numam-dpdk/drivers/net/hns3/hns3_ethdev_vf.c
Hongbo Zheng 243651cb6c net/hns3: check PCI config space reads
This patch add return value check when calling rte_pci_read_config
function.

Fixes: cea37e5133 ("net/hns3: fix FLR reset")
Cc: stable@dpdk.org

Signed-off-by: Hongbo Zheng <zhenghongbo3@huawei.com>
Signed-off-by: Wei Hu (Xavier) <xavier.huwei@huawei.com>
2020-10-08 19:58:10 +02:00

2892 lines
77 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018-2019 Hisilicon Limited.
*/
#include <errno.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <inttypes.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <linux/pci_regs.h>
#include <rte_alarm.h>
#include <rte_atomic.h>
#include <rte_bus_pci.h>
#include <rte_byteorder.h>
#include <rte_common.h>
#include <rte_cycles.h>
#include <rte_dev.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_ethdev_pci.h>
#include <rte_interrupts.h>
#include <rte_io.h>
#include <rte_log.h>
#include <rte_pci.h>
#include <rte_vfio.h>
#include "hns3_ethdev.h"
#include "hns3_logs.h"
#include "hns3_rxtx.h"
#include "hns3_regs.h"
#include "hns3_intr.h"
#include "hns3_dcb.h"
#include "hns3_mp.h"
#define HNS3VF_KEEP_ALIVE_INTERVAL 2000000 /* us */
#define HNS3VF_SERVICE_INTERVAL 1000000 /* us */
#define HNS3VF_RESET_WAIT_MS 20
#define HNS3VF_RESET_WAIT_CNT 2000
/* Reset related Registers */
#define HNS3_GLOBAL_RESET_BIT 0
#define HNS3_CORE_RESET_BIT 1
#define HNS3_IMP_RESET_BIT 2
#define HNS3_FUN_RST_ING_B 0
enum hns3vf_evt_cause {
HNS3VF_VECTOR0_EVENT_RST,
HNS3VF_VECTOR0_EVENT_MBX,
HNS3VF_VECTOR0_EVENT_OTHER,
};
static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
uint64_t *levels);
static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr);
static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr);
/* set PCI bus mastering */
static int
hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
{
uint16_t reg;
int ret;
ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
PCI_COMMAND);
return ret;
}
if (op)
/* set the master bit */
reg |= PCI_COMMAND_MASTER;
else
reg &= ~(PCI_COMMAND_MASTER);
return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
}
/**
* hns3vf_find_pci_capability - lookup a capability in the PCI capability list
* @cap: the capability
*
* Return the address of the given capability within the PCI capability list.
*/
static int
hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
{
#define MAX_PCIE_CAPABILITY 48
uint16_t status;
uint8_t pos;
uint8_t id;
int ttl;
int ret;
ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
return 0;
}
if (!(status & PCI_STATUS_CAP_LIST))
return 0;
ttl = MAX_PCIE_CAPABILITY;
ret = rte_pci_read_config(device, &pos, sizeof(pos),
PCI_CAPABILITY_LIST);
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
PCI_CAPABILITY_LIST);
return 0;
}
while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
ret = rte_pci_read_config(device, &id, sizeof(id),
(pos + PCI_CAP_LIST_ID));
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
(pos + PCI_CAP_LIST_ID));
break;
}
if (id == 0xFF)
break;
if (id == cap)
return (int)pos;
ret = rte_pci_read_config(device, &pos, sizeof(pos),
(pos + PCI_CAP_LIST_NEXT));
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
(pos + PCI_CAP_LIST_NEXT));
break;
}
}
return 0;
}
static int
hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
{
uint16_t control;
int pos;
int ret;
pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
if (pos) {
ret = rte_pci_read_config(device, &control, sizeof(control),
(pos + PCI_MSIX_FLAGS));
if (ret < 0) {
PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
(pos + PCI_MSIX_FLAGS));
return -ENXIO;
}
if (op)
control |= PCI_MSIX_FLAGS_ENABLE;
else
control &= ~PCI_MSIX_FLAGS_ENABLE;
rte_pci_write_config(device, &control, sizeof(control),
(pos + PCI_MSIX_FLAGS));
return 0;
}
return -ENXIO;
}
static int
hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
/* mac address was checked by upper level interface */
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
RTE_ETHER_ADDR_LEN, false, NULL, 0);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
mac_str, ret);
}
return ret;
}
static int
hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
/* mac address was checked by upper level interface */
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
HNS3_MBX_MAC_VLAN_UC_REMOVE,
mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
false, NULL, 0);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
mac_str, ret);
}
return ret;
}
static int
hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
int ret;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
/* Check if there are duplicate addresses */
if (rte_is_same_ether_addr(addr, mac_addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to add mc mac addr, same addrs"
"(%s) is added by the set_mc_mac_addr_list "
"API", mac_str);
return -EINVAL;
}
}
ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
mac_str, ret);
}
return ret;
}
static int
hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
__rte_unused uint32_t idx,
__rte_unused uint32_t pool)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
/*
* In hns3 network engine adding UC and MC mac address with different
* commands with firmware. We need to determine whether the input
* address is a UC or a MC address to call different commands.
* By the way, it is recommended calling the API function named
* rte_eth_dev_set_mc_addr_list to set the MC mac address, because
* using the rte_eth_dev_mac_addr_add API function to set MC mac address
* may affect the specifications of UC mac addresses.
*/
if (rte_is_multicast_ether_addr(mac_addr))
ret = hns3vf_add_mc_addr_common(hw, mac_addr);
else
ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
rte_spinlock_unlock(&hw->lock);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
ret);
}
return ret;
}
static void
hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
/* index will be checked by upper level rte interface */
struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
rte_spinlock_lock(&hw->lock);
if (rte_is_multicast_ether_addr(mac_addr))
ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
else
ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
rte_spinlock_unlock(&hw->lock);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
mac_str, ret);
}
}
static int
hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
struct rte_ether_addr *mac_addr)
{
#define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_ether_addr *old_addr;
uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
/*
* It has been guaranteed that input parameter named mac_addr is valid
* address in the rte layer of DPDK framework.
*/
old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
rte_spinlock_lock(&hw->lock);
memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
RTE_ETHER_ADDR_LEN);
ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
if (ret) {
/*
* The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
* driver. When user has configured a MAC address for VF device
* by "ip link set ..." command based on the PF device, the hns3
* PF kernel ethdev driver does not allow VF driver to request
* reconfiguring a different default MAC address, and return
* -EPREM to VF driver through mailbox.
