numam-spdk/lib/ioat/ioat.c

738 lines
17 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "ioat_internal.h"
#include "spdk/env.h"
#include "spdk/util.h"
#include "spdk_internal/log.h"
struct ioat_driver {
pthread_mutex_t lock;
TAILQ_HEAD(, spdk_ioat_chan) attached_chans;
};
static struct ioat_driver g_ioat_driver = {
.lock = PTHREAD_MUTEX_INITIALIZER,
.attached_chans = TAILQ_HEAD_INITIALIZER(g_ioat_driver.attached_chans),
};
static uint64_t
ioat_get_chansts(struct spdk_ioat_chan *ioat)
{
return spdk_mmio_read_8(&ioat->regs->chansts);
}
static void
ioat_write_chancmp(struct spdk_ioat_chan *ioat, uint64_t addr)
{
spdk_mmio_write_8(&ioat->regs->chancmp, addr);
}
static void
ioat_write_chainaddr(struct spdk_ioat_chan *ioat, uint64_t addr)
{
spdk_mmio_write_8(&ioat->regs->chainaddr, addr);
}
static inline void
ioat_suspend(struct spdk_ioat_chan *ioat)
{
ioat->regs->chancmd = SPDK_IOAT_CHANCMD_SUSPEND;
}
static inline void
ioat_reset(struct spdk_ioat_chan *ioat)
{
ioat->regs->chancmd = SPDK_IOAT_CHANCMD_RESET;
}
static inline uint32_t
ioat_reset_pending(struct spdk_ioat_chan *ioat)
{
uint8_t cmd;
cmd = ioat->regs->chancmd;
return (cmd & SPDK_IOAT_CHANCMD_RESET) == SPDK_IOAT_CHANCMD_RESET;
}
static int
ioat_map_pci_bar(struct spdk_ioat_chan *ioat)
{
int regs_bar, rc;
void *addr;
uint64_t phys_addr, size;
regs_bar = 0;
rc = spdk_pci_device_map_bar(ioat->device, regs_bar, &addr, &phys_addr, &size);
if (rc != 0 || addr == NULL) {
SPDK_ERRLOG("pci_device_map_range failed with error code %d\n",
rc);
return -1;
}
ioat->regs = (volatile struct spdk_ioat_registers *)addr;
return 0;
}
static int
ioat_unmap_pci_bar(struct spdk_ioat_chan *ioat)
{
int rc = 0;
void *addr = (void *)ioat->regs;
if (addr) {
rc = spdk_pci_device_unmap_bar(ioat->device, 0, addr);
}
return rc;
}
static inline uint32_t
ioat_get_active(struct spdk_ioat_chan *ioat)
{
return (ioat->head - ioat->tail) & ((1 << ioat->ring_size_order) - 1);
}
static inline uint32_t
ioat_get_ring_space(struct spdk_ioat_chan *ioat)
{
return (1 << ioat->ring_size_order) - ioat_get_active(ioat) - 1;
}
static uint32_t
ioat_get_ring_index(struct spdk_ioat_chan *ioat, uint32_t index)
{
return index & ((1 << ioat->ring_size_order) - 1);
}
static void
ioat_get_ring_entry(struct spdk_ioat_chan *ioat, uint32_t index,
struct ioat_descriptor **desc,
union spdk_ioat_hw_desc **hw_desc)
{
uint32_t i = ioat_get_ring_index(ioat, index);
*desc = &ioat->ring[i];
*hw_desc = &ioat->hw_ring[i];
}
static void
ioat_submit_single(struct spdk_ioat_chan *ioat)
{
ioat->head++;
}
static void
