
|
* Cuckoo
|
|
*/
|
|
static inline int
|
|
rte_hash_cuckoo_make_space_mw(const struct rte_hash *h,
|
|
struct rte_hash_bucket *bkt,
|
|
struct rte_hash_bucket *sec_bkt,
|
|
const struct rte_hash_key *key, void *data,
|
|
uint16_t sig, uint32_t bucket_idx,
|
|
uint32_t new_idx, int32_t *ret_val)
|
|
{
|
|
unsigned int i;
|
|
struct queue_node queue[RTE_HASH_BFS_QUEUE_MAX_LEN];
|
|
struct queue_node *tail, *head;
|
|
struct rte_hash_bucket *curr_bkt, *alt_bkt;
|
|
uint32_t cur_idx, alt_idx;
|
|
|
|
tail = queue;
|
|
head = queue + 1;
|
|
tail->bkt = bkt;
|
|
tail->prev = NULL;
|
|
tail->prev_slot = -1;
|
|
tail->cur_bkt_idx = bucket_idx;
|
|
|
|
/* Cuckoo bfs Search */
|
|
while (likely(tail != head && head <
|
|
queue + RTE_HASH_BFS_QUEUE_MAX_LEN -
|
|
RTE_HASH_BUCKET_ENTRIES)) {
|
|
curr_bkt = tail->bkt;
|
|
cur_idx = tail->cur_bkt_idx;
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (curr_bkt->key_idx[i] == EMPTY_SLOT) {
|
|
int32_t ret = rte_hash_cuckoo_move_insert_mw(h,
|
|
bkt, sec_bkt, key, data,
|
|
tail, i, sig,
|
|
new_idx, ret_val);
|
|
if (likely(ret != -1))
|
|
return ret;
|
|
}
|
|
|
|
/* Enqueue new node and keep prev node info */
|
|
alt_idx = get_alt_bucket_index(h, cur_idx,
|
|
curr_bkt->sig_current[i]);
|
|
alt_bkt = &(h->buckets[alt_idx]);
|
|
head->bkt = alt_bkt;
|
|
head->cur_bkt_idx = alt_idx;
|
|
head->prev = tail;
|
|
head->prev_slot = i;
|
|
head++;
|
|
}
|
|
tail++;
|
|
}
|
|
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static inline uint32_t
|
|
alloc_slot(const struct rte_hash *h, struct lcore_cache *cached_free_slots)
|
|
{
|
|
unsigned int n_slots;
|
|
uint32_t slot_id;
|
|
|
|
if (h->use_local_cache) {
|
|
/* Try to get a free slot from the local cache */
|
|
if (cached_free_slots->len == 0) {
|
|
/* Need to get another burst of free slots from global ring */
|
|
n_slots = rte_ring_mc_dequeue_burst_elem(h->free_slots,
|
|
cached_free_slots->objs,
|
|
sizeof(uint32_t),
|
|
LCORE_CACHE_SIZE, NULL);
|
|
if (n_slots == 0)
|
|
return EMPTY_SLOT;
|
|
|
|
cached_free_slots->len += n_slots;
|
|
}
|
|
|
|
/* Get a free slot from the local cache */
|
|
cached_free_slots->len--;
|
|
slot_id = cached_free_slots->objs[cached_free_slots->len];
|
|
} else {
|
|
if (rte_ring_sc_dequeue_elem(h->free_slots, &slot_id,
|
|
sizeof(uint32_t)) != 0)
|
|
return EMPTY_SLOT;
|
|
}
|
|
|
|
return slot_id;
|
|
}
|
|
|
|
static inline int32_t
|
|
__rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
|
|
hash_sig_t sig, void *data)
|
|
{
|
|
uint16_t short_sig;
|
|
uint32_t prim_bucket_idx, sec_bucket_idx;
|
|
struct rte_hash_bucket *prim_bkt, *sec_bkt, *cur_bkt;
|
|
struct rte_hash_key *new_k, *keys = h->key_store;
|
|
uint32_t ext_bkt_id = 0;
|
|
uint32_t slot_id;
|
|
int ret;
|
|
unsigned lcore_id;
|
|
unsigned int i;
|
|
struct lcore_cache *cached_free_slots = NULL;
|
|
int32_t ret_val;
|
|
struct rte_hash_bucket *last;
|
|
|
|
short_sig = get_short_sig(sig);
|
|
prim_bucket_idx = get_prim_bucket_index(h, sig);
|
|
sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
|
|
prim_bkt = &h->buckets[prim_bucket_idx];
|
|
sec_bkt = &h->buckets[sec_bucket_idx];
|
|
rte_prefetch0(prim_bkt);
|
|
rte_prefetch0(sec_bkt);
|
|
|
|
/* Check if key is already inserted in primary location */
|
|
__hash_rw_writer_lock(h);
|
|
ret = search_and_update(h, data, key, prim_bkt, short_sig);
|
|
if (ret != -1) {
|
|
__hash_rw_writer_unlock(h);
|
|
return ret;
|
|
}
|
|
|
|
/* Check if key is already inserted in secondary location */
|
|
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
|
|
ret = search_and_update(h, data, key, cur_bkt, short_sig);
|
|
if (ret != -1) {
|
|
__hash_rw_writer_unlock(h);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
__hash_rw_writer_unlock(h);
|
|
|
|
/* Did not find a match, so get a new slot for storing the new key */
|
|
if (h->use_local_cache) {
|
|
lcore_id = rte_lcore_id();
|
|
cached_free_slots = &h->local_free_slots[lcore_id];
|
|
}
|
|
slot_id = alloc_slot(h, cached_free_slots);
|
|
if (slot_id == EMPTY_SLOT) {
|
|
if (h->dq) {
|
|
__hash_rw_writer_lock(h);
|
|
ret = rte_rcu_qsbr_dq_reclaim(h->dq,
|
|
h->hash_rcu_cfg->max_reclaim_size,
|
|
NULL, NULL, NULL);
|
|
__hash_rw_writer_unlock(h);
|
|
if (ret == 0)
|
|
slot_id = alloc_slot(h, cached_free_slots);
|
|
}
|
|
if (slot_id == EMPTY_SLOT)
|
|
return -ENOSPC;
|
|
}
|
|
|
|
new_k = RTE_PTR_ADD(keys, slot_id * h->key_entry_size);
|
|
/* The store to application data (by the application) at *data should
|
|
* not leak after the store of pdata in the key store. i.e. pdata is
|
|
* the guard variable. Release the application data to the readers.
|
|
*/
|
|
__atomic_store_n(&new_k->pdata,
|
|
data,
|
|
__ATOMIC_RELEASE);
|
|
/* Copy key */
|
|
memcpy(new_k->key, key, h->key_len);
|
|
|
|
/* Find an empty slot and insert */
|
|
ret = rte_hash_cuckoo_insert_mw(h, prim_bkt, sec_bkt, key, data,
|
|
short_sig, slot_id, &ret_val);
|
|
if (ret == 0)
|
|
return slot_id - 1;
|
|
else if (ret == 1) {
|
|
enqueue_slot_back(h, cached_free_slots, slot_id);
|
|
return ret_val;
|
|
}
|
|
|
|
/* Primary bucket full, need to make space for new entry */
|
|
ret = rte_hash_cuckoo_make_space_mw(h, prim_bkt, sec_bkt, key, data,
|
|
short_sig, prim_bucket_idx, slot_id, &ret_val);
|
|
if (ret == 0)
|
|
return slot_id - 1;
|
|
else if (ret == 1) {
|
|
enqueue_slot_back(h, cached_free_slots, slot_id);
|
|
return ret_val;
|
|
}
|
|
|
|
/* Also search secondary bucket to get better occupancy */
|
|
ret = rte_hash_cuckoo_make_space_mw(h, sec_bkt, prim_bkt, key, data,
|
|
short_sig, sec_bucket_idx, slot_id, &ret_val);
|
|
|
|
if (ret == 0)
|
|
return slot_id - 1;
|
|
else if (ret == 1) {
|
|
enqueue_slot_back(h, cached_free_slots, slot_id);
|
|
return ret_val;
|
|
}
|
|
|
|
/* if ext table not enabled, we failed the insertion */
|
|
if (!h->ext_table_support) {
|
|
enqueue_slot_back(h, cached_free_slots, slot_id);
|
|
return ret;
|
|
}
|
|
|
|
/* Now we need to go through the extendable bucket. Protection is needed
|
|
* to protect all extendable bucket processes.
