baseband/acc200: add info query

Added support for info_get to allow to query the device.
Null capability exposed.

Signed-off-by: Nicolas Chautru <nicolas.chautru@intel.com>
Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
This commit is contained in:
Nicolas Chautru 2022-10-12 10:59:20 -07:00 committed by Akhil Goyal
parent b8f8d1aeb2
commit fb43071542

View File

@ -29,6 +29,189 @@ RTE_LOG_REGISTER_DEFAULT(acc200_logtype, DEBUG);
RTE_LOG_REGISTER_DEFAULT(acc200_logtype, NOTICE);
#endif
/* Calculate the offset of the enqueue register. */
static inline uint32_t
queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
{
if (pf_device)
return ((vf_id << 12) + (qgrp_id << 7) + (aq_id << 3) +
HWPfQmgrIngressAq);
else
return ((qgrp_id << 7) + (aq_id << 3) +
HWVfQmgrIngressAq);
}
enum {UL_4G = 0, UL_5G, DL_4G, DL_5G, FFT, NUM_ACC};
/* Return the queue topology for a Queue Group Index. */
static inline void
qtopFromAcc(struct rte_acc_queue_topology **qtop, int acc_enum, struct rte_acc_conf *acc_conf)
{
struct rte_acc_queue_topology *p_qtop;
p_qtop = NULL;
switch (acc_enum) {
case UL_4G:
p_qtop = &(acc_conf->q_ul_4g);
break;
case UL_5G:
p_qtop = &(acc_conf->q_ul_5g);
break;
case DL_4G:
p_qtop = &(acc_conf->q_dl_4g);
break;
case DL_5G:
p_qtop = &(acc_conf->q_dl_5g);
break;
case FFT:
p_qtop = &(acc_conf->q_fft);
break;
default:
/* NOTREACHED. */
rte_bbdev_log(ERR, "Unexpected error evaluating %s using %d", __func__, acc_enum);
break;
}
*qtop = p_qtop;
}
static void
initQTop(struct rte_acc_conf *acc_conf)
{
acc_conf->q_ul_4g.num_aqs_per_groups = 0;
acc_conf->q_ul_4g.num_qgroups = 0;
acc_conf->q_ul_4g.first_qgroup_index = -1;
acc_conf->q_ul_5g.num_aqs_per_groups = 0;
acc_conf->q_ul_5g.num_qgroups = 0;
acc_conf->q_ul_5g.first_qgroup_index = -1;
acc_conf->q_dl_4g.num_aqs_per_groups = 0;
acc_conf->q_dl_4g.num_qgroups = 0;
acc_conf->q_dl_4g.first_qgroup_index = -1;
acc_conf->q_dl_5g.num_aqs_per_groups = 0;
acc_conf->q_dl_5g.num_qgroups = 0;
acc_conf->q_dl_5g.first_qgroup_index = -1;
acc_conf->q_fft.num_aqs_per_groups = 0;
acc_conf->q_fft.num_qgroups = 0;
acc_conf->q_fft.first_qgroup_index = -1;
}
static inline void
updateQtop(uint8_t acc, uint8_t qg, struct rte_acc_conf *acc_conf, struct acc_device *d) {
uint32_t reg;
struct rte_acc_queue_topology *q_top = NULL;
uint16_t aq;
qtopFromAcc(&q_top, acc, acc_conf);
if (unlikely(q_top == NULL))
return;
q_top->num_qgroups++;
if (q_top->first_qgroup_index == -1) {
q_top->first_qgroup_index = qg;
/* Can be optimized to assume all are enabled by default. */
reg = acc_reg_read(d, queue_offset(d->pf_device, 0, qg, ACC200_NUM_AQS - 1));
if (reg & ACC_QUEUE_ENABLE) {
q_top->num_aqs_per_groups = ACC200_NUM_AQS;
return;
}
q_top->num_aqs_per_groups = 0;
for (aq = 0; aq < ACC200_NUM_AQS; aq++) {
reg = acc_reg_read(d, queue_offset(d->pf_device, 0, qg, aq));
if (reg & ACC_QUEUE_ENABLE)
q_top->num_aqs_per_groups++;
}
}
}
/* Fetch configuration enabled for the PF/VF using MMIO Read (slow). */
static inline void
fetch_acc200_config(struct rte_bbdev *dev)
{
struct acc_device *d = dev->data->dev_private;
struct rte_acc_conf *acc_conf = &d->acc_conf;
const struct acc200_registry_addr *reg_addr;
uint8_t acc, qg;
uint32_t reg_aq, reg_len0, reg_len1, reg0, reg1;
uint32_t reg_mode, idx;
struct rte_acc_queue_topology *q_top = NULL;
int qman_func_id[ACC200_NUM_ACCS] = {ACC_ACCMAP_0, ACC_ACCMAP_1,
ACC_ACCMAP_2, ACC_ACCMAP_3, ACC_ACCMAP_4};
/* No need to retrieve the configuration is already done. */
if (d->configured)
return;
/* Choose correct registry addresses for the device type. */
if (d->pf_device)
reg_addr = &pf_reg_addr;
else
reg_addr = &vf_reg_addr;
d->ddr_size = 0;
/* Single VF Bundle by VF. */
acc_conf->num_vf_bundles = 1;
initQTop(acc_conf);
reg0 = acc_reg_read(d, reg_addr->qman_group_func);
reg1 = acc_reg_read(d, reg_addr->qman_group_func + 4);
for (qg = 0; qg < ACC200_NUM_QGRPS; qg++) {