ioat_flush(struct spdk_ioat_chan *ioat)
{
ioat->regs->dmacount = (uint16_t)ioat->head;
}
static struct ioat_descriptor *
ioat_prep_null(struct spdk_ioat_chan *ioat)
{
struct ioat_descriptor *desc;
union spdk_ioat_hw_desc *hw_desc;
if (ioat_get_ring_space(ioat) < 1) {
return NULL;
}
ioat_get_ring_entry(ioat, ioat->head, &desc, &hw_desc);
hw_desc->dma.u.control_raw = 0;
hw_desc->dma.u.control.op = SPDK_IOAT_OP_COPY;
hw_desc->dma.u.control.null = 1;
hw_desc->dma.u.control.completion_update = 1;
hw_desc->dma.size = 8;
hw_desc->dma.src_addr = 0;
hw_desc->dma.dest_addr = 0;
desc->callback_fn = NULL;
desc->callback_arg = NULL;
ioat_submit_single(ioat);
return desc;
}
static struct ioat_descriptor *
ioat_prep_copy(struct spdk_ioat_chan *ioat, uint64_t dst,
uint64_t src, uint32_t len)
{
struct ioat_descriptor *desc;
union spdk_ioat_hw_desc *hw_desc;
assert(len <= ioat->max_xfer_size);
if (ioat_get_ring_space(ioat) < 1) {
return NULL;
}
ioat_get_ring_entry(ioat, ioat->head, &desc, &hw_desc);
hw_desc->dma.u.control_raw = 0;
hw_desc->dma.u.control.op = SPDK_IOAT_OP_COPY;
hw_desc->dma.u.control.completion_update = 1;
hw_desc->dma.size = len;
hw_desc->dma.src_addr = src;
hw_desc->dma.dest_addr = dst;
desc->callback_fn = NULL;
desc->callback_arg = NULL;
ioat_submit_single(ioat);
return desc;
}
static struct ioat_descriptor *
ioat_prep_fill(struct spdk_ioat_chan *ioat, uint64_t dst,
uint64_t fill_pattern, uint32_t len)
{
struct ioat_descriptor *desc;
union spdk_ioat_hw_desc *hw_desc;
assert(len <= ioat->max_xfer_size);
if (ioat_get_ring_space(ioat) < 1) {
return NULL;
}
ioat_get_ring_entry(ioat, ioat->head, &desc, &hw_desc);
hw_desc->fill.u.control_raw = 0;
hw_desc->fill.u.control.op = SPDK_IOAT_OP_FILL;
hw_desc->fill.u.control.completion_update = 1;
hw_desc->fill.size = len;
hw_desc->fill.src_data = fill_pattern;
hw_desc->fill.dest_addr = dst;
desc->callback_fn = NULL;
desc->callback_arg = NULL;
ioat_submit_single(ioat);
return desc;
}
static int ioat_reset_hw(struct spdk_ioat_chan *ioat)
{
int timeout;
uint64_t status;
uint32_t chanerr;
int rc;
status = ioat_get_chansts(ioat);
if (is_ioat_active(status) || is_ioat_idle(status)) {
ioat_suspend(ioat);
}
timeout = 20; /* in milliseconds */
while (is_ioat_active(status) || is_ioat_idle(status)) {
spdk_delay_us(1000);
timeout--;
if (timeout == 0) {
SPDK_ERRLOG("timed out waiting for suspend\n");
return -1;
}
status = ioat_get_chansts(ioat);
}
/*
* Clear any outstanding errors.
* CHANERR is write-1-to-clear, so write the current CHANERR bits back to reset everything.