*/
if (ret == -EPERM) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
old_addr);
hns3_warn(hw, "Has permanet mac addr(%s) for vf",
mac_str);
} else {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
mac_str, ret);
}
}
rte_ether_addr_copy(mac_addr,
(struct rte_ether_addr *)hw->mac.mac_addr);
rte_spinlock_unlock(&hw->lock);
return ret;
}
static int
hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
{
struct hns3_hw *hw = &hns->hw;
struct rte_ether_addr *addr;
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int err = 0;
int ret;
int i;
for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
addr = &hw->data->mac_addrs[i];
if (rte_is_zero_ether_addr(addr))
continue;
if (rte_is_multicast_ether_addr(addr))
ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
hns3vf_add_mc_mac_addr(hw, addr);
else
ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
hns3vf_add_uc_mac_addr(hw, addr);
if (ret) {
err = ret;
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to %s mac addr(%s) index:%d "
"ret = %d.", del ? "remove" : "restore",
mac_str, i, ret);
}
}
return err;
}
static int
hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
HNS3_MBX_MAC_VLAN_MC_ADD,
mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
NULL, 0);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
mac_str, ret);
}
return ret;
}
static int
hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
struct rte_ether_addr *mac_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
HNS3_MBX_MAC_VLAN_MC_REMOVE,
mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
NULL, 0);
if (ret) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
mac_addr);
hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
mac_str, ret);
}
return ret;
}
static int
hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
uint32_t i;
uint32_t j;
if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
"invalid. valid range: 0~%d",
nb_mc_addr, HNS3_MC_MACADDR_NUM);
return -EINVAL;
}
/* Check if input mac addresses are valid */
for (i = 0; i < nb_mc_addr; i++) {
addr = &mc_addr_set[i];
if (!rte_is_multicast_ether_addr(addr)) {
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw,
"failed to set mc mac addr, addr(%s) invalid.",
mac_str);
return -EINVAL;
}
/* Check if there are duplicate addresses */
for (j = i + 1; j < nb_mc_addr; j++) {
if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
rte_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. two same addrs(%s).",
mac_str);
return -EINVAL;
}
}
/*
* Check if there are duplicate addresses between mac_addrs
* and mc_addr_set
*/
for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
if (rte_is_same_ether_addr(addr,
&hw->data->mac_addrs[j])) {
rte_ether_format_addr(mac_str,
RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "failed to set mc mac addr, "
"addrs invalid. addrs(%s) has already "
"configured in mac_addr add API",
mac_str);
return -EINVAL;
}
}
}
return 0;
}
static int
hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
struct rte_ether_addr *mc_addr_set,
uint32_t nb_mc_addr)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_ether_addr *addr;
int cur_addr_num;
int set_addr_num;
int num;
int ret;
int i;
ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
if (ret)
return ret;
rte_spinlock_lock(&hw->lock);
cur_addr_num = hw->mc_addrs_num;
for (i = 0; i < cur_addr_num; i++) {
num = cur_addr_num - i - 1;
addr = &hw->mc_addrs[num];
ret = hns3vf_remove_mc_mac_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
hw->mc_addrs_num--;
}
set_addr_num = (int)nb_mc_addr;
for (i = 0; i < set_addr_num; i++) {
addr = &mc_addr_set[i];
ret = hns3vf_add_mc_mac_addr(hw, addr);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
hw->mc_addrs_num++;
}
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct hns3_hw *hw = &hns->hw;
struct rte_ether_addr *addr;
int err = 0;
int ret;
int i;
for (i = 0; i < hw->mc_addrs_num; i++) {
addr = &hw->mc_addrs[i];
if (!rte_is_multicast_ether_addr(addr))
continue;
if (del)
ret = hns3vf_remove_mc_mac_addr(hw, addr);
else
ret = hns3vf_add_mc_mac_addr(hw, addr);
if (ret) {
err = ret;
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
addr);
hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
del ? "Remove" : "Restore", mac_str, ret);
}
}
return err;
}
static int
hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
bool en_uc_pmc, bool en_mc_pmc)
{
struct hns3_mbx_vf_to_pf_cmd *req;
struct hns3_cmd_desc desc;
int ret;
req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
/*
* The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
* so there are some features for promiscuous/allmulticast mode in hns3
* VF PMD driver as below:
* 1. The promiscuous/allmulticast mode can be configured successfully
* only based on the trusted VF device. If based on the non trusted
* VF device, configuring promiscuous/allmulticast mode will fail.
* The hns3 VF device can be confiruged as trusted device by hns3 PF
* kernel ethdev driver on the host by the following command:
* "ip link set <eth num> vf <vf id> turst on"
* 2. After the promiscuous mode is configured successfully, hns3 VF PMD
* driver can receive the ingress and outgoing traffic. In the words,
* all the ingress packets, all the packets sent from the PF and
* other VFs on the same physical port.
* 3. Note: Because of the hardware constraints, By default vlan filter
* is enabled and couldn't be turned off based on VF device, so vlan
* filter is still effective even in promiscuous mode. If upper
* applications don't call rte_eth_dev_vlan_filter API function to
* set vlan based on VF device, hns3 VF PMD driver will can't receive
* the packets with vlan tag in promiscuoue mode.
*/
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
req->msg[1] = en_bc_pmc ? 1 : 0;
req->msg[2] = en_uc_pmc ? 1 : 0;
req->msg[3] = en_mc_pmc ? 1 : 0;
ret = hns3_cmd_send(hw, &desc, 1);
if (ret)
hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
return ret;
}
static int
hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3vf_set_promisc_mode(hw, true, true, true);
if (ret)
hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
ret);
return ret;
}
static int
hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
{
bool allmulti = dev->data->all_multicast ? true : false;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
if (ret)
hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
ret);
return ret;
}
static int
hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
if (dev->data->promiscuous)
return 0;
ret = hns3vf_set_promisc_mode(hw, true, false, true);
if (ret)
hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
ret);
return ret;
}
static int
hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
if (dev->data->promiscuous)
return 0;
ret = hns3vf_set_promisc_mode(hw, true, false, false);
if (ret)
hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
ret);
return ret;
}
static int
hns3vf_restore_promisc(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
bool allmulti = hw->data->all_multicast ? true : false;
if (hw->data->promiscuous)
return hns3vf_set_promisc_mode(hw, true, true, true);
return hns3vf_set_promisc_mode(hw, true, false, allmulti);
}
static int
hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
bool mmap, enum hns3_ring_type queue_type,
uint16_t queue_id)
{
struct hns3_vf_bind_vector_msg bind_msg;
const char *op_str;
uint16_t code;
int ret;
memset(&bind_msg, 0, sizeof(bind_msg));
code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
HNS3_MBX_UNMAP_RING_TO_VECTOR;
bind_msg.vector_id = vector_id;
if (queue_type == HNS3_RING_TYPE_RX)
bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
else
bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
bind_msg.param[0].ring_type = queue_type;
bind_msg.ring_num = 1;
bind_msg.param[0].tqp_index = queue_id;
op_str = mmap ? "Map" : "Unmap";
ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
sizeof(bind_msg), false, NULL, 0);
if (ret)
hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
op_str, queue_id, bind_msg.vector_id, ret);
return ret;
}
static int
hns3vf_init_ring_with_vector(struct hns3_hw *hw)
{
uint16_t vec;
int ret;
int i;
/*
* In hns3 network engine, vector 0 is always the misc interrupt of this
* function, vector 1~N can be used respectively for the queues of the
* function. Tx and Rx queues with the same number share the interrupt
* vector. In the initialization clearing the all hardware mapping
* relationship configurations between queues and interrupt vectors is
* needed, so some error caused by the residual configurations, such as
* the unexpected Tx interrupt, can be avoid.
*/
vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
vec = vec - 1; /* the last interrupt is reserved */
hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
for (i = 0; i < hw->intr_tqps_num; i++) {
/*
* Set gap limiter/rate limiter/quanity limiter algorithm
* configuration for interrupt coalesce of queue's interrupt.
*/
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
HNS3_TQP_INTR_GL_DEFAULT);
hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
ret = hns3vf_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_TX, i);
if (ret) {
PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
"vector: %d, ret=%d", i, vec, ret);
return ret;
}
ret = hns3vf_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_RX, i);
if (ret) {
PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
"vector: %d, ret=%d", i, vec, ret);
return ret;
}
}
return 0;
}
static int
hns3vf_dev_configure(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_rss_conf *rss_cfg = &hw->rss_info;
struct rte_eth_conf *conf = &dev->data->dev_conf;
enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
uint16_t nb_rx_q = dev->data->nb_rx_queues;
uint16_t nb_tx_q = dev->data->nb_tx_queues;
struct rte_eth_rss_conf rss_conf;
uint16_t mtu;
bool gro_en;
int ret;
hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
/*
* Some versions of hardware network engine does not support
* individually enable/disable/reset the Tx or Rx queue. These devices
* must enable/disable/reset Tx and Rx queues at the same time. When the
* numbers of Tx queues allocated by upper applications are not equal to
* the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
* to adjust numbers of Tx/Rx queues. otherwise, network engine can not
* work as usual. But these fake queues are imperceptible, and can not
* be used by upper applications.