reg_aq = acc_reg_read(d, queue_offset(d->pf_device, 0, qg, 0));
if (reg_aq & ACC_QUEUE_ENABLE) {
if (qg < ACC_NUM_QGRPS_PER_WORD)
idx = (reg0 >> (qg * 4)) & 0x7;
else
idx = (reg1 >> ((qg -
ACC_NUM_QGRPS_PER_WORD) * 4)) & 0x7;
if (idx < ACC200_NUM_ACCS) {
acc = qman_func_id[idx];
updateQtop(acc, qg, acc_conf, d);
}
}
}
/* Check the depth of the AQs. */
reg_len0 = acc_reg_read(d, reg_addr->depth_log0_offset);
reg_len1 = acc_reg_read(d, reg_addr->depth_log1_offset);
for (acc = 0; acc < NUM_ACC; acc++) {
qtopFromAcc(&q_top, acc, acc_conf);
if (q_top->first_qgroup_index < ACC_NUM_QGRPS_PER_WORD)
q_top->aq_depth_log2 = (reg_len0 >> (q_top->first_qgroup_index * 4)) & 0xF;
else
q_top->aq_depth_log2 = (reg_len1 >> ((q_top->first_qgroup_index -
ACC_NUM_QGRPS_PER_WORD) * 4)) & 0xF;
}
/* Read PF mode. */
if (d->pf_device) {
reg_mode = acc_reg_read(d, HWPfHiPfMode);
acc_conf->pf_mode_en = (reg_mode == ACC_PF_VAL) ? 1 : 0;
} else {
reg_mode = acc_reg_read(d, reg_addr->hi_mode);
acc_conf->pf_mode_en = reg_mode & 1;
}
rte_bbdev_log_debug(
"%s Config LLR SIGN IN/OUT %s %s QG %u %u %u %u %u AQ %u %u %u %u %u Len %u %u %u %u %u\n",
(d->pf_device) ? "PF" : "VF",
(acc_conf->input_pos_llr_1_bit) ? "POS" : "NEG",
(acc_conf->output_pos_llr_1_bit) ? "POS" : "NEG",
acc_conf->q_ul_4g.num_qgroups,
acc_conf->q_dl_4g.num_qgroups,
acc_conf->q_ul_5g.num_qgroups,
acc_conf->q_dl_5g.num_qgroups,
acc_conf->q_fft.num_qgroups,
acc_conf->q_ul_4g.num_aqs_per_groups,
acc_conf->q_dl_4g.num_aqs_per_groups,
acc_conf->q_ul_5g.num_aqs_per_groups,
acc_conf->q_dl_5g.num_aqs_per_groups,
acc_conf->q_fft.num_aqs_per_groups,
acc_conf->q_ul_4g.aq_depth_log2,
acc_conf->q_dl_4g.aq_depth_log2,
acc_conf->q_ul_5g.aq_depth_log2,
acc_conf->q_dl_5g.aq_depth_log2,
acc_conf->q_fft.aq_depth_log2);
}
/* Free memory used for software rings. */
static int
acc200_dev_close(struct rte_bbdev *dev)
{
@ -38,9 +221,57 @@ acc200_dev_close(struct rte_bbdev *dev)
return 0;
}
/* Get ACC200 device info. */
static void
acc200_dev_info_get(struct rte_bbdev *dev,
struct rte_bbdev_driver_info *dev_info)
{
struct acc_device *d = dev->data->dev_private;
int i;
static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
RTE_BBDEV_END_OF_CAPABILITIES_LIST()
};
static struct rte_bbdev_queue_conf default_queue_conf;
default_queue_conf.socket = dev->data->socket_id;
default_queue_conf.queue_size = ACC_MAX_QUEUE_DEPTH;
dev_info->driver_name = dev->device->driver->name;
/* Read and save the populated config from ACC200 registers. */
fetch_acc200_config(dev);
/* Exposed number of queues. */
dev_info->num_queues[RTE_BBDEV_OP_NONE] = 0;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_DEC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_TURBO_ENC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_LDPC_DEC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_LDPC_ENC] = 0;
dev_info->num_queues[RTE_BBDEV_OP_FFT] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_DEC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_TURBO_ENC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_DEC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_LDPC_ENC] = 0;
dev_info->queue_priority[RTE_BBDEV_OP_FFT] = 0;
dev_info->max_num_queues = 0;
for (i = RTE_BBDEV_OP_NONE; i <= RTE_BBDEV_OP_FFT; i++)
dev_info->max_num_queues += dev_info->num_queues[i];
dev_info->queue_size_lim = ACC_MAX_QUEUE_DEPTH;
dev_info->hardware_accelerated = true;
dev_info->max_dl_queue_priority =
d->acc_conf.q_dl_4g.num_qgroups - 1;
dev_info->max_ul_queue_priority =
d->acc_conf.q_ul_4g.num_qgroups - 1;
dev_info->default_queue_conf = default_queue_conf;
dev_info->cpu_flag_reqs = NULL;
dev_info->min_alignment = 1;
dev_info->capabilities = bbdev_capabilities;
dev_info->harq_buffer_size = 0;
}
static const struct rte_bbdev_ops acc200_bbdev_ops = {
.close = acc200_dev_close,
.info_get = acc200_dev_info_get,
};
/* ACC200 PCI PF address map. */