|
|
*/
|
|
__hash_rw_writer_lock(h);
|
|
/* We check for duplicates again since could be inserted before the lock */
|
|
ret = search_and_update(h, data, key, prim_bkt, short_sig);
|
|
if (ret != -1) {
|
|
enqueue_slot_back(h, cached_free_slots, slot_id);
|
|
goto failure;
|
|
}
|
|
|
|
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
|
|
ret = search_and_update(h, data, key, cur_bkt, short_sig);
|
|
if (ret != -1) {
|
|
enqueue_slot_back(h, cached_free_slots, slot_id);
|
|
goto failure;
|
|
}
|
|
}
|
|
|
|
/* Search sec and ext buckets to find an empty entry to insert. */
|
|
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
/* Check if slot is available */
|
|
if (likely(cur_bkt->key_idx[i] == EMPTY_SLOT)) {
|
|
cur_bkt->sig_current[i] = short_sig;
|
|
/* Store to signature and key should not
|
|
* leak after the store to key_idx. i.e.
|
|
* key_idx is the guard variable for signature
|
|
* and key.
|
|
*/
|
|
__atomic_store_n(&cur_bkt->key_idx[i],
|
|
slot_id,
|
|
__ATOMIC_RELEASE);
|
|
__hash_rw_writer_unlock(h);
|
|
return slot_id - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Failed to get an empty entry from extendable buckets. Link a new
|
|
* extendable bucket. We first get a free bucket from ring.
|
|
*/
|
|
if (rte_ring_sc_dequeue_elem(h->free_ext_bkts, &ext_bkt_id,
|
|
sizeof(uint32_t)) != 0 ||
|
|
ext_bkt_id == 0) {
|
|
if (h->dq) {
|
|
if (rte_rcu_qsbr_dq_reclaim(h->dq,
|
|
h->hash_rcu_cfg->max_reclaim_size,
|
|
NULL, NULL, NULL) == 0) {
|
|
rte_ring_sc_dequeue_elem(h->free_ext_bkts,
|
|
&ext_bkt_id,
|
|
sizeof(uint32_t));
|
|
}
|
|
}
|
|
if (ext_bkt_id == 0) {
|
|
ret = -ENOSPC;
|
|
goto failure;
|
|
}
|
|
}
|
|
|
|
/* Use the first location of the new bucket */
|
|
(h->buckets_ext[ext_bkt_id - 1]).sig_current[0] = short_sig;
|
|
/* Store to signature and key should not leak after
|
|
* the store to key_idx. i.e. key_idx is the guard variable
|
|
* for signature and key.
|
|
*/
|
|
__atomic_store_n(&(h->buckets_ext[ext_bkt_id - 1]).key_idx[0],
|
|
slot_id,
|
|
__ATOMIC_RELEASE);
|
|
/* Link the new bucket to sec bucket linked list */
|
|
last = rte_hash_get_last_bkt(sec_bkt);
|
|
last->next = &h->buckets_ext[ext_bkt_id - 1];
|
|
__hash_rw_writer_unlock(h);
|
|
return slot_id - 1;
|
|
|
|
failure:
|
|
__hash_rw_writer_unlock(h);
|
|
return ret;
|
|
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_add_key_with_hash(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_add_key_with_hash(h, key, sig, 0);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_add_key(const struct rte_hash *h, const void *key)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
|
|
}
|
|
|
|
int
|
|
rte_hash_add_key_with_hash_data(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig, void *data)
|
|
{
|
|
int ret;
|
|
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
ret = __rte_hash_add_key_with_hash(h, key, sig, data);
|
|
if (ret >= 0)
|
|
return 0;
|
|
else
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
|
|
{
|
|
int ret;
|
|
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
|
|
ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
|
|
if (ret >= 0)
|
|
return 0;
|
|
else
|
|
return ret;
|
|
}
|
|
|
|
/* Search one bucket to find the match key - uses rw lock */
|
|
static inline int32_t
|
|
search_one_bucket_l(const struct rte_hash *h, const void *key,
|
|
uint16_t sig, void **data,
|
|
const struct rte_hash_bucket *bkt)
|
|
{
|
|
int i;
|
|
struct rte_hash_key *k, *keys = h->key_store;
|
|
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (bkt->sig_current[i] == sig &&
|
|
bkt->key_idx[i] != EMPTY_SLOT) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
bkt->key_idx[i] * h->key_entry_size);
|
|
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
if (data != NULL)
|
|
*data = k->pdata;
|
|
/*
|
|
* Return index where key is stored,
|
|
* subtracting the first dummy index
|
|
*/
|
|
return bkt->key_idx[i] - 1;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Search one bucket to find the match key */
|
|
static inline int32_t
|
|
search_one_bucket_lf(const struct rte_hash *h, const void *key, uint16_t sig,
|
|
void **data, const struct rte_hash_bucket *bkt)
|
|
{
|
|
int i;
|
|
uint32_t key_idx;
|
|
struct rte_hash_key *k, *keys = h->key_store;
|
|
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
/* Signature comparison is done before the acquire-load
|
|
* of the key index to achieve better performance.
|
|
* This can result in the reader loading old signature
|
|
* (which matches), while the key_idx is updated to a
|
|
* value that belongs to a new key. However, the full
|
|
* key comparison will ensure that the lookup fails.
|
|
*/
|
|
if (bkt->sig_current[i] == sig) {
|
|
key_idx = __atomic_load_n(&bkt->key_idx[i],
|
|
__ATOMIC_ACQUIRE);
|
|
if (key_idx != EMPTY_SLOT) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
key_idx * h->key_entry_size);
|
|
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
if (data != NULL) {
|
|
*data = __atomic_load_n(
|
|
&k->pdata,
|
|
__ATOMIC_ACQUIRE);
|
|
}
|
|
/*
|
|
* Return index where key is stored,
|
|
* subtracting the first dummy index
|
|
*/
|
|
return key_idx - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static inline int32_t
|
|
__rte_hash_lookup_with_hash_l(const struct rte_hash *h, const void *key,
|
|
hash_sig_t sig, void **data)
|
|
{
|
|
uint32_t prim_bucket_idx, sec_bucket_idx;
|
|
struct rte_hash_bucket *bkt, *cur_bkt;
|
|
int ret;
|
|
uint16_t short_sig;
|
|
|
|
short_sig = get_short_sig(sig);
|
|
prim_bucket_idx = get_prim_bucket_index(h, sig);
|
|
sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
|
|
|
|
bkt = &h->buckets[prim_bucket_idx];
|
|
|
|
__hash_rw_reader_lock(h);
|
|
|
|
/* Check if key is in primary location */
|
|
ret = search_one_bucket_l(h, key, short_sig, data, bkt);
|
|
if (ret != -1) {
|
|
__hash_rw_reader_unlock(h);
|
|
return ret;
|
|
}
|
|
/* Calculate secondary hash */
|
|
bkt = &h->buckets[sec_bucket_idx];
|
|
|
|
/* Check if key is in secondary location */
|
|
FOR_EACH_BUCKET(cur_bkt, bkt) {
|
|
ret = search_one_bucket_l(h, key, short_sig,
|
|
data, cur_bkt);
|
|
if (ret != -1) {
|
|
__hash_rw_reader_unlock(h);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
__hash_rw_reader_unlock(h);
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static inline int32_t
|
|
__rte_hash_lookup_with_hash_lf(const struct rte_hash *h, const void *key,
|
|
hash_sig_t sig, void **data)
|
|
{
|
|
uint32_t prim_bucket_idx, sec_bucket_idx;
|
|
struct rte_hash_bucket *bkt, *cur_bkt;
|
|
uint32_t cnt_b, cnt_a;
|
|
int ret;
|
|
uint16_t short_sig;
|
|
|
|
short_sig = get_short_sig(sig);
|
|
prim_bucket_idx = get_prim_bucket_index(h, sig);
|
|
sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
|
|
|
|
do {
|
|
/* Load the table change counter before the lookup
|
|
* starts. Acquire semantics will make sure that
|
|
* loads in search_one_bucket are not hoisted.
