numam-dpdk/drivers/baseband/acc/rte_acc200_pmd.c
Nicolas Chautru fb43071542 baseband/acc200: add info query
Added support for info_get to allow to query the device.
Null capability exposed.

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
2022-10-29 13:01:38 +02:00

375 lines
11 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2022 Intel Corporation
*/
#include <unistd.h>
#include <rte_common.h>
#include <rte_log.h>
#include <rte_dev.h>
#include <rte_malloc.h>
#include <rte_mempool.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include <rte_branch_prediction.h>
#include <rte_hexdump.h>
#include <rte_pci.h>
#include <rte_bus_pci.h>
#ifdef RTE_BBDEV_OFFLOAD_COST
#include <rte_cycles.h>
#endif
#include <rte_bbdev.h>
#include <rte_bbdev_pmd.h>
#include "acc200_pmd.h"
#ifdef RTE_LIBRTE_BBDEV_DEBUG
RTE_LOG_REGISTER_DEFAULT(acc200_logtype, DEBUG);
#else
RTE_LOG_REGISTER_DEFAULT(acc200_logtype, NOTICE);
#endif
/* Calculate the offset of the enqueue register. */
static inline uint32_t
queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
{
if (pf_device)
return ((vf_id << 12) + (qgrp_id << 7) + (aq_id << 3) +
HWPfQmgrIngressAq);
else
return ((qgrp_id << 7) + (aq_id << 3) +
HWVfQmgrIngressAq);
}
enum {UL_4G = 0, UL_5G, DL_4G, DL_5G, FFT, NUM_ACC};
/* Return the queue topology for a Queue Group Index. */
static inline void
qtopFromAcc(struct rte_acc_queue_topology **qtop, int acc_enum, struct rte_acc_conf *acc_conf)
{
struct rte_acc_queue_topology *p_qtop;
p_qtop = NULL;
switch (acc_enum) {
case UL_4G:
p_qtop = &(acc_conf->q_ul_4g);
break;
case UL_5G:
p_qtop = &(acc_conf->q_ul_5g);
break;
case DL_4G:
p_qtop = &(acc_conf->q_dl_4g);
break;
case DL_5G:
p_qtop = &(acc_conf->q_dl_5g);
break;
case FFT:
p_qtop = &(acc_conf->q_fft);
break;
default:
/* NOTREACHED. */
rte_bbdev_log(ERR, "Unexpected error evaluating %s using %d", __func__, acc_enum);
break;
}
*qtop = p_qtop;
}
static void
initQTop(struct rte_acc_conf *acc_conf)
{
acc_conf->q_ul_4g.num_aqs_per_groups = 0;
acc_conf->q_ul_4g.num_qgroups = 0;
acc_conf->q_ul_4g.first_qgroup_index = -1;
acc_conf->q_ul_5g.num_aqs_per_groups = 0;
acc_conf->q_ul_5g.num_qgroups = 0;
acc_conf->q_ul_5g.first_qgroup_index = -1;
acc_conf->q_dl_4g.num_aqs_per_groups = 0;
acc_conf->q_dl_4g.num_qgroups = 0;
acc_conf->q_dl_4g.first_qgroup_index = -1;
acc_conf->q_dl_5g.num_aqs_per_groups = 0;
acc_conf->q_dl_5g.num_qgroups = 0;
acc_conf->q_dl_5g.first_qgroup_index = -1;
acc_conf->q_fft.num_aqs_per_groups = 0;
acc_conf->q_fft.num_qgroups = 0;
acc_conf->q_fft.first_qgroup_index = -1;
}
static inline void
updateQtop(uint8_t acc, uint8_t qg, struct rte_acc_conf *acc_conf, struct acc_device *d) {
uint32_t reg;
struct rte_acc_queue_topology *q_top = NULL;
uint16_t aq;
qtopFromAcc(&q_top, acc, acc_conf);
if (unlikely(q_top == NULL))
return;
q_top->num_qgroups++;
if (q_top->first_qgroup_index == -1) {
q_top->first_qgroup_index = qg;
/* Can be optimized to assume all are enabled by default. */
reg = acc_reg_read(d, queue_offset(d->pf_device, 0, qg, ACC200_NUM_AQS - 1));
if (reg & ACC_QUEUE_ENABLE) {
q_top->num_aqs_per_groups = ACC200_NUM_AQS;
return;
}
q_top->num_aqs_per_groups = 0;
for (aq = 0; aq < ACC200_NUM_AQS; aq++) {
reg = acc_reg_read(d, queue_offset(d->pf_device, 0, qg, aq));
if (reg & ACC_QUEUE_ENABLE)
q_top->num_aqs_per_groups++;
}
}
}
/* Fetch configuration enabled for the PF/VF using MMIO Read (slow). */
static inline void
fetch_acc200_config(struct rte_bbdev *dev)
{
struct acc_device *d = dev->data->dev_private;
struct rte_acc_conf *acc_conf = &d->acc_conf;
const struct acc200_registry_addr *reg_addr;
uint8_t acc, qg;
uint32_t reg_aq, reg_len0, reg_len1, reg0, reg1;