*/
if (!hns3_dev_indep_txrx_supported(hw)) {
ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
if (ret) {
hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
ret);
return ret;
}
}
hw->adapter_state = HNS3_NIC_CONFIGURING;
if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
hns3_err(hw, "setting link speed/duplex not supported");
ret = -EINVAL;
goto cfg_err;
}
/* When RSS is not configured, redirect the packet queue 0 */
if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
hw->rss_dis_flag = false;
rss_conf = conf->rx_adv_conf.rss_conf;
if (rss_conf.rss_key == NULL) {
rss_conf.rss_key = rss_cfg->key;
rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
}
ret = hns3_dev_rss_hash_update(dev, &rss_conf);
if (ret)
goto cfg_err;
}
/*
* If jumbo frames are enabled, MTU needs to be refreshed
* according to the maximum RX packet length.
*/
if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
/*
* Security of max_rx_pkt_len is guaranteed in dpdk frame.
* Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
* can safely assign to "uint16_t" type variable.
*/
mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
ret = hns3vf_dev_mtu_set(dev, mtu);
if (ret)
goto cfg_err;
dev->data->mtu = mtu;
}
ret = hns3vf_dev_configure_vlan(dev);
if (ret)
goto cfg_err;
/* config hardware GRO */
gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
ret = hns3_config_gro(hw, gro_en);
if (ret)
goto cfg_err;
hns->rx_simple_allowed = true;
hns->rx_vec_allowed = true;
hns->tx_simple_allowed = true;
hns->tx_vec_allowed = true;
hns3_init_rx_ptype_tble(dev);
hw->adapter_state = HNS3_NIC_CONFIGURED;
return 0;
cfg_err:
(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
hw->adapter_state = HNS3_NIC_INITIALIZED;
return ret;
}
static int
hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
{
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
sizeof(mtu), true, NULL, 0);
if (ret)
hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
return ret;
}
static int
hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
int ret;
/*
* The hns3 PF/VF devices on the same port share the hardware MTU
* configuration. Currently, we send mailbox to inform hns3 PF kernel
* ethdev driver to finish hardware MTU configuration in hns3 VF PMD
* driver, there is no need to stop the port for hns3 VF device, and the
* MTU value issued by hns3 VF PMD driver must be less than or equal to
* PF's MTU.
*/
if (rte_atomic16_read(&hw->reset.resetting)) {
hns3_err(hw, "Failed to set mtu during resetting");
return -EIO;
}
/*
* when Rx of scattered packets is off, we have some possibility of
* using vector Rx process function or simple Rx functions in hns3 PMD
* driver. If the input MTU is increased and the maximum length of
* received packets is greater than the length of a buffer for Rx
* packet, the hardware network engine needs to use multiple BDs and
* buffers to store these packets. This will cause problems when still
* using vector Rx process function or simple Rx function to receiving
* packets. So, when Rx of scattered packets is off and device is
* started, it is not permitted to increase MTU so that the maximum
* length of Rx packets is greater than Rx buffer length.
*/
if (dev->data->dev_started && !dev->data->scattered_rx &&
frame_size > hw->rx_buf_len) {
hns3_err(hw, "failed to set mtu because current is "
"not scattered rx mode");
return -EOPNOTSUPP;
}
rte_spinlock_lock(&hw->lock);
ret = hns3vf_config_mtu(hw, mtu);
if (ret) {
rte_spinlock_unlock(&hw->lock);
return ret;
}
if (frame_size > RTE_ETHER_MAX_LEN)
dev->data->dev_conf.rxmode.offloads |=
DEV_RX_OFFLOAD_JUMBO_FRAME;
else
dev->data->dev_conf.rxmode.offloads &=
~DEV_RX_OFFLOAD_JUMBO_FRAME;
dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint16_t q_num = hw->tqps_num;
/*
* In interrupt mode, 'max_rx_queues' is set based on the number of
* MSI-X interrupt resources of the hardware.
*/
if (hw->data->dev_conf.intr_conf.rxq == 1)
q_num = hw->intr_tqps_num;
info->max_rx_queues = q_num;
info->max_tx_queues = hw->tqps_num;
info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM |
DEV_RX_OFFLOAD_SCTP_CKSUM |
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
DEV_RX_OFFLOAD_SCATTER |
DEV_RX_OFFLOAD_VLAN_STRIP |
DEV_RX_OFFLOAD_VLAN_FILTER |
DEV_RX_OFFLOAD_JUMBO_FRAME |
DEV_RX_OFFLOAD_RSS_HASH |
DEV_RX_OFFLOAD_TCP_LRO);
info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_MULTI_SEGS |
DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
DEV_TX_OFFLOAD_MBUF_FAST_FREE |
hns3_txvlan_cap_get(hw));
if (hns3_dev_indep_txrx_supported(hw))
info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
info->rx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
};
info->tx_desc_lim = (struct rte_eth_desc_lim) {
.nb_max = HNS3_MAX_RING_DESC,
.nb_min = HNS3_MIN_RING_DESC,
.nb_align = HNS3_ALIGN_RING_DESC,
.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
.nb_mtu_seg_max = hw->max_non_tso_bd_num,
};
info->default_rxconf = (struct rte_eth_rxconf) {
.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
/*
* If there are no available Rx buffer descriptors, incoming
* packets are always dropped by hardware based on hns3 network
* engine.
*/
.rx_drop_en = 1,
.offloads = 0,
};
info->default_txconf = (struct rte_eth_txconf) {
.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
.offloads = 0,
};
info->vmdq_queue_num = 0;
info->reta_size = HNS3_RSS_IND_TBL_SIZE;
info->hash_key_size = HNS3_RSS_KEY_SIZE;
info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
return 0;
}
static void
hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
{
hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
}
static void
hns3vf_disable_irq0(struct hns3_hw *hw)
{
hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
}
static void
hns3vf_enable_irq0(struct hns3_hw *hw)
{
hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
}
static enum hns3vf_evt_cause
hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
{
struct hns3_hw *hw = &hns->hw;
enum hns3vf_evt_cause ret;
uint32_t cmdq_stat_reg;
uint32_t rst_ing_reg;
uint32_t val;
/* Fetch the events from their corresponding regs */
cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
rte_atomic16_set(&hw->reset.disable_cmd, 1);
val = hns3_read_dev(hw, HNS3_VF_RST_ING);
hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
if (clearval) {
hw->reset.stats.global_cnt++;
hns3_warn(hw, "Global reset detected, clear reset status");
} else {
hns3_schedule_delayed_reset(hns);
hns3_warn(hw, "Global reset detected, don't clear reset status");
}
ret = HNS3VF_VECTOR0_EVENT_RST;
goto out;
}
/* Check for vector0 mailbox(=CMDQ RX) event source */
if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
ret = HNS3VF_VECTOR0_EVENT_MBX;
goto out;
}
val = 0;
ret = HNS3VF_VECTOR0_EVENT_OTHER;
out:
if (clearval)
*clearval = val;
return ret;
}
static void
hns3vf_interrupt_handler(void *param)
{
struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
enum hns3vf_evt_cause event_cause;
uint32_t clearval;
if (hw->irq_thread_id == 0)
hw->irq_thread_id = pthread_self();
/* Disable interrupt */
hns3vf_disable_irq0(hw);
/* Read out interrupt causes */
event_cause = hns3vf_check_event_cause(hns, &clearval);
switch (event_cause) {
case HNS3VF_VECTOR0_EVENT_RST:
hns3_schedule_reset(hns);
break;
case HNS3VF_VECTOR0_EVENT_MBX:
hns3_dev_handle_mbx_msg(hw);
break;
default:
break;
}
/* Clear interrupt causes */
hns3vf_clear_event_cause(hw, clearval);
/* Enable interrupt */
hns3vf_enable_irq0(hw);
}
static void
hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
{
hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
hw->rss_key_size = HNS3_RSS_KEY_SIZE;
}
static void
hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
{
struct hns3_dev_specs_0_cmd *req0;
req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
}
static int
hns3vf_query_dev_specifications(struct hns3_hw *hw)
{
struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
int ret;
int i;
for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
true);
desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
}
hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
if (ret)
return ret;
hns3vf_parse_dev_specifications(hw, desc);
return 0;
}
static int
hns3vf_get_capability(struct hns3_hw *hw)
{
struct rte_pci_device *pci_dev;
struct rte_eth_dev *eth_dev;
uint8_t revision;
int ret;
eth_dev = &rte_eth_devices[hw->data->port_id];
pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
/* Get PCI revision id */
ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
HNS3_PCI_REVISION_ID);
if (ret != HNS3_PCI_REVISION_ID_LEN) {
PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
ret);
return -EIO;
}
hw->revision = revision;
if (revision < PCI_REVISION_ID_HIP09_A) {
hns3vf_set_default_dev_specifications(hw);
hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
return 0;
}
ret = hns3vf_query_dev_specifications(hw);
if (ret) {
PMD_INIT_LOG(ERR,
"failed to query dev specifications, ret = %d",
ret);
return ret;
}
hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
return 0;
}
static int
hns3vf_check_tqp_info(struct hns3_hw *hw)
{
if (hw->tqps_num == 0) {
PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
return -EINVAL;
}
if (hw->rss_size_max == 0) {
PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
return -EINVAL;
}
hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
return 0;
}
static int
hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
{
uint8_t resp_msg;
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
true, &resp_msg, sizeof(resp_msg));
if (ret) {
if (ret == -ETIME) {
/*
* Getting current port based VLAN state from PF driver
* will not affect VF driver's basic function. Because
* the VF driver relies on hns3 PF kernel ether driver,
* to avoid introducing compatibility issues with older
* version of PF driver, no failure will be returned
* when the return value is ETIME. This return value has
* the following scenarios:
* 1) Firmware didn't return the results in time
* 2) the result return by firmware is timeout
* 3) the older version of kernel side PF driver does
* not support this mailbox message.