|
|
*/
|
|
cnt_b = __atomic_load_n(h->tbl_chng_cnt,
|
|
__ATOMIC_ACQUIRE);
|
|
|
|
/* Check if key is in primary location */
|
|
bkt = &h->buckets[prim_bucket_idx];
|
|
ret = search_one_bucket_lf(h, key, short_sig, data, bkt);
|
|
if (ret != -1)
|
|
return ret;
|
|
/* Calculate secondary hash */
|
|
bkt = &h->buckets[sec_bucket_idx];
|
|
|
|
/* Check if key is in secondary location */
|
|
FOR_EACH_BUCKET(cur_bkt, bkt) {
|
|
ret = search_one_bucket_lf(h, key, short_sig,
|
|
data, cur_bkt);
|
|
if (ret != -1)
|
|
return ret;
|
|
}
|
|
|
|
/* The loads of sig_current in search_one_bucket
|
|
* should not move below the load from tbl_chng_cnt.
|
|
*/
|
|
__atomic_thread_fence(__ATOMIC_ACQUIRE);
|
|
/* Re-read the table change counter to check if the
|
|
* table has changed during search. If yes, re-do
|
|
* the search.
|
|
* This load should not get hoisted. The load
|
|
* acquires on cnt_b, key index in primary bucket
|
|
* and key index in secondary bucket will make sure
|
|
* that it does not get hoisted.
|
|
*/
|
|
cnt_a = __atomic_load_n(h->tbl_chng_cnt,
|
|
__ATOMIC_ACQUIRE);
|
|
} while (cnt_b != cnt_a);
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static inline int32_t
|
|
__rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
|
|
hash_sig_t sig, void **data)
|
|
{
|
|
if (h->readwrite_concur_lf_support)
|
|
return __rte_hash_lookup_with_hash_lf(h, key, sig, data);
|
|
else
|
|
return __rte_hash_lookup_with_hash_l(h, key, sig, data);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_lookup_with_hash(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_lookup_with_hash(h, key, sig, NULL);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_lookup(const struct rte_hash *h, const void *key)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_with_hash_data(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig, void **data)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_lookup_with_hash(h, key, sig, data);
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
|
|
}
|
|
|
|
static int
|
|
free_slot(const struct rte_hash *h, uint32_t slot_id)
|
|
{
|
|
unsigned lcore_id, n_slots;
|
|
struct lcore_cache *cached_free_slots = NULL;
|
|
|
|
/* Return key indexes to free slot ring */
|
|
if (h->use_local_cache) {
|
|
lcore_id = rte_lcore_id();
|
|
cached_free_slots = &h->local_free_slots[lcore_id];
|
|
/* Cache full, need to free it. */
|
|
if (cached_free_slots->len == LCORE_CACHE_SIZE) {
|
|
/* Need to enqueue the free slots in global ring. */
|
|
n_slots = rte_ring_mp_enqueue_burst_elem(h->free_slots,
|
|
cached_free_slots->objs,
|
|
sizeof(uint32_t),
|
|
LCORE_CACHE_SIZE, NULL);
|
|
RETURN_IF_TRUE((n_slots == 0), -EFAULT);
|
|
cached_free_slots->len -= n_slots;
|
|
}
|
|
}
|
|
|
|
enqueue_slot_back(h, cached_free_slots, slot_id);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
__hash_rcu_qsbr_free_resource(void *p, void *e, unsigned int n)
|
|
{
|
|
void *key_data = NULL;
|
|
int ret;
|
|
struct rte_hash_key *keys, *k;
|
|
struct rte_hash *h = (struct rte_hash *)p;
|
|
struct __rte_hash_rcu_dq_entry rcu_dq_entry =
|
|
*((struct __rte_hash_rcu_dq_entry *)e);
|
|
|
|
RTE_SET_USED(n);
|
|
keys = h->key_store;
|
|
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
rcu_dq_entry.key_idx * h->key_entry_size);
|
|
key_data = k->pdata;
|
|
if (h->hash_rcu_cfg->free_key_data_func)
|
|
h->hash_rcu_cfg->free_key_data_func(h->hash_rcu_cfg->key_data_ptr,
|
|
key_data);
|
|
|
|
if (h->ext_table_support && rcu_dq_entry.ext_bkt_idx != EMPTY_SLOT)
|
|
/* Recycle empty ext bkt to free list. */
|
|
rte_ring_sp_enqueue_elem(h->free_ext_bkts,
|
|
&rcu_dq_entry.ext_bkt_idx, sizeof(uint32_t));
|
|
|
|
/* Return key indexes to free slot ring */
|
|
ret = free_slot(h, rcu_dq_entry.key_idx);
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, HASH,
|
|
"%s: could not enqueue free slots in global ring\n",
|
|
__func__);
|
|
}
|
|
}
|
|
|
|
int
|
|
rte_hash_rcu_qsbr_add(struct rte_hash *h, struct rte_hash_rcu_config *cfg)
|
|
{
|
|
struct rte_rcu_qsbr_dq_parameters params = {0};
|
|
char rcu_dq_name[RTE_RCU_QSBR_DQ_NAMESIZE];
|
|
struct rte_hash_rcu_config *hash_rcu_cfg = NULL;
|
|
|
|
if (h == NULL || cfg == NULL || cfg->v == NULL) {
|
|
rte_errno = EINVAL;
|
|
return 1;
|
|
}
|
|
|
|
const uint32_t total_entries = h->use_local_cache ?