uint32_t reg_mode, idx;
struct rte_acc_queue_topology *q_top = NULL;
int qman_func_id[ACC200_NUM_ACCS] = {ACC_ACCMAP_0, ACC_ACCMAP_1,
ACC_ACCMAP_2, ACC_ACCMAP_3, ACC_ACCMAP_4};
/* No need to retrieve the configuration is already done. */
if (d->configured)
return;
/* Choose correct registry addresses for the device type. */
if (d->pf_device)
reg_addr = &pf_reg_addr;
else
reg_addr = &vf_reg_addr;
d->ddr_size = 0;
/* Single VF Bundle by VF. */
acc_conf->num_vf_bundles = 1;
initQTop(acc_conf);
reg0 = acc_reg_read(d, reg_addr->qman_group_func);
reg1 = acc_reg_read(d, reg_addr->qman_group_func + 4);
for (qg = 0; qg < ACC200_NUM_QGRPS; qg++) {
reg_aq = acc_reg_read(d, queue_offset(d->pf_device, 0, qg, 0));
if (reg_aq & ACC_QUEUE_ENABLE) {
if (qg < ACC_NUM_QGRPS_PER_WORD)
idx = (reg0 >> (qg * 4)) & 0x7;
else
idx = (reg1 >> ((qg -
ACC_NUM_QGRPS_PER_WORD) * 4)) & 0x7;
if (idx < ACC200_NUM_ACCS) {
acc = qman_func_id[idx];
updateQtop(acc, qg, acc_conf, d);
}
}
}
/* Check the depth of the AQs. */
reg_len0 = acc_reg_read(d, reg_addr->depth_log0_offset);
reg_len1 = acc_reg_read(d, reg_addr->depth_log1_offset);
for (acc = 0; acc < NUM_ACC; acc++) {
qtopFromAcc(&q_top, acc, acc_conf);
if (q_top->first_qgroup_index < ACC_NUM_QGRPS_PER_WORD)
q_top->aq_depth_log2 = (reg_len0 >> (q_top->first_qgroup_index * 4)) & 0xF;
else
q_top->aq_depth_log2 = (reg_len1 >> ((q_top->first_qgroup_index -
ACC_NUM_QGRPS_PER_WORD) * 4)) & 0xF;
}
/* Read PF mode. */
if (d->pf_device) {
reg_mode = acc_reg_read(d, HWPfHiPfMode);
acc_conf->pf_mode_en = (reg_mode == ACC_PF_VAL) ? 1 : 0;
} else {
reg_mode = acc_reg_read(d, reg_addr->hi_mode);
acc_conf->pf_mode_en = reg_mode & 1;
}
rte_bbdev_log_debug(
"%s Config LLR SIGN IN/OUT %s %s QG %u %u %u %u %u AQ %u %u %u %u %u Len %u %u %u %u %u\n",
(d->pf_device) ? "PF" : "VF",
(acc_conf->input_pos_llr_1_bit) ? "POS" : "NEG",
(acc_conf->output_pos_llr_1_bit) ? "POS" : "NEG",
acc_conf->q_ul_4g.num_qgroups,
acc_conf->q_dl_4g.num_qgroups,
acc_conf->q_ul_5g.num_qgroups,
acc_conf->q_dl_5g.num_qgroups,
acc_conf->q_fft.num_qgroups,
acc_conf->q_ul_4g.num_aqs_per_groups,
acc_conf->q_dl_4g.num_aqs_per_groups,
acc_conf->q_ul_5g.num_aqs_per_groups,
acc_conf->q_dl_5g.num_aqs_per_groups,
acc_conf->q_fft.num_aqs_per_groups,
acc_conf->q_ul_4g.aq_depth_log2,
acc_conf->q_dl_4g.aq_depth_log2,
acc_conf->q_ul_5g.aq_depth_log2,
acc_conf->q_dl_5g.aq_depth_log2,
acc_conf->q_fft.aq_depth_log2);
}
/* Free memory used for software rings. */
static int
acc200_dev_close(struct rte_bbdev *dev)
{
RTE_SET_USED(dev);
/* Ensure all in flight HW transactions are completed. */
usleep(ACC_LONG_WAIT);
return 0;
}
/* Get ACC200 device info. */
static void
acc200_dev_info_get(struct rte_bbdev *dev,
struct rte_bbdev_driver_info *dev_info)
{
struct acc_device *d = dev->data->dev_private;
int i;
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
RTE_BBDEV_END_OF_CAPABILITIES_LIST()
};
static struct rte_bbdev_queue_conf default_queue_conf;
default_queue_conf.socket = dev->data->socket_id;
default_queue_conf.queue_size = ACC_MAX_QUEUE_DEPTH;
dev_info->driver_name = dev->device->driver->name;
/* Read and save the populated config from ACC200 registers. */
fetch_acc200_config(dev);
/* Exposed number of queues. */
dev_info->num_queues[RTE_BBDEV_OP_NONE] = 0;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_DEC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_ENC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_LDPC_DEC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_LDPC_ENC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_FFT] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_DEC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_ENC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_DEC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_ENC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_FFT] = 0;