* For scenarios 1 and 2, it is most likely that a
* hardware error has occurred, or a hardware reset has
* occurred. In this case, these errors will be caught
* by other functions.
*/
PMD_INIT_LOG(WARNING,
"failed to get PVID state for timeout, maybe "
"kernel side PF driver doesn't support this "
"mailbox message, or firmware didn't respond.");
resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
} else {
PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
" ret = %d", ret);
return ret;
}
}
hw->port_base_vlan_cfg.state = resp_msg ?
HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
return 0;
}
static int
hns3vf_get_queue_info(struct hns3_hw *hw)
{
#define HNS3VF_TQPS_RSS_INFO_LEN 6
uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
return ret;
}
memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
return hns3vf_check_tqp_info(hw);
}
static int
hns3vf_get_queue_depth(struct hns3_hw *hw)
{
#define HNS3VF_TQPS_DEPTH_INFO_LEN 4
uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
ret);
return ret;
}
memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
return 0;
}
static int
hns3vf_get_tc_info(struct hns3_hw *hw)
{
uint8_t resp_msg;
int ret;
int i;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
true, &resp_msg, sizeof(resp_msg));
if (ret) {
hns3_err(hw, "VF request to get TC info from PF failed %d",
ret);
return ret;
}
hw->hw_tc_map = resp_msg;
for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
if (hw->hw_tc_map & BIT(i))
hw->num_tc++;
}
return 0;
}
static int
hns3vf_get_host_mac_addr(struct hns3_hw *hw)
{
uint8_t host_mac[RTE_ETHER_ADDR_LEN];
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
true, host_mac, RTE_ETHER_ADDR_LEN);
if (ret) {
hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
return ret;
}
memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
return 0;
}
static int
hns3vf_get_configuration(struct hns3_hw *hw)
{
int ret;
hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
hw->rss_dis_flag = false;
/* Get device capability */
ret = hns3vf_get_capability(hw);
if (ret) {
PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
return ret;
}
/* Get queue configuration from PF */
ret = hns3vf_get_queue_info(hw);
if (ret)
return ret;
/* Get queue depth info from PF */
ret = hns3vf_get_queue_depth(hw);
if (ret)
return ret;
/* Get user defined VF MAC addr from PF */
ret = hns3vf_get_host_mac_addr(hw);
if (ret)
return ret;
ret = hns3vf_get_port_base_vlan_filter_state(hw);
if (ret)
return ret;
/* Get tc configuration from PF */
return hns3vf_get_tc_info(hw);
}
static int
hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
uint16_t nb_tx_q)
{
struct hns3_hw *hw = &hns->hw;
if (nb_rx_q < hw->num_tc) {
hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
nb_rx_q, hw->num_tc);
return -EINVAL;
}
if (nb_tx_q < hw->num_tc) {
hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
nb_tx_q, hw->num_tc);
return -EINVAL;
}
return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
}
static void
hns3vf_request_link_info(struct hns3_hw *hw)
{
uint8_t resp_msg;
int ret;
if (rte_atomic16_read(&hw->reset.resetting))
return;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
&resp_msg, sizeof(resp_msg));
if (ret)
hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
}
static int
hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
{
#define HNS3VF_VLAN_MBX_MSG_LEN 5
struct hns3_hw *hw = &hns->hw;
uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
uint8_t is_kill = on ? 0 : 1;
msg_data[0] = is_kill;
memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
memcpy(&msg_data[3], &proto, sizeof(proto));
return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
0);
}
static int
hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
if (rte_atomic16_read(&hw->reset.resetting)) {
hns3_err(hw,
"vf set vlan id failed during resetting, vlan_id =%u",
vlan_id);
return -EIO;
}
rte_spinlock_lock(&hw->lock);
ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
rte_spinlock_unlock(&hw->lock);
if (ret)
hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
vlan_id, ret);
return ret;
}
static int
hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
{
uint8_t msg_data;
int ret;
msg_data = enable ? 1 : 0;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
&msg_data, sizeof(msg_data), false, NULL, 0);
if (ret)
hns3_err(hw, "vf enable strip failed, ret =%d", ret);
return ret;
}
static int
hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
unsigned int tmp_mask;
int ret = 0;
if (rte_atomic16_read(&hw->reset.resetting)) {
hns3_err(hw, "vf set vlan offload failed during resetting, "
"mask = 0x%x", mask);
return -EIO;
}
tmp_mask = (unsigned int)mask;
/* Vlan stripping setting */
if (tmp_mask & ETH_VLAN_STRIP_MASK) {
rte_spinlock_lock(&hw->lock);
/* Enable or disable VLAN stripping */
if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
ret = hns3vf_en_hw_strip_rxvtag(hw, true);
else
ret = hns3vf_en_hw_strip_rxvtag(hw, false);
rte_spinlock_unlock(&hw->lock);
}
return ret;
}
static int
hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
{
struct rte_vlan_filter_conf *vfc;
struct hns3_hw *hw = &hns->hw;
uint16_t vlan_id;
uint64_t vbit;
uint64_t ids;
int ret = 0;
uint32_t i;
vfc = &hw->data->vlan_filter_conf;
for (i = 0; i < RTE_DIM(vfc->ids); i++) {
if (vfc->ids[i] == 0)
continue;
ids = vfc->ids[i];
while (ids) {
/*
* 64 means the num bits of ids, one bit corresponds to
* one vlan id
*/
vlan_id = 64 * i;
/* count trailing zeroes */
vbit = ~ids & (ids - 1);
/* clear least significant bit set */
ids ^= (ids ^ (ids - 1)) ^ vbit;
for (; vbit;) {
vbit >>= 1;
vlan_id++;
}
ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
if (ret) {
hns3_err(hw,
"VF handle vlan table failed, ret =%d, on = %d",
ret, on);
return ret;
}
}
}
return ret;
}
static int
hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
{
return hns3vf_handle_all_vlan_table(hns, 0);
}
static int
hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct rte_eth_conf *dev_conf;
bool en;
int ret;
dev_conf = &hw->data->dev_conf;
en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
: false;
ret = hns3vf_en_hw_strip_rxvtag(hw, en);
if (ret)
hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
ret);
return ret;
}
static int
hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct rte_eth_dev_data *data = dev->data;
struct hns3_hw *hw = &hns->hw;
int ret;
if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
data->dev_conf.txmode.hw_vlan_reject_untagged ||
data->dev_conf.txmode.hw_vlan_insert_pvid) {
hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
"or hw_vlan_insert_pvid is not support!");
}
/* Apply vlan offload setting */
ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
if (ret)
hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
return ret;
}
static int
hns3vf_set_alive(struct hns3_hw *hw, bool alive)
{
uint8_t msg_data;
msg_data = alive ? 1 : 0;
return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
sizeof(msg_data), false, NULL, 0);
}
static void
hns3vf_keep_alive_handler(void *param)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint8_t respmsg;
int ret;
ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
false, &respmsg, sizeof(uint8_t));
if (ret)
hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
ret);
rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
eth_dev);
}
static void
hns3vf_service_handler(void *param)
{
struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
/*
* The query link status and reset processing are executed in the
* interrupt thread.When the IMP reset occurs, IMP will not respond,
* and the query operation will time out after 30ms. In the case of
* multiple PF/VFs, each query failure timeout causes the IMP reset
* interrupt to fail to respond within 100ms.