|
|
h->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1) + 1
|
|
: h->entries + 1;
|
|
|
|
if (h->hash_rcu_cfg) {
|
|
rte_errno = EEXIST;
|
|
return 1;
|
|
}
|
|
|
|
hash_rcu_cfg = rte_zmalloc(NULL, sizeof(struct rte_hash_rcu_config), 0);
|
|
if (hash_rcu_cfg == NULL) {
|
|
RTE_LOG(ERR, HASH, "memory allocation failed\n");
|
|
return 1;
|
|
}
|
|
|
|
if (cfg->mode == RTE_HASH_QSBR_MODE_SYNC) {
|
|
/* No other things to do. */
|
|
} else if (cfg->mode == RTE_HASH_QSBR_MODE_DQ) {
|
|
/* Init QSBR defer queue. */
|
|
snprintf(rcu_dq_name, sizeof(rcu_dq_name),
|
|
"HASH_RCU_%s", h->name);
|
|
params.name = rcu_dq_name;
|
|
params.size = cfg->dq_size;
|
|
if (params.size == 0)
|
|
params.size = total_entries;
|
|
params.trigger_reclaim_limit = cfg->trigger_reclaim_limit;
|
|
if (params.max_reclaim_size == 0)
|
|
params.max_reclaim_size = RTE_HASH_RCU_DQ_RECLAIM_MAX;
|
|
params.esize = sizeof(struct __rte_hash_rcu_dq_entry);
|
|
params.free_fn = __hash_rcu_qsbr_free_resource;
|
|
params.p = h;
|
|
params.v = cfg->v;
|
|
h->dq = rte_rcu_qsbr_dq_create(¶ms);
|
|
if (h->dq == NULL) {
|
|
rte_free(hash_rcu_cfg);
|
|
RTE_LOG(ERR, HASH, "HASH defer queue creation failed\n");
|
|
return 1;
|
|
}
|
|
} else {
|
|
rte_free(hash_rcu_cfg);
|
|
rte_errno = EINVAL;
|
|
return 1;
|
|
}
|
|
|
|
hash_rcu_cfg->v = cfg->v;
|
|
hash_rcu_cfg->mode = cfg->mode;
|
|
hash_rcu_cfg->dq_size = params.size;
|
|
hash_rcu_cfg->trigger_reclaim_limit = params.trigger_reclaim_limit;
|
|
hash_rcu_cfg->max_reclaim_size = params.max_reclaim_size;
|
|
hash_rcu_cfg->free_key_data_func = cfg->free_key_data_func;
|
|
hash_rcu_cfg->key_data_ptr = cfg->key_data_ptr;
|
|
|
|
h->hash_rcu_cfg = hash_rcu_cfg;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt,
|
|
unsigned int i)
|
|
{
|
|
int ret = free_slot(h, bkt->key_idx[i]);
|
|
|
|
if (ret < 0) {
|
|
RTE_LOG(ERR, HASH,
|
|
"%s: could not enqueue free slots in global ring\n",
|
|
__func__);
|
|
}
|
|
}
|
|
|
|
/* Compact the linked list by moving key from last entry in linked list to the
|
|
* empty slot.
|
|
*/
|
|
static inline void
|
|
__rte_hash_compact_ll(const struct rte_hash *h,
|
|
struct rte_hash_bucket *cur_bkt, int pos) {
|
|
int i;
|
|
struct rte_hash_bucket *last_bkt;
|
|
|
|
if (!cur_bkt->next)
|
|
return;
|
|
|
|
last_bkt = rte_hash_get_last_bkt(cur_bkt);
|
|
|
|
for (i = RTE_HASH_BUCKET_ENTRIES - 1; i >= 0; i--) {
|
|
if (last_bkt->key_idx[i] != EMPTY_SLOT) {
|
|
cur_bkt->sig_current[pos] = last_bkt->sig_current[i];
|
|
__atomic_store_n(&cur_bkt->key_idx[pos],
|
|
last_bkt->key_idx[i],
|
|
__ATOMIC_RELEASE);
|
|
if (h->readwrite_concur_lf_support) {
|
|
/* Inform the readers that the table has changed
|
|
* Since there is one writer, load acquire on
|
|
* tbl_chng_cnt is not required.
|
|
*/
|
|
__atomic_store_n(h->tbl_chng_cnt,
|
|
*h->tbl_chng_cnt + 1,
|
|
__ATOMIC_RELEASE);
|
|
/* The store to sig_current should
|
|
* not move above the store to tbl_chng_cnt.
|
|
*/
|
|
__atomic_thread_fence(__ATOMIC_RELEASE);
|
|
}
|
|
last_bkt->sig_current[i] = NULL_SIGNATURE;
|
|
__atomic_store_n(&last_bkt->key_idx[i],
|
|
EMPTY_SLOT,
|
|
__ATOMIC_RELEASE);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Search one bucket and remove the matched key.
|
|
* Writer is expected to hold the lock while calling this
|
|
* function.
|
|
*/
|
|
static inline int32_t
|
|
search_and_remove(const struct rte_hash *h, const void *key,
|
|
struct rte_hash_bucket *bkt, uint16_t sig, int *pos)
|
|
{
|
|
struct rte_hash_key *k, *keys = h->key_store;
|
|
unsigned int i;
|
|
uint32_t key_idx;
|
|
|
|
/* Check if key is in bucket */
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
key_idx = __atomic_load_n(&bkt->key_idx[i],
|
|
__ATOMIC_ACQUIRE);
|
|
if (bkt->sig_current[i] == sig && key_idx != EMPTY_SLOT) {
|
|
k = (struct rte_hash_key *) ((char *)keys +
|
|
key_idx * h->key_entry_size);
|
|
if (rte_hash_cmp_eq(key, k->key, h) == 0) {
|
|
bkt->sig_current[i] = NULL_SIGNATURE;
|
|
/* Free the key store index if
|
|
* no_free_on_del is disabled.
|
|
*/
|
|
if (!h->no_free_on_del)
|
|
remove_entry(h, bkt, i);
|
|
|
|
__atomic_store_n(&bkt->key_idx[i],
|
|
EMPTY_SLOT,
|
|
__ATOMIC_RELEASE);
|
|
|
|
*pos = i;
|
|
/*
|
|
* Return index where key is stored,
|
|
* subtracting the first dummy index
|
|
*/
|
|
return key_idx - 1;
|
|
}
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static inline int32_t
|
|
__rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
|
|
hash_sig_t sig)
|
|
{
|
|
uint32_t prim_bucket_idx, sec_bucket_idx;
|
|
struct rte_hash_bucket *prim_bkt, *sec_bkt, *prev_bkt, *last_bkt;
|
|
struct rte_hash_bucket *cur_bkt;
|
|
int pos;
|
|
int32_t ret, i;
|
|
uint16_t short_sig;
|
|
uint32_t index = EMPTY_SLOT;
|
|
struct __rte_hash_rcu_dq_entry rcu_dq_entry;
|
|
|
|
short_sig = get_short_sig(sig);
|
|
prim_bucket_idx = get_prim_bucket_index(h, sig);
|
|
sec_bucket_idx = get_alt_bucket_index(h, prim_bucket_idx, short_sig);
|
|
prim_bkt = &h->buckets[prim_bucket_idx];
|
|
|
|
__hash_rw_writer_lock(h);
|
|
/* look for key in primary bucket */
|
|
ret = search_and_remove(h, key, prim_bkt, short_sig, &pos);
|
|
if (ret != -1) {
|
|
__rte_hash_compact_ll(h, prim_bkt, pos);
|
|
last_bkt = prim_bkt->next;
|
|
prev_bkt = prim_bkt;
|
|
goto return_bkt;
|
|
}
|
|
|
|
/* Calculate secondary hash */
|
|
sec_bkt = &h->buckets[sec_bucket_idx];
|
|
|
|
FOR_EACH_BUCKET(cur_bkt, sec_bkt) {
|
|
ret = search_and_remove(h, key, cur_bkt, short_sig, &pos);
|
|
if (ret != -1) {
|
|
__rte_hash_compact_ll(h, cur_bkt, pos);
|
|
last_bkt = sec_bkt->next;
|
|
prev_bkt = sec_bkt;
|
|
goto return_bkt;
|
|
}
|
|
}
|
|
|
|
__hash_rw_writer_unlock(h);
|
|
return -ENOENT;
|
|
|
|
/* Search last bucket to see if empty to be recycled */
|
|
return_bkt:
|
|
if (!last_bkt)
|
|
goto return_key;
|
|
|
|
while (last_bkt->next) {
|
|
prev_bkt = last_bkt;
|
|
last_bkt = last_bkt->next;
|
|
}
|
|
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
if (last_bkt->key_idx[i] != EMPTY_SLOT)
|
|
break;
|
|
}
|
|
/* found empty bucket and recycle */
|
|
if (i == RTE_HASH_BUCKET_ENTRIES) {
|
|
prev_bkt->next = NULL;
|
|
index = last_bkt - h->buckets_ext + 1;
|
|
/* Recycle the empty bkt if
|
|
* no_free_on_del is disabled.
|
|
*/
|
|
if (h->no_free_on_del) {
|
|
/* Store index of an empty ext bkt to be recycled
|
|
* on calling rte_hash_del_xxx APIs.