dev_info->max_num_queues = 0;
for (i = RTE_BBDEV_OP_NONE; i <= RTE_BBDEV_OP_FFT; i++)
dev_info->max_num_queues += dev_info->num_queues[i];
dev_info->queue_size_lim = ACC_MAX_QUEUE_DEPTH;
dev_info->hardware_accelerated = true;
dev_info->max_dl_queue_priority =
d->acc_conf.q_dl_4g.num_qgroups - 1;
dev_info->max_ul_queue_priority =
d->acc_conf.q_ul_4g.num_qgroups - 1;
dev_info->default_queue_conf = default_queue_conf;
dev_info->cpu_flag_reqs = NULL;
dev_info->min_alignment = 1;
dev_info->capabilities = bbdev_capabilities;
dev_info->harq_buffer_size = 0;
}
static const struct rte_bbdev_ops acc200_bbdev_ops = {
.close = acc200_dev_close,
.info_get = acc200_dev_info_get,
};
/* ACC200 PCI PF address map. */
static struct rte_pci_id pci_id_acc200_pf_map[] = {
{
RTE_PCI_DEVICE(RTE_ACC200_VENDOR_ID, RTE_ACC200_PF_DEVICE_ID)
},
{.device_id = 0},
};
/* ACC200 PCI VF address map. */
static struct rte_pci_id pci_id_acc200_vf_map[] = {
{
RTE_PCI_DEVICE(RTE_ACC200_VENDOR_ID, RTE_ACC200_VF_DEVICE_ID)
},
{.device_id = 0},
};
/* Initialization Function. */
static void
acc200_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
{
struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
dev->dev_ops = &acc200_bbdev_ops;
((struct acc_device *) dev->data->dev_private)->pf_device =
!strcmp(drv->driver.name,
RTE_STR(ACC200PF_DRIVER_NAME));
((struct acc_device *) dev->data->dev_private)->mmio_base =
pci_dev->mem_resource[0].addr;
rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"",
drv->driver.name, dev->data->name,
(void *)pci_dev->mem_resource[0].addr,
pci_dev->mem_resource[0].phys_addr);
}
static int acc200_pci_probe(struct rte_pci_driver *pci_drv,
struct rte_pci_device *pci_dev)
{
struct rte_bbdev *bbdev = NULL;
char dev_name[RTE_BBDEV_NAME_MAX_LEN];
if (pci_dev == NULL) {
rte_bbdev_log(ERR, "NULL PCI device");
return -EINVAL;
}
rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
/* Allocate memory to be used privately by drivers. */
bbdev = rte_bbdev_allocate(pci_dev->device.name);
if (bbdev == NULL)
return -ENODEV;
/* allocate device private memory. */
bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
sizeof(struct acc_device), RTE_CACHE_LINE_SIZE,
pci_dev->device.numa_node);
if (bbdev->data->dev_private == NULL) {
rte_bbdev_log(CRIT,
"Allocate of %zu bytes for device \"%s\" failed",
sizeof(struct acc_device), dev_name);
rte_bbdev_release(bbdev);
return -ENOMEM;
}
/* Fill HW specific part of device structure. */
bbdev->device = &pci_dev->device;
bbdev->intr_handle = pci_dev->intr_handle;
bbdev->data->socket_id = pci_dev->device.numa_node;
/* Invoke ACC200 device initialization function. */
acc200_bbdev_init(bbdev, pci_drv);
rte_bbdev_log_debug("Initialised bbdev %s (id = %u)",
dev_name, bbdev->data->dev_id);
return 0;
}
static struct rte_pci_driver acc200_pci_pf_driver = {
.probe = acc200_pci_probe,
.remove = acc_pci_remove,
.id_table = pci_id_acc200_pf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
static struct rte_pci_driver acc200_pci_vf_driver = {
.probe = acc200_pci_probe,
.remove = acc_pci_remove,
.id_table = pci_id_acc200_vf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING
};
RTE_PMD_REGISTER_PCI(ACC200PF_DRIVER_NAME, acc200_pci_pf_driver);
RTE_PMD_REGISTER_PCI_TABLE(ACC200PF_DRIVER_NAME, pci_id_acc200_pf_map);
RTE_PMD_REGISTER_PCI(ACC200VF_DRIVER_NAME, acc200_pci_vf_driver);
RTE_PMD_REGISTER_PCI_TABLE(ACC200VF_DRIVER_NAME, pci_id_acc200_vf_map);