* Before querying the link status, check whether there is a reset
* pending, and if so, abandon the query.
*/
if (!hns3vf_is_reset_pending(hns))
hns3vf_request_link_info(hw);
else
hns3_warn(hw, "Cancel the query when reset is pending");
rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
eth_dev);
}
static int
hns3_query_vf_resource(struct hns3_hw *hw)
{
struct hns3_vf_res_cmd *req;
struct hns3_cmd_desc desc;
uint16_t num_msi;
int ret;
hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
ret = hns3_cmd_send(hw, &desc, 1);
if (ret) {
hns3_err(hw, "query vf resource failed, ret = %d", ret);
return ret;
}
req = (struct hns3_vf_res_cmd *)desc.data;
num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
if (num_msi < HNS3_MIN_VECTOR_NUM) {
hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
num_msi, HNS3_MIN_VECTOR_NUM);
return -EINVAL;
}
hw->num_msi = num_msi;
return 0;
}
static int
hns3vf_init_hardware(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
uint16_t mtu = hw->data->mtu;
int ret;
ret = hns3vf_set_promisc_mode(hw, true, false, false);
if (ret)
return ret;
ret = hns3vf_config_mtu(hw, mtu);
if (ret)
goto err_init_hardware;
ret = hns3vf_vlan_filter_configure(hns, 0, 1);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
goto err_init_hardware;
}
ret = hns3_config_gro(hw, false);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
goto err_init_hardware;
}
/*
* In the initialization clearing the all hardware mapping relationship
* configurations between queues and interrupt vectors is needed, so
* some error caused by the residual configurations, such as the
* unexpected interrupt, can be avoid.
*/
ret = hns3vf_init_ring_with_vector(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
goto err_init_hardware;
}
ret = hns3vf_set_alive(hw, true);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
goto err_init_hardware;
}
hns3vf_request_link_info(hw);
return 0;
err_init_hardware:
(void)hns3vf_set_promisc_mode(hw, false, false, false);
return ret;
}
static int
hns3vf_clear_vport_list(struct hns3_hw *hw)
{
return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
NULL, 0);
}
static int
hns3vf_init_vf(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
PMD_INIT_FUNC_TRACE();
/* Get hardware io base address from pcie BAR2 IO space */
hw->io_base = pci_dev->mem_resource[2].addr;
/* Firmware command queue initialize */
ret = hns3_cmd_init_queue(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
goto err_cmd_init_queue;
}
/* Firmware command initialize */
ret = hns3_cmd_init(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
goto err_cmd_init;
}
/* Get VF resource */
ret = hns3_query_vf_resource(hw);
if (ret)
goto err_cmd_init;
rte_spinlock_init(&hw->mbx_resp.lock);
hns3vf_clear_event_cause(hw, 0);
ret = rte_intr_callback_register(&pci_dev->intr_handle,
hns3vf_interrupt_handler, eth_dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
goto err_intr_callback_register;
}
/* Enable interrupt */
rte_intr_enable(&pci_dev->intr_handle);
hns3vf_enable_irq0(hw);
/* Get configuration from PF */
ret = hns3vf_get_configuration(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
goto err_get_config;
}
ret = hns3_tqp_stats_init(hw);
if (ret)
goto err_get_config;
ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
if (ret) {
PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
goto err_set_tc_queue;
}
ret = hns3vf_clear_vport_list(hw);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
goto err_set_tc_queue;
}
ret = hns3vf_init_hardware(hns);
if (ret)
goto err_set_tc_queue;
hns3_set_default_rss_args(hw);
return 0;
err_set_tc_queue:
hns3_tqp_stats_uninit(hw);
err_get_config:
hns3vf_disable_irq0(hw);
rte_intr_disable(&pci_dev->intr_handle);
hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
eth_dev);
err_intr_callback_register:
err_cmd_init:
hns3_cmd_uninit(hw);
hns3_cmd_destroy_queue(hw);
err_cmd_init_queue:
hw->io_base = NULL;
return ret;
}
static void
hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
PMD_INIT_FUNC_TRACE();
hns3_rss_uninit(hns);
(void)hns3_config_gro(hw, false);
(void)hns3vf_set_alive(hw, false);
(void)hns3vf_set_promisc_mode(hw, false, false, false);
hns3_tqp_stats_uninit(hw);
hns3vf_disable_irq0(hw);
rte_intr_disable(&pci_dev->intr_handle);
hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
eth_dev);
hns3_cmd_uninit(hw);
hns3_cmd_destroy_queue(hw);
hw->io_base = NULL;
}
static int
hns3vf_do_stop(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
hw->mac.link_status = ETH_LINK_DOWN;
if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
hns3vf_configure_mac_addr(hns, true);
ret = hns3_reset_all_tqps(hns);
if (ret) {
hns3_err(hw, "failed to reset all queues ret = %d",
ret);
return ret;
}
}
return 0;
}
static void
hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
{
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
uint16_t q_id;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return;
/* unmap the ring with vector */
if (rte_intr_allow_others(intr_handle)) {
vec = RTE_INTR_VEC_RXTX_OFFSET;
base = RTE_INTR_VEC_RXTX_OFFSET;
}
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
(void)hns3vf_bind_ring_with_vector(hw, vec, false,
HNS3_RING_TYPE_RX,
q_id);
if (vec < base + intr_handle->nb_efd - 1)
vec++;
}
}
/* Clean datapath event and queue/vec mapping */
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
rte_free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
}
static void
hns3vf_dev_stop(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
PMD_INIT_FUNC_TRACE();
hw->adapter_state = HNS3_NIC_STOPPING;
hns3_set_rxtx_function(dev);
rte_wmb();
/* Disable datapath on secondary process. */
hns3_mp_req_stop_rxtx(dev);
/* Prevent crashes when queues are still in use. */
rte_delay_ms(hw->tqps_num);
rte_spinlock_lock(&hw->lock);
if (rte_atomic16_read(&hw->reset.resetting) == 0) {
hns3_stop_tqps(hw);
hns3vf_do_stop(hns);
hns3vf_unmap_rx_interrupt(dev);
hns3_dev_release_mbufs(hns);
hw->adapter_state = HNS3_NIC_CONFIGURED;
}
hns3_rx_scattered_reset(dev);
rte_eal_alarm_cancel(hns3vf_service_handler, dev);
rte_spinlock_unlock(&hw->lock);
}
static int
hns3vf_dev_close(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
if (hw->adapter_state == HNS3_NIC_STARTED)
hns3vf_dev_stop(eth_dev);
hw->adapter_state = HNS3_NIC_CLOSING;
hns3_reset_abort(hns);
hw->adapter_state = HNS3_NIC_CLOSED;
rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
hns3vf_configure_all_mc_mac_addr(hns, true);
hns3vf_remove_all_vlan_table(hns);
hns3vf_uninit_vf(eth_dev);
hns3_free_all_queues(eth_dev);
rte_free(hw->reset.wait_data);
rte_free(eth_dev->process_private);
eth_dev->process_private = NULL;
hns3_mp_uninit_primary();
hns3_warn(hw, "Close port %d finished", hw->data->port_id);
return 0;
}
static int
hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
size_t fw_size)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
uint32_t version = hw->fw_version;
int ret;
ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
HNS3_FW_VERSION_BYTE3_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
HNS3_FW_VERSION_BYTE2_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
HNS3_FW_VERSION_BYTE1_S),
hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
HNS3_FW_VERSION_BYTE0_S));
ret += 1; /* add the size of '\0' */
if (fw_size < (uint32_t)ret)
return ret;
else
return 0;
}
static int
hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
__rte_unused int wait_to_complete)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
struct hns3_mac *mac = &hw->mac;
struct rte_eth_link new_link;
memset(&new_link, 0, sizeof(new_link));
switch (mac->link_speed) {
case ETH_SPEED_NUM_10M:
case ETH_SPEED_NUM_100M:
case ETH_SPEED_NUM_1G:
case ETH_SPEED_NUM_10G:
case ETH_SPEED_NUM_25G:
case ETH_SPEED_NUM_40G:
case ETH_SPEED_NUM_50G:
case ETH_SPEED_NUM_100G:
case ETH_SPEED_NUM_200G:
new_link.link_speed = mac->link_speed;
break;
default:
new_link.link_speed = ETH_SPEED_NUM_100M;
break;
}
new_link.link_duplex = mac->link_duplex;
new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
new_link.link_autoneg =
!(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
return rte_eth_linkstatus_set(eth_dev, &new_link);
}
static int
hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
{
struct hns3_hw *hw = &hns->hw;
uint16_t nb_rx_q = hw->data->nb_rx_queues;
uint16_t nb_tx_q = hw->data->nb_tx_queues;
int ret;
ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
if (ret)
return ret;
ret = hns3_init_queues(hns, reset_queue);
if (ret)
hns3_err(hw, "failed to init queues, ret = %d.", ret);
return ret;
}
static int
hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
{
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
uint32_t intr_vector;
uint16_t q_id;
int ret;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return 0;
/* disable uio/vfio intr/eventfd mapping */
rte_intr_disable(intr_handle);
/* check and configure queue intr-vector mapping */
if (rte_intr_cap_multiple(intr_handle) ||
!RTE_ETH_DEV_SRIOV(dev).active) {
intr_vector = hw->used_rx_queues;
/* It creates event fd for each intr vector when MSIX is used */
if (rte_intr_efd_enable(intr_handle, intr_vector))
return -EINVAL;
}
if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
intr_handle->intr_vec =
rte_zmalloc("intr_vec",
hw->used_rx_queues * sizeof(int), 0);
if (intr_handle->intr_vec == NULL) {
hns3_err(hw, "Failed to allocate %d rx_queues"
" intr_vec", hw->used_rx_queues);
ret = -ENOMEM;
goto vf_alloc_intr_vec_error;
}
}
if (rte_intr_allow_others(intr_handle)) {
vec = RTE_INTR_VEC_RXTX_OFFSET;
base = RTE_INTR_VEC_RXTX_OFFSET;
}
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
ret = hns3vf_bind_ring_with_vector(hw, vec, true,
HNS3_RING_TYPE_RX,
q_id);
if (ret)
goto vf_bind_vector_error;
intr_handle->intr_vec[q_id] = vec;
if (vec < base + intr_handle->nb_efd - 1)
vec++;
}
}
rte_intr_enable(intr_handle);
return 0;
vf_bind_vector_error:
rte_intr_efd_disable(intr_handle);
if (intr_handle->intr_vec) {
free(intr_handle->intr_vec);
intr_handle->intr_vec = NULL;
}
return ret;
vf_alloc_intr_vec_error:
rte_intr_efd_disable(intr_handle);
return ret;
}
static int
hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
{
struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
uint16_t q_id;
int ret;
if (dev->data->dev_conf.intr_conf.rxq == 0)
return 0;
if (rte_intr_dp_is_en(intr_handle)) {
for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
ret = hns3vf_bind_ring_with_vector(hw,
intr_handle->intr_vec[q_id], true,
HNS3_RING_TYPE_RX, q_id);
if (ret)
return ret;
}
}
return 0;
}
static void
hns3vf_restore_filter(struct rte_eth_dev *dev)
{
hns3_restore_rss_filter(dev);
}
static int
hns3vf_dev_start(struct rte_eth_dev *dev)
{
struct hns3_adapter *hns = dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
PMD_INIT_FUNC_TRACE();
if (rte_atomic16_read(&hw->reset.resetting))
return -EBUSY;
rte_spinlock_lock(&hw->lock);
hw->adapter_state = HNS3_NIC_STARTING;
ret = hns3vf_do_start(hns, true);
if (ret) {
hw->adapter_state = HNS3_NIC_CONFIGURED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
ret = hns3vf_map_rx_interrupt(dev);
if (ret) {
hw->adapter_state = HNS3_NIC_CONFIGURED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
/*
* There are three register used to control the status of a TQP
* (contains a pair of Tx queue and Rx queue) in the new version network
* engine. One is used to control the enabling of Tx queue, the other is
* used to control the enabling of Rx queue, and the last is the master
* switch used to control the enabling of the tqp. The Tx register and
* TQP register must be enabled at the same time to enable a Tx queue.
* The same applies to the Rx queue. For the older network enginem, this
* function only refresh the enabled flag, and it is used to update the
* status of queue in the dpdk framework.
*/
ret = hns3_start_all_txqs(dev);
if (ret) {
hw->adapter_state = HNS3_NIC_CONFIGURED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
ret = hns3_start_all_rxqs(dev);
if (ret) {
hns3_stop_all_txqs(dev);
hw->adapter_state = HNS3_NIC_CONFIGURED;
rte_spinlock_unlock(&hw->lock);
return ret;
}
hw->adapter_state = HNS3_NIC_STARTED;
rte_spinlock_unlock(&hw->lock);
hns3_rx_scattered_calc(dev);
hns3_set_rxtx_function(dev);
hns3_mp_req_start_rxtx(dev);
rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
hns3vf_restore_filter(dev);
/* Enable interrupt of all rx queues before enabling queues */
hns3_dev_all_rx_queue_intr_enable(hw, true);
/*
* After finished the initialization, start all tqps to receive/transmit
* packets and refresh all queue status.
*/
hns3_start_tqps(hw);
return ret;
}
static bool
is_vf_reset_done(struct hns3_hw *hw)
{
#define HNS3_FUN_RST_ING_BITS \
(BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
uint32_t val;
if (hw->reset.level == HNS3_VF_RESET) {
val = hns3_read_dev(hw, HNS3_VF_RST_ING);
if (val & HNS3_VF_RST_ING_BIT)
return false;
} else {
val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
if (val & HNS3_FUN_RST_ING_BITS)
return false;
}
return true;
}
bool
hns3vf_is_reset_pending(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
enum hns3_reset_level reset;
/*
* According to the protocol of PCIe, FLR to a PF device resets the PF
* state as well as the SR-IOV extended capability including VF Enable
* which means that VFs no longer exist.
*
* HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
* is in FLR stage, the register state of VF device is not reliable,
* so register states detection can not be carried out. In this case,
* we just ignore the register states and return false to indicate that
* there are no other reset states that need to be processed by driver.
*/
if (hw->reset.level == HNS3_VF_FULL_RESET)
return false;
/* Check the registers to confirm whether there is reset pending */
hns3vf_check_event_cause(hns, NULL);
reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
hns3_warn(hw, "High level reset %d is pending", reset);
return true;
}
return false;
}
static int
hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct hns3_wait_data *wait_data = hw->reset.wait_data;
struct timeval tv;
if (wait_data->result == HNS3_WAIT_SUCCESS) {
/*
* After vf reset is ready, the PF may not have completed
* the reset processing. The vf sending mbox to PF may fail
* during the pf reset, so it is better to add extra delay.