|
|
* When lock free read-write concurrency is enabled,
|
|
* an empty ext bkt cannot be put into free list
|
|
* immediately (as readers might be using it still).
|
|
* Hence freeing of the ext bkt is piggy-backed to
|
|
* freeing of the key index.
|
|
* If using external RCU, store this index in an array.
|
|
*/
|
|
if (h->hash_rcu_cfg == NULL)
|
|
h->ext_bkt_to_free[ret] = index;
|
|
} else
|
|
rte_ring_sp_enqueue_elem(h->free_ext_bkts, &index,
|
|
sizeof(uint32_t));
|
|
}
|
|
|
|
return_key:
|
|
/* Using internal RCU QSBR */
|
|
if (h->hash_rcu_cfg) {
|
|
/* Key index where key is stored, adding the first dummy index */
|
|
rcu_dq_entry.key_idx = ret + 1;
|
|
rcu_dq_entry.ext_bkt_idx = index;
|
|
if (h->dq == NULL) {
|
|
/* Wait for quiescent state change if using
|
|
* RTE_HASH_QSBR_MODE_SYNC
|
|
*/
|
|
rte_rcu_qsbr_synchronize(h->hash_rcu_cfg->v,
|
|
RTE_QSBR_THRID_INVALID);
|
|
__hash_rcu_qsbr_free_resource((void *)((uintptr_t)h),
|
|
&rcu_dq_entry, 1);
|
|
} else if (h->dq)
|
|
/* Push into QSBR FIFO if using RTE_HASH_QSBR_MODE_DQ */
|
|
if (rte_rcu_qsbr_dq_enqueue(h->dq, &rcu_dq_entry) != 0)
|
|
RTE_LOG(ERR, HASH, "Failed to push QSBR FIFO\n");
|
|
}
|
|
__hash_rw_writer_unlock(h);
|
|
return ret;
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_del_key_with_hash(const struct rte_hash *h,
|
|
const void *key, hash_sig_t sig)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_del_key_with_hash(h, key, sig);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_del_key(const struct rte_hash *h, const void *key)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
|
|
}
|
|
|
|
int
|
|
rte_hash_get_key_with_position(const struct rte_hash *h, const int32_t position,
|
|
void **key)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
|
|
|
|
struct rte_hash_key *k, *keys = h->key_store;
|
|
k = (struct rte_hash_key *) ((char *) keys + (position + 1) *
|
|
h->key_entry_size);
|
|
*key = k->key;
|
|
|
|
if (position !=
|
|
__rte_hash_lookup_with_hash(h, *key, rte_hash_hash(h, *key),
|
|
NULL)) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_hash_free_key_with_position(const struct rte_hash *h,
|
|
const int32_t position)
|
|
{
|
|
/* Key index where key is stored, adding the first dummy index */
|
|
uint32_t key_idx = position + 1;
|
|
|
|
RETURN_IF_TRUE(((h == NULL) || (key_idx == EMPTY_SLOT)), -EINVAL);
|
|
|
|
const uint32_t total_entries = h->use_local_cache ?
|
|
h->entries + (RTE_MAX_LCORE - 1) * (LCORE_CACHE_SIZE - 1) + 1
|
|
: h->entries + 1;
|
|
|
|
/* Out of bounds */
|
|
if (key_idx >= total_entries)
|
|
return -EINVAL;
|
|
if (h->ext_table_support && h->readwrite_concur_lf_support) {
|
|
uint32_t index = h->ext_bkt_to_free[position];
|
|
if (index) {
|
|
/* Recycle empty ext bkt to free list. */
|
|
rte_ring_sp_enqueue_elem(h->free_ext_bkts, &index,
|
|
sizeof(uint32_t));
|
|
h->ext_bkt_to_free[position] = 0;
|
|
}
|
|
}
|
|
|
|
/* Enqueue slot to cache/ring of free slots. */
|
|
return free_slot(h, key_idx);
|
|
|
|
}
|
|
|
|
static inline void
|
|
compare_signatures(uint32_t *prim_hash_matches, uint32_t *sec_hash_matches,
|
|
const struct rte_hash_bucket *prim_bkt,
|
|
const struct rte_hash_bucket *sec_bkt,
|
|
uint16_t sig,
|
|
enum rte_hash_sig_compare_function sig_cmp_fn)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* For match mask the first bit of every two bits indicates the match */
|
|
switch (sig_cmp_fn) {
|
|
#if defined(__SSE2__)
|
|
case RTE_HASH_COMPARE_SSE:
|
|
/* Compare all signatures in the bucket */
|
|
*prim_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16(
|
|
_mm_load_si128(
|
|
(__m128i const *)prim_bkt->sig_current),
|
|
_mm_set1_epi16(sig)));
|
|
/* Compare all signatures in the bucket */
|
|
*sec_hash_matches = _mm_movemask_epi8(_mm_cmpeq_epi16(
|
|
_mm_load_si128(
|
|
(__m128i const *)sec_bkt->sig_current),
|
|
_mm_set1_epi16(sig)));
|
|
break;
|
|
#elif defined(__ARM_NEON)
|
|
case RTE_HASH_COMPARE_NEON: {
|
|
uint16x8_t vmat, vsig, x;
|
|
int16x8_t shift = {-15, -13, -11, -9, -7, -5, -3, -1};
|
|
|
|
vsig = vld1q_dup_u16((uint16_t const *)&sig);
|
|
/* Compare all signatures in the primary bucket */
|
|
vmat = vceqq_u16(vsig,
|
|
vld1q_u16((uint16_t const *)prim_bkt->sig_current));
|
|
x = vshlq_u16(vandq_u16(vmat, vdupq_n_u16(0x8000)), shift);
|
|
*prim_hash_matches = (uint32_t)(vaddvq_u16(x));
|
|
/* Compare all signatures in the secondary bucket */
|
|
vmat = vceqq_u16(vsig,
|
|
vld1q_u16((uint16_t const *)sec_bkt->sig_current));
|
|
x = vshlq_u16(vandq_u16(vmat, vdupq_n_u16(0x8000)), shift);
|
|
*sec_hash_matches = (uint32_t)(vaddvq_u16(x));
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
|
|
*prim_hash_matches |=
|
|
((sig == prim_bkt->sig_current[i]) << (i << 1));
|
|
*sec_hash_matches |=
|
|
((sig == sec_bkt->sig_current[i]) << (i << 1));
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
__bulk_lookup_l(const struct rte_hash *h, const void **keys,
|
|
const struct rte_hash_bucket **primary_bkt,
|
|
const struct rte_hash_bucket **secondary_bkt,
|
|
uint16_t *sig, int32_t num_keys, int32_t *positions,
|
|
uint64_t *hit_mask, void *data[])
|
|
{
|
|
uint64_t hits = 0;
|
|
int32_t i;
|
|
int32_t ret;
|
|
uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
|
|
uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
|
|
struct rte_hash_bucket *cur_bkt, *next_bkt;
|
|
|
|
__hash_rw_reader_lock(h);
|
|
|
|
/* Compare signatures and prefetch key slot of first hit */
|
|
for (i = 0; i < num_keys; i++) {
|
|
compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
|
|
primary_bkt[i], secondary_bkt[i],
|
|
sig[i], h->sig_cmp_fn);
|
|
|
|
if (prim_hitmask[i]) {
|
|
uint32_t first_hit =
|
|
__builtin_ctzl(prim_hitmask[i])
|
|
>> 1;
|
|
uint32_t key_idx =
|
|
primary_bkt[i]->key_idx[first_hit];
|
|
const struct rte_hash_key *key_slot =
|
|
(const struct rte_hash_key *)(
|
|
(const char *)h->key_store +
|
|
key_idx * h->key_entry_size);
|
|