*/
if (hw->reset.level == HNS3_VF_FUNC_RESET ||
hw->reset.level == HNS3_FLR_RESET)
return 0;
/* Reset retry process, no need to add extra delay. */
if (hw->reset.attempts)
return 0;
if (wait_data->check_completion == NULL)
return 0;
wait_data->check_completion = NULL;
wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
wait_data->count = 1;
wait_data->result = HNS3_WAIT_REQUEST;
rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
wait_data);
hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
return -EAGAIN;
} else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
gettimeofday(&tv, NULL);
hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
tv.tv_sec, tv.tv_usec);
return -ETIME;
} else if (wait_data->result == HNS3_WAIT_REQUEST)
return -EAGAIN;
wait_data->hns = hns;
wait_data->check_completion = is_vf_reset_done;
wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
wait_data->count = HNS3VF_RESET_WAIT_CNT;
wait_data->result = HNS3_WAIT_REQUEST;
rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
return -EAGAIN;
}
static int
hns3vf_prepare_reset(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret = 0;
if (hw->reset.level == HNS3_VF_FUNC_RESET) {
ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
0, true, NULL, 0);
}
rte_atomic16_set(&hw->reset.disable_cmd, 1);
return ret;
}
static int
hns3vf_stop_service(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct rte_eth_dev *eth_dev;
eth_dev = &rte_eth_devices[hw->data->port_id];
if (hw->adapter_state == HNS3_NIC_STARTED)
rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
hw->mac.link_status = ETH_LINK_DOWN;
hns3_set_rxtx_function(eth_dev);
rte_wmb();
/* Disable datapath on secondary process. */
hns3_mp_req_stop_rxtx(eth_dev);
rte_delay_ms(hw->tqps_num);
rte_spinlock_lock(&hw->lock);
if (hw->adapter_state == HNS3_NIC_STARTED ||
hw->adapter_state == HNS3_NIC_STOPPING) {
hns3_enable_all_queues(hw, false);
hns3vf_do_stop(hns);
hw->reset.mbuf_deferred_free = true;
} else
hw->reset.mbuf_deferred_free = false;
/*
* It is cumbersome for hardware to pick-and-choose entries for deletion
* from table space. Hence, for function reset software intervention is
* required to delete the entries.
*/
if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
hns3vf_configure_all_mc_mac_addr(hns, true);
rte_spinlock_unlock(&hw->lock);
return 0;
}
static int
hns3vf_start_service(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
struct rte_eth_dev *eth_dev;
eth_dev = &rte_eth_devices[hw->data->port_id];
hns3_set_rxtx_function(eth_dev);
hns3_mp_req_start_rxtx(eth_dev);
if (hw->adapter_state == HNS3_NIC_STARTED) {
hns3vf_service_handler(eth_dev);
/* Enable interrupt of all rx queues before enabling queues */
hns3_dev_all_rx_queue_intr_enable(hw, true);
/*
* When finished the initialization, enable queues to receive
* and transmit packets.
*/
hns3_enable_all_queues(hw, true);
}
return 0;
}
static int
hns3vf_check_default_mac_change(struct hns3_hw *hw)
{
char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *hw_mac;
int ret;
/*
* The hns3 PF ethdev driver in kernel support setting VF MAC address
* on the host by "ip link set ..." command. If the hns3 PF kernel
* ethdev driver sets the MAC address for VF device after the
* initialization of the related VF device, the PF driver will notify
* VF driver to reset VF device to make the new MAC address effective
* immediately. The hns3 VF PMD driver should check whether the MAC
* address has been changed by the PF kernel ethdev driver, if changed
* VF driver should configure hardware using the new MAC address in the
* recovering hardware configuration stage of the reset process.
*/
ret = hns3vf_get_host_mac_addr(hw);
if (ret)
return ret;
hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
ret = rte_is_zero_ether_addr(hw_mac);
if (ret) {
rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
} else {
ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
if (!ret) {
rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
&hw->data->mac_addrs[0]);
hns3_warn(hw, "Default MAC address has been changed to:"
" %s by the host PF kernel ethdev driver",
mac_str);
}
}
return 0;
}
static int
hns3vf_restore_conf(struct hns3_adapter *hns)
{
struct hns3_hw *hw = &hns->hw;
int ret;
ret = hns3vf_check_default_mac_change(hw);
if (ret)
return ret;
ret = hns3vf_configure_mac_addr(hns, false);
if (ret)
return ret;
ret = hns3vf_configure_all_mc_mac_addr(hns, false);
if (ret)
goto err_mc_mac;
ret = hns3vf_restore_promisc(hns);
if (ret)
goto err_vlan_table;
ret = hns3vf_restore_vlan_conf(hns);
if (ret)
goto err_vlan_table;
ret = hns3vf_get_port_base_vlan_filter_state(hw);
if (ret)
goto err_vlan_table;
ret = hns3vf_restore_rx_interrupt(hw);
if (ret)
goto err_vlan_table;
ret = hns3_restore_gro_conf(hw);
if (ret)
goto err_vlan_table;
if (hw->adapter_state == HNS3_NIC_STARTED) {
ret = hns3vf_do_start(hns, false);
if (ret)
goto err_vlan_table;
hns3_info(hw, "hns3vf dev restart successful!");
} else if (hw->adapter_state == HNS3_NIC_STOPPING)
hw->adapter_state = HNS3_NIC_CONFIGURED;
return 0;
err_vlan_table:
hns3vf_configure_all_mc_mac_addr(hns, true);
err_mc_mac:
hns3vf_configure_mac_addr(hns, true);
return ret;
}
static enum hns3_reset_level
hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
{
enum hns3_reset_level reset_level;
/* return the highest priority reset level amongst all */
if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
reset_level = HNS3_VF_RESET;
else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
reset_level = HNS3_VF_FULL_RESET;
else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
reset_level = HNS3_VF_PF_FUNC_RESET;
else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
reset_level = HNS3_VF_FUNC_RESET;
else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
reset_level = HNS3_FLR_RESET;
else
reset_level = HNS3_NONE_RESET;
if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
return HNS3_NONE_RESET;
return reset_level;
}
static void
hns3vf_reset_service(void *param)
{
struct hns3_adapter *hns = (struct hns3_adapter *)param;
struct hns3_hw *hw = &hns->hw;
enum hns3_reset_level reset_level;
struct timeval tv_delta;
struct timeval tv_start;
struct timeval tv;
uint64_t msec;
/*
* The interrupt is not triggered within the delay time.
* The interrupt may have been lost. It is necessary to handle
* the interrupt to recover from the error.
*/
if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
hns3_err(hw, "Handling interrupts in delayed tasks");
hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
if (reset_level == HNS3_NONE_RESET) {
hns3_err(hw, "No reset level is set, try global reset");
hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
}
}
rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
/*
* Hardware reset has been notified, we now have to poll & check if
* hardware has actually completed the reset sequence.
*/
reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
if (reset_level != HNS3_NONE_RESET) {
gettimeofday(&tv_start, NULL);
hns3_reset_process(hns, reset_level);
gettimeofday(&tv, NULL);
timersub(&tv, &tv_start, &tv_delta);
msec = tv_delta.tv_sec * MSEC_PER_SEC +
tv_delta.tv_usec / USEC_PER_MSEC;
if (msec > HNS3_RESET_PROCESS_MS)
hns3_err(hw, "%d handle long time delta %" PRIx64
" ms time=%ld.%.6ld",
hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
}
}
static int
hns3vf_reinit_dev(struct hns3_adapter *hns)
{
struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
struct hns3_hw *hw = &hns->hw;
int ret;
if (hw->reset.level == HNS3_VF_FULL_RESET) {
rte_intr_disable(&pci_dev->intr_handle);
ret = hns3vf_set_bus_master(pci_dev, true);
if (ret) {
hns3_err(hw, "failed to set pci bus, ret = %d", ret);
return ret;
}
}
/* Firmware command initialize */
ret = hns3_cmd_init(hw);
if (ret) {
hns3_err(hw, "Failed to init cmd: %d", ret);
return ret;
}
if (hw->reset.level == HNS3_VF_FULL_RESET) {
/*
* UIO enables msix by writing the pcie configuration space
* vfio_pci enables msix in rte_intr_enable.