rte_prefetch0(key_slot);
|
|
continue;
|
|
}
|
|
|
|
if (sec_hitmask[i]) {
|
|
uint32_t first_hit =
|
|
__builtin_ctzl(sec_hitmask[i])
|
|
>> 1;
|
|
uint32_t key_idx =
|
|
secondary_bkt[i]->key_idx[first_hit];
|
|
const struct rte_hash_key *key_slot =
|
|
(const struct rte_hash_key *)(
|
|
(const char *)h->key_store +
|
|
key_idx * h->key_entry_size);
|
|
rte_prefetch0(key_slot);
|
|
}
|
|
}
|
|
|
|
/* Compare keys, first hits in primary first */
|
|
for (i = 0; i < num_keys; i++) {
|
|
positions[i] = -ENOENT;
|
|
while (prim_hitmask[i]) {
|
|
uint32_t hit_index =
|
|
__builtin_ctzl(prim_hitmask[i])
|
|
>> 1;
|
|
uint32_t key_idx =
|
|
primary_bkt[i]->key_idx[hit_index];
|
|
const struct rte_hash_key *key_slot =
|
|
(const struct rte_hash_key *)(
|
|
(const char *)h->key_store +
|
|
key_idx * h->key_entry_size);
|
|
|
|
/*
|
|
* If key index is 0, do not compare key,
|
|
* as it is checking the dummy slot
|
|
*/
|
|
if (!!key_idx &
|
|
!rte_hash_cmp_eq(
|
|
key_slot->key, keys[i], h)) {
|
|
if (data != NULL)
|
|
data[i] = key_slot->pdata;
|
|
|
|
hits |= 1ULL << i;
|
|
positions[i] = key_idx - 1;
|
|
goto next_key;
|
|
}
|
|
prim_hitmask[i] &= ~(3ULL << (hit_index << 1));
|
|
}
|
|
|
|
while (sec_hitmask[i]) {
|
|
uint32_t hit_index =
|
|
__builtin_ctzl(sec_hitmask[i])
|
|
>> 1;
|
|
uint32_t key_idx =
|
|
secondary_bkt[i]->key_idx[hit_index];
|
|
const struct rte_hash_key *key_slot =
|
|
(const struct rte_hash_key *)(
|
|
(const char *)h->key_store +
|
|
key_idx * h->key_entry_size);
|
|
|
|
/*
|
|
* If key index is 0, do not compare key,
|
|
* as it is checking the dummy slot
|
|
*/
|
|
|
|
if (!!key_idx &
|
|
!rte_hash_cmp_eq(
|
|
key_slot->key, keys[i], h)) {
|
|
if (data != NULL)
|
|
data[i] = key_slot->pdata;
|
|
|
|
hits |= 1ULL << i;
|
|
positions[i] = key_idx - 1;
|
|
goto next_key;
|
|
}
|
|
sec_hitmask[i] &= ~(3ULL << (hit_index << 1));
|
|
}
|
|
next_key:
|
|
continue;
|
|
}
|
|
|
|
/* all found, do not need to go through ext bkt */
|
|
if ((hits == ((1ULL << num_keys) - 1)) || !h->ext_table_support) {
|
|
if (hit_mask != NULL)
|
|
*hit_mask = hits;
|
|
__hash_rw_reader_unlock(h);
|
|
return;
|
|
}
|
|
|
|
/* need to check ext buckets for match */
|
|
for (i = 0; i < num_keys; i++) {
|
|
if ((hits & (1ULL << i)) != 0)
|
|
continue;
|
|
next_bkt = secondary_bkt[i]->next;
|
|
FOR_EACH_BUCKET(cur_bkt, next_bkt) {
|
|
if (data != NULL)
|
|
ret = search_one_bucket_l(h, keys[i],
|
|
sig[i], &data[i], cur_bkt);
|
|
else
|
|
ret = search_one_bucket_l(h, keys[i],
|
|
sig[i], NULL, cur_bkt);
|
|
if (ret != -1) {
|
|
positions[i] = ret;
|
|
hits |= 1ULL << i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
__hash_rw_reader_unlock(h);
|
|
|
|
if (hit_mask != NULL)
|
|
*hit_mask = hits;
|
|
}
|
|
|
|
static inline void
|
|
__bulk_lookup_lf(const struct rte_hash *h, const void **keys,
|
|
const struct rte_hash_bucket **primary_bkt,
|
|
const struct rte_hash_bucket **secondary_bkt,
|
|
uint16_t *sig, int32_t num_keys, int32_t *positions,
|
|
uint64_t *hit_mask, void *data[])
|
|
{
|
|
uint64_t hits = 0;
|
|
int32_t i;
|
|
int32_t ret;
|
|
uint32_t prim_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
|
|
uint32_t sec_hitmask[RTE_HASH_LOOKUP_BULK_MAX] = {0};
|
|
struct rte_hash_bucket *cur_bkt, *next_bkt;
|
|
uint32_t cnt_b, cnt_a;
|
|
|
|
for (i = 0; i < num_keys; i++)
|
|
positions[i] = -ENOENT;
|
|
|
|
do {
|
|
/* Load the table change counter before the lookup
|
|
* starts. Acquire semantics will make sure that
|
|
* loads in compare_signatures are not hoisted.
|
|
*/
|
|
cnt_b = __atomic_load_n(h->tbl_chng_cnt,
|
|
__ATOMIC_ACQUIRE);
|
|
|
|
/* Compare signatures and prefetch key slot of first hit */
|
|
for (i = 0; i < num_keys; i++) {
|
|
compare_signatures(&prim_hitmask[i], &sec_hitmask[i],
|
|
primary_bkt[i], secondary_bkt[i],
|
|
sig[i], h->sig_cmp_fn);
|
|
|
|
if (prim_hitmask[i]) {
|
|
uint32_t first_hit =
|
|
__builtin_ctzl(prim_hitmask[i])
|
|
>> 1;
|
|
uint32_t key_idx =
|
|
primary_bkt[i]->key_idx[first_hit];
|
|
const struct rte_hash_key *key_slot =
|
|
(const struct rte_hash_key *)(
|
|
(const char *)h->key_store +
|
|
key_idx * h->key_entry_size);
|
|
rte_prefetch0(key_slot);
|
|
continue;
|
|
}
|
|
|
|
if (sec_hitmask[i]) {
|
|
uint32_t first_hit =
|
|
__builtin_ctzl(sec_hitmask[i])
|
|
>> 1;
|
|
uint32_t key_idx =
|
|
secondary_bkt[i]->key_idx[first_hit];
|
|
const struct rte_hash_key *key_slot =
|
|
(const struct rte_hash_key *)(
|
|
(const char *)h->key_store +
|
|
key_idx * h->key_entry_size);
|
|
rte_prefetch0(key_slot);
|
|
}
|
|
}
|
|
|
|
/* Compare keys, first hits in primary first */
|
|
for (i = 0; i < num_keys; i++) {
|
|
while (prim_hitmask[i]) {
|
|
uint32_t hit_index =
|
|
__builtin_ctzl(prim_hitmask[i])
|
|
>> 1;
|
|
uint32_t key_idx =
|
|
__atomic_load_n(
|
|
&primary_bkt[i]->key_idx[hit_index],
|
|
__ATOMIC_ACQUIRE);
|
|
const struct rte_hash_key *key_slot =
|
|
(const struct rte_hash_key *)(
|
|
(const char *)h->key_store +
|
|
key_idx * h->key_entry_size);
|
|
|
|
/*
|
|
* If key index is 0, do not compare key,
|
|
* as it is checking the dummy slot
|
|
*/
|
|
if (!!key_idx &
|
|
!rte_hash_cmp_eq(
|
|
key_slot->key, keys[i], h)) {
|
|
if (data != NULL)
|
|
data[i] = __atomic_load_n(
|
|
&key_slot->pdata,
|
|
__ATOMIC_ACQUIRE);
|
|
|
|
hits |= 1ULL << i;
|
|
positions[i] = key_idx - 1;
|
|
goto next_key;
|
|
}
|
|
prim_hitmask[i] &= ~(3ULL << (hit_index << 1));
|
|
}
|
|
|
|
while (sec_hitmask[i]) {
|
|
uint32_t hit_index =
|
|
__builtin_ctzl(sec_hitmask[i])
|
|
>> 1;
|
|
uint32_t key_idx =
|
|
__atomic_load_n(
|
|
&secondary_bkt[i]->key_idx[hit_index],
|
|
__ATOMIC_ACQUIRE);
|
|
const struct rte_hash_key *key_slot =
|
|
(const struct rte_hash_key *)(
|
|
(const char *)h->key_store +
|
|
key_idx * h->key_entry_size);
|
|
|
|
/*
|
|
* If key index is 0, do not compare key,
|
|
* as it is checking the dummy slot
|
|
*/
|
|
|
|
if (!!key_idx &
|
|
!rte_hash_cmp_eq(
|
|
key_slot->key, keys[i], h)) {