*/
if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
if (hns3vf_enable_msix(pci_dev, true))
hns3_err(hw, "Failed to enable msix");
}
rte_intr_enable(&pci_dev->intr_handle);
}
ret = hns3_reset_all_tqps(hns);
if (ret) {
hns3_err(hw, "Failed to reset all queues: %d", ret);
return ret;
}
ret = hns3vf_init_hardware(hns);
if (ret) {
hns3_err(hw, "Failed to init hardware: %d", ret);
return ret;
}
return 0;
}
static const struct eth_dev_ops hns3vf_eth_dev_ops = {
.dev_configure = hns3vf_dev_configure,
.dev_start = hns3vf_dev_start,
.dev_stop = hns3vf_dev_stop,
.dev_close = hns3vf_dev_close,
.mtu_set = hns3vf_dev_mtu_set,
.promiscuous_enable = hns3vf_dev_promiscuous_enable,
.promiscuous_disable = hns3vf_dev_promiscuous_disable,
.allmulticast_enable = hns3vf_dev_allmulticast_enable,
.allmulticast_disable = hns3vf_dev_allmulticast_disable,
.stats_get = hns3_stats_get,
.stats_reset = hns3_stats_reset,
.xstats_get = hns3_dev_xstats_get,
.xstats_get_names = hns3_dev_xstats_get_names,
.xstats_reset = hns3_dev_xstats_reset,
.xstats_get_by_id = hns3_dev_xstats_get_by_id,
.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
.dev_infos_get = hns3vf_dev_infos_get,
.fw_version_get = hns3vf_fw_version_get,
.rx_queue_setup = hns3_rx_queue_setup,
.tx_queue_setup = hns3_tx_queue_setup,
.rx_queue_release = hns3_dev_rx_queue_release,
.tx_queue_release = hns3_dev_tx_queue_release,
.rx_queue_start = hns3_dev_rx_queue_start,
.rx_queue_stop = hns3_dev_rx_queue_stop,
.tx_queue_start = hns3_dev_tx_queue_start,
.tx_queue_stop = hns3_dev_tx_queue_stop,
.rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
.rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
.rxq_info_get = hns3_rxq_info_get,
.txq_info_get = hns3_txq_info_get,
.rx_burst_mode_get = hns3_rx_burst_mode_get,
.tx_burst_mode_get = hns3_tx_burst_mode_get,
.mac_addr_add = hns3vf_add_mac_addr,
.mac_addr_remove = hns3vf_remove_mac_addr,
.mac_addr_set = hns3vf_set_default_mac_addr,
.set_mc_addr_list = hns3vf_set_mc_mac_addr_list,
.link_update = hns3vf_dev_link_update,
.rss_hash_update = hns3_dev_rss_hash_update,
.rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
.reta_update = hns3_dev_rss_reta_update,
.reta_query = hns3_dev_rss_reta_query,
.filter_ctrl = hns3_dev_filter_ctrl,
.vlan_filter_set = hns3vf_vlan_filter_set,
.vlan_offload_set = hns3vf_vlan_offload_set,
.get_reg = hns3_get_regs,
.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
};
static const struct hns3_reset_ops hns3vf_reset_ops = {
.reset_service = hns3vf_reset_service,
.stop_service = hns3vf_stop_service,
.prepare_reset = hns3vf_prepare_reset,
.wait_hardware_ready = hns3vf_wait_hardware_ready,
.reinit_dev = hns3vf_reinit_dev,
.restore_conf = hns3vf_restore_conf,
.start_service = hns3vf_start_service,
};
static int
hns3vf_dev_init(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
int ret;
PMD_INIT_FUNC_TRACE();
eth_dev->process_private = (struct hns3_process_private *)
rte_zmalloc_socket("hns3_filter_list",
sizeof(struct hns3_process_private),
RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
if (eth_dev->process_private == NULL) {
PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
return -ENOMEM;
}
/* initialize flow filter lists */
hns3_filterlist_init(eth_dev);
hns3_set_rxtx_function(eth_dev);
eth_dev->dev_ops = &hns3vf_eth_dev_ops;
if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
ret = hns3_mp_init_secondary();
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init for secondary "
"process, ret = %d", ret);
goto err_mp_init_secondary;
}
hw->secondary_cnt++;
return 0;
}
ret = hns3_mp_init_primary();
if (ret) {
PMD_INIT_LOG(ERR,
"Failed to init for primary process, ret = %d",
ret);
goto err_mp_init_primary;
}
hw->adapter_state = HNS3_NIC_UNINITIALIZED;
hns->is_vf = true;
hw->data = eth_dev->data;
ret = hns3_reset_init(hw);
if (ret)
goto err_init_reset;
hw->reset.ops = &hns3vf_reset_ops;
ret = hns3vf_init_vf(eth_dev);
if (ret) {
PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
goto err_init_vf;
}
/* Allocate memory for storing MAC addresses */
eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
sizeof(struct rte_ether_addr) *
HNS3_VF_UC_MACADDR_NUM, 0);
if (eth_dev->data->mac_addrs == NULL) {
PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
"to store MAC addresses",
sizeof(struct rte_ether_addr) *
HNS3_VF_UC_MACADDR_NUM);
ret = -ENOMEM;
goto err_rte_zmalloc;
}
/*
* The hns3 PF ethdev driver in kernel support setting VF MAC address
* on the host by "ip link set ..." command. To avoid some incorrect
* scenes, for example, hns3 VF PMD driver fails to receive and send
* packets after user configure the MAC address by using the
* "ip link set ..." command, hns3 VF PMD driver keep the same MAC
* address strategy as the hns3 kernel ethdev driver in the
* initialization. If user configure a MAC address by the ip command
* for VF device, then hns3 VF PMD driver will start with it, otherwise
* start with a random MAC address in the initialization.
*/
if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
rte_eth_random_addr(hw->mac.mac_addr);
rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
&eth_dev->data->mac_addrs[0]);
hw->adapter_state = HNS3_NIC_INITIALIZED;
if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
hns3_err(hw, "Reschedule reset service after dev_init");
hns3_schedule_reset(hns);
} else {
/* IMP will wait ready flag before reset */
hns3_notify_reset_ready(hw, false);
}
rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
eth_dev);
return 0;
err_rte_zmalloc:
hns3vf_uninit_vf(eth_dev);
err_init_vf:
rte_free(hw->reset.wait_data);
err_init_reset:
hns3_mp_uninit_primary();
err_mp_init_primary:
err_mp_init_secondary:
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
eth_dev->tx_pkt_prepare = NULL;
rte_free(eth_dev->process_private);
eth_dev->process_private = NULL;
return ret;
}
static int
hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
{
struct hns3_adapter *hns = eth_dev->data->dev_private;
struct hns3_hw *hw = &hns->hw;
PMD_INIT_FUNC_TRACE();
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return -EPERM;
eth_dev->dev_ops = NULL;
eth_dev->rx_pkt_burst = NULL;
eth_dev->tx_pkt_burst = NULL;
eth_dev->tx_pkt_prepare = NULL;
if (hw->adapter_state < HNS3_NIC_CLOSING)
hns3vf_dev_close(eth_dev);
hw->adapter_state = HNS3_NIC_REMOVED;
return 0;
}
static int
eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_probe(pci_dev,
sizeof(struct hns3_adapter),
hns3vf_dev_init);
}
static int
eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
{
return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
}
static const struct rte_pci_id pci_id_hns3vf_map[] = {
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
{ .vendor_id = 0, /* sentinel */ },
};
static struct rte_pci_driver rte_hns3vf_pmd = {
.id_table = pci_id_hns3vf_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
.probe = eth_hns3vf_pci_probe,
.remove = eth_hns3vf_pci_remove,
};
RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");