|
|
if (data != NULL)
|
|
data[i] = __atomic_load_n(
|
|
&key_slot->pdata,
|
|
__ATOMIC_ACQUIRE);
|
|
|
|
hits |= 1ULL << i;
|
|
positions[i] = key_idx - 1;
|
|
goto next_key;
|
|
}
|
|
sec_hitmask[i] &= ~(3ULL << (hit_index << 1));
|
|
}
|
|
next_key:
|
|
continue;
|
|
}
|
|
|
|
/* all found, do not need to go through ext bkt */
|
|
if (hits == ((1ULL << num_keys) - 1)) {
|
|
if (hit_mask != NULL)
|
|
*hit_mask = hits;
|
|
return;
|
|
}
|
|
/* need to check ext buckets for match */
|
|
if (h->ext_table_support) {
|
|
for (i = 0; i < num_keys; i++) {
|
|
if ((hits & (1ULL << i)) != 0)
|
|
continue;
|
|
next_bkt = secondary_bkt[i]->next;
|
|
FOR_EACH_BUCKET(cur_bkt, next_bkt) {
|
|
if (data != NULL)
|
|
ret = search_one_bucket_lf(h,
|
|
keys[i], sig[i],
|
|
&data[i], cur_bkt);
|
|
else
|
|
ret = search_one_bucket_lf(h,
|
|
keys[i], sig[i],
|
|
NULL, cur_bkt);
|
|
if (ret != -1) {
|
|
positions[i] = ret;
|
|
hits |= 1ULL << i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* The loads of sig_current in compare_signatures
|
|
* should not move below the load from tbl_chng_cnt.
|
|
*/
|
|
__atomic_thread_fence(__ATOMIC_ACQUIRE);
|
|
/* Re-read the table change counter to check if the
|
|
* table has changed during search. If yes, re-do
|
|
* the search.
|
|
* This load should not get hoisted. The load
|
|
* acquires on cnt_b, primary key index and secondary
|
|
* key index will make sure that it does not get
|
|
* hoisted.
|
|
*/
|
|
cnt_a = __atomic_load_n(h->tbl_chng_cnt,
|
|
__ATOMIC_ACQUIRE);
|
|
} while (cnt_b != cnt_a);
|
|
|
|
if (hit_mask != NULL)
|
|
*hit_mask = hits;
|
|
}
|
|
|
|
#define PREFETCH_OFFSET 4
|
|
static inline void
|
|
__bulk_lookup_prefetching_loop(const struct rte_hash *h,
|
|
const void **keys, int32_t num_keys,
|
|
uint16_t *sig,
|
|
const struct rte_hash_bucket **primary_bkt,
|
|
const struct rte_hash_bucket **secondary_bkt)
|
|
{
|
|
int32_t i;
|
|
uint32_t prim_hash[RTE_HASH_LOOKUP_BULK_MAX];
|
|
uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
|
|
uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
|
|
|
|
/* Prefetch first keys */
|
|
for (i = 0; i < PREFETCH_OFFSET && i < num_keys; i++)
|
|
rte_prefetch0(keys[i]);
|
|
|
|
/*
|
|
* Prefetch rest of the keys, calculate primary and
|
|
* secondary bucket and prefetch them
|
|
*/
|
|
for (i = 0; i < (num_keys - PREFETCH_OFFSET); i++) {
|
|
rte_prefetch0(keys[i + PREFETCH_OFFSET]);
|
|
|
|
prim_hash[i] = rte_hash_hash(h, keys[i]);
|
|
|
|
sig[i] = get_short_sig(prim_hash[i]);
|
|
prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
|
|
sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
|
|
|
|
primary_bkt[i] = &h->buckets[prim_index[i]];
|
|
secondary_bkt[i] = &h->buckets[sec_index[i]];
|
|
|
|
rte_prefetch0(primary_bkt[i]);
|
|
rte_prefetch0(secondary_bkt[i]);
|
|
}
|
|
|
|
/* Calculate and prefetch rest of the buckets */
|
|
for (; i < num_keys; i++) {
|
|
prim_hash[i] = rte_hash_hash(h, keys[i]);
|
|
|
|
sig[i] = get_short_sig(prim_hash[i]);
|
|
prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
|
|
sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
|
|
|
|
primary_bkt[i] = &h->buckets[prim_index[i]];
|
|
secondary_bkt[i] = &h->buckets[sec_index[i]];
|
|
|
|
rte_prefetch0(primary_bkt[i]);
|
|
rte_prefetch0(secondary_bkt[i]);
|
|
}
|
|
}
|
|
|
|
|
|
static inline void
|
|
__rte_hash_lookup_bulk_l(const struct rte_hash *h, const void **keys,
|
|
int32_t num_keys, int32_t *positions,
|
|
uint64_t *hit_mask, void *data[])
|
|
{
|
|
uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
|
|
const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
|
|
const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
|
|
|
|
__bulk_lookup_prefetching_loop(h, keys, num_keys, sig,
|
|
primary_bkt, secondary_bkt);
|
|
|
|
__bulk_lookup_l(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
|
|
positions, hit_mask, data);
|
|
}
|
|
|
|
static inline void
|
|
__rte_hash_lookup_bulk_lf(const struct rte_hash *h, const void **keys,
|
|
int32_t num_keys, int32_t *positions,
|
|
uint64_t *hit_mask, void *data[])
|
|
{
|
|
uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
|
|
const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
|
|
const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
|
|
|
|
__bulk_lookup_prefetching_loop(h, keys, num_keys, sig,
|
|
primary_bkt, secondary_bkt);
|
|
|
|
__bulk_lookup_lf(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
|
|
positions, hit_mask, data);
|
|
}
|
|
|
|
static inline void
|
|
__rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
|
|
int32_t num_keys, int32_t *positions,
|
|
uint64_t *hit_mask, void *data[])
|
|
{
|
|
if (h->readwrite_concur_lf_support)
|
|
__rte_hash_lookup_bulk_lf(h, keys, num_keys, positions,
|
|
hit_mask, data);
|
|
else
|
|
__rte_hash_lookup_bulk_l(h, keys, num_keys, positions,
|
|
hit_mask, data);
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
|
|
uint32_t num_keys, int32_t *positions)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
|
|
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
|
|
(positions == NULL)), -EINVAL);
|
|
|
|
__rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
|
|
uint32_t num_keys, uint64_t *hit_mask, void *data[])
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
|
|
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
|
|
(hit_mask == NULL)), -EINVAL);
|
|
|
|
int32_t positions[num_keys];
|
|
|
|
__rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);
|
|
|
|
/* Return number of hits */
|
|
return __builtin_popcountl(*hit_mask);
|
|
}
|
|
|
|
|
|
static inline void
|
|
__rte_hash_lookup_with_hash_bulk_l(const struct rte_hash *h,
|
|
const void **keys, hash_sig_t *prim_hash,
|
|
int32_t num_keys, int32_t *positions,
|
|
uint64_t *hit_mask, void *data[])
|
|
{
|
|
int32_t i;
|
|
uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
|
|
uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
|
|
uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
|
|
const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
|
|
const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
|
|
|
|
/*
|
|
* Prefetch keys, calculate primary and
|
|
* secondary bucket and prefetch them
|
|
*/
|
|
for (i = 0; i < num_keys; i++) {
|
|
rte_prefetch0(keys[i]);
|
|
|
|
sig[i] = get_short_sig(prim_hash[i]);
|
|
prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
|
|
sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
|
|
|
|
primary_bkt[i] = &h->buckets[prim_index[i]];
|
|
secondary_bkt[i] = &h->buckets[sec_index[i]];
|
|
|
|
rte_prefetch0(primary_bkt[i]);
|
|
rte_prefetch0(secondary_bkt[i]);
|
|
}
|
|
|
|
__bulk_lookup_l(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
|
|
positions, hit_mask, data);
|
|
}
|
|
|
|
static inline void
|
|
__rte_hash_lookup_with_hash_bulk_lf(const struct rte_hash *h,
|
|
const void **keys, hash_sig_t *prim_hash,
|
|
int32_t num_keys, int32_t *positions,
|
|
uint64_t *hit_mask, void *data[])
|
|
{
|
|
int32_t i;
|
|
uint32_t prim_index[RTE_HASH_LOOKUP_BULK_MAX];
|
|
uint32_t sec_index[RTE_HASH_LOOKUP_BULK_MAX];
|
|
uint16_t sig[RTE_HASH_LOOKUP_BULK_MAX];
|
|
const struct rte_hash_bucket *primary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
|
|
const struct rte_hash_bucket *secondary_bkt[RTE_HASH_LOOKUP_BULK_MAX];
|
|
|
|
/*
|
|
* Prefetch keys, calculate primary and
|
|
* secondary bucket and prefetch them
|
|
*/
|
|
for (i = 0; i < num_keys; i++) {
|
|
rte_prefetch0(keys[i]);
|
|
|
|
sig[i] = get_short_sig(prim_hash[i]);
|
|
prim_index[i] = get_prim_bucket_index(h, prim_hash[i]);
|
|
sec_index[i] = get_alt_bucket_index(h, prim_index[i], sig[i]);
|
|
|
|
primary_bkt[i] = &h->buckets[prim_index[i]];
|
|
secondary_bkt[i] = &h->buckets[sec_index[i]];
|
|
|
|
rte_prefetch0(primary_bkt[i]);
|
|
rte_prefetch0(secondary_bkt[i]);
|
|
}
|
|
|
|
__bulk_lookup_lf(h, keys, primary_bkt, secondary_bkt, sig, num_keys,
|
|
positions, hit_mask, data);
|
|
}
|
|
|
|
static inline void
|
|
__rte_hash_lookup_with_hash_bulk(const struct rte_hash *h, const void **keys,
|
|
hash_sig_t *prim_hash, int32_t num_keys,
|
|
int32_t *positions, uint64_t *hit_mask, void *data[])
|
|
{
|
|
if (h->readwrite_concur_lf_support)
|
|
__rte_hash_lookup_with_hash_bulk_lf(h, keys, prim_hash,
|
|
num_keys, positions, hit_mask, data);
|
|
else
|
|
__rte_hash_lookup_with_hash_bulk_l(h, keys, prim_hash,
|
|
num_keys, positions, hit_mask, data);
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_with_hash_bulk(const struct rte_hash *h, const void **keys,
|
|
hash_sig_t *sig, uint32_t num_keys, int32_t *positions)
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) ||
|
|
(sig == NULL) || (num_keys == 0) ||
|
|
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
|
|
(positions == NULL)), -EINVAL);
|
|
|
|
__rte_hash_lookup_with_hash_bulk(h, keys, sig, num_keys,
|
|
positions, NULL, NULL);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_hash_lookup_with_hash_bulk_data(const struct rte_hash *h,
|
|
const void **keys, hash_sig_t *sig,
|
|
uint32_t num_keys, uint64_t *hit_mask, void *data[])
|
|
{
|
|
RETURN_IF_TRUE(((h == NULL) || (keys == NULL) ||
|
|
(sig == NULL) || (num_keys == 0) ||
|
|
(num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
|
|
(hit_mask == NULL)), -EINVAL);
|
|
|
|
int32_t positions[num_keys];
|
|
|
|
__rte_hash_lookup_with_hash_bulk(h, keys, sig, num_keys,
|
|
positions, hit_mask, data);
|
|
|
|
/* Return number of hits */
|
|
return __builtin_popcountl(*hit_mask);
|
|
}
|
|
|
|
int32_t
|
|
rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
|
|
{
|
|
uint32_t bucket_idx, idx, position;
|
|
struct rte_hash_key *next_key;
|
|
|
|
RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);
|
|
|
|
const uint32_t total_entries_main = h->num_buckets *
|
|
RTE_HASH_BUCKET_ENTRIES;
|
|
const uint32_t total_entries = total_entries_main << 1;
|
|
|
|
/* Out of bounds of all buckets (both main table and ext table) */
|
|
if (*next >= total_entries_main)
|
|
goto extend_table;
|
|
|
|
/* Calculate bucket and index of current iterator */
|
|
bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
|
|
idx = *next % RTE_HASH_BUCKET_ENTRIES;
|
|
|
|
/* If current position is empty, go to the next one */
|
|
while ((position = __atomic_load_n(&h->buckets[bucket_idx].key_idx[idx],
|
|
__ATOMIC_ACQUIRE)) == EMPTY_SLOT) {
|
|
(*next)++;
|
|
/* End of table */
|
|
if (*next == total_entries_main)
|
|
goto extend_table;
|
|
bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
|
|
idx = *next % RTE_HASH_BUCKET_ENTRIES;
|
|
}
|
|
|
|
__hash_rw_reader_lock(h);
|
|
next_key = (struct rte_hash_key *) ((char *)h->key_store +
|
|
position * h->key_entry_size);
|
|
/* Return key and data */
|
|
*key = next_key->key;
|
|
*data = next_key->pdata;
|
|
|
|
__hash_rw_reader_unlock(h);
|
|
|
|
/* Increment iterator */
|
|
(*next)++;
|
|
|
|
return position - 1;
|
|
|
|
/* Begin to iterate extendable buckets */
|
|
extend_table:
|
|
/* Out of total bound or if ext bucket feature is not enabled */
|
|
if (*next >= total_entries || !h->ext_table_support)
|
|
return -ENOENT;
|
|
|
|
bucket_idx = (*next - total_entries_main) / RTE_HASH_BUCKET_ENTRIES;
|
|
idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES;
|
|
|
|
while ((position = h->buckets_ext[bucket_idx].key_idx[idx]) == EMPTY_SLOT) {
|
|
(*next)++;
|
|
if (*next == total_entries)
|
|
return -ENOENT;
|
|
bucket_idx = (*next - total_entries_main) /
|
|
RTE_HASH_BUCKET_ENTRIES;
|
|
idx = (*next - total_entries_main) % RTE_HASH_BUCKET_ENTRIES;
|
|
}
|
|
__hash_rw_reader_lock(h);
|
|
next_key = (struct rte_hash_key *) ((char *)h->key_store +
|
|
position * h->key_entry_size);
|
|
/* Return key and data */
|
|
*key = next_key->key;
|
|
*data = next_key->pdata;
|
|
|
|
__hash_rw_reader_unlock(h);
|
|
|
|
/* Increment iterator */
|
|
(*next)++;
|
|
return position - 1;
|
|
}
|