*/
chanerr = ioat->regs->chanerr;
ioat->regs->chanerr = chanerr;
if (ioat->regs->cbver < SPDK_IOAT_VER_3_3) {
rc = spdk_pci_device_cfg_read32(ioat->device, &chanerr,
SPDK_IOAT_PCI_CHANERR_INT_OFFSET);
if (rc) {
SPDK_ERRLOG("failed to read the internal channel error register\n");
return -1;
}
spdk_pci_device_cfg_write32(ioat->device, chanerr,
SPDK_IOAT_PCI_CHANERR_INT_OFFSET);
}
ioat_reset(ioat);
timeout = 20;
while (ioat_reset_pending(ioat)) {
spdk_delay_us(1000);
timeout--;
if (timeout == 0) {
SPDK_ERRLOG("timed out waiting for reset\n");
return -1;
}
}
return 0;
}
static int
ioat_process_channel_events(struct spdk_ioat_chan *ioat)
{
struct ioat_descriptor *desc;
uint64_t status, completed_descriptor, hw_desc_phys_addr;
uint32_t tail;
if (ioat->head == ioat->tail) {
return 0;
}
status = *ioat->comp_update;
completed_descriptor = status & SPDK_IOAT_CHANSTS_COMPLETED_DESCRIPTOR_MASK;
if (is_ioat_halted(status)) {
SPDK_ERRLOG("Channel halted (%x)\n", ioat->regs->chanerr);
return -1;
}
if (completed_descriptor == ioat->last_seen) {
return 0;
}
do {
tail = ioat_get_ring_index(ioat, ioat->tail);
desc = &ioat->ring[tail];
if (desc->callback_fn) {
desc->callback_fn(desc->callback_arg);
}
hw_desc_phys_addr = desc->phys_addr;
ioat->tail++;
} while (hw_desc_phys_addr != completed_descriptor);
ioat->last_seen = hw_desc_phys_addr;
return 0;
}
static int
ioat_channel_destruct(struct spdk_ioat_chan *ioat)
{
ioat_unmap_pci_bar(ioat);
if (ioat->ring) {
free(ioat->ring);
}
if (ioat->hw_ring) {
spdk_dma_free(ioat->hw_ring);
}
if (ioat->comp_update) {
spdk_dma_free((void *)ioat->comp_update);
ioat->comp_update = NULL;
}
return 0;
}
static int
ioat_channel_start(struct spdk_ioat_chan *ioat)
{
uint8_t xfercap, version;
uint64_t status;
int i, num_descriptors;
uint64_t comp_update_bus_addr = 0;
uint64_t phys_addr;
if (ioat_map_pci_bar(ioat) != 0) {
SPDK_ERRLOG("ioat_map_pci_bar() failed\n");
return -1;
}
version = ioat->regs->cbver;
if (version < SPDK_IOAT_VER_3_0) {
SPDK_ERRLOG(" unsupported IOAT version %u.%u\n",
version >> 4, version & 0xF);
return -1;
}
/* Always support DMA copy */
ioat->dma_capabilities = SPDK_IOAT_ENGINE_COPY_SUPPORTED;
if (ioat->regs->dmacapability & SPDK_IOAT_DMACAP_BFILL) {
ioat->dma_capabilities |= SPDK_IOAT_ENGINE_FILL_SUPPORTED;
}
xfercap = ioat->regs->xfercap;
/* Only bits [4:0] are valid. */
xfercap &= 0x1f;
if (xfercap == 0) {
/* 0 means 4 GB max transfer size. */
ioat->max_xfer_size = 1ULL << 32;
} else if (xfercap < 12) {
/* XFERCAP must be at least 12 (4 KB) according to the spec. */
SPDK_ERRLOG("invalid XFERCAP value %u\n", xfercap);
return -1;
} else {
ioat->max_xfer_size = 1U << xfercap;
}
ioat->comp_update = spdk_dma_zmalloc(sizeof(*ioat->comp_update), SPDK_IOAT_CHANCMP_ALIGN,
&comp_update_bus_addr);
if (ioat->comp_update == NULL) {
return -1;
}
ioat->ring_size_order = IOAT_DEFAULT_ORDER;
num_descriptors = 1 << ioat->ring_size_order;
ioat->ring = calloc(num_descriptors, sizeof(struct ioat_descriptor));
if (!ioat->ring) {
return -1;
}
ioat->hw_ring = spdk_dma_zmalloc(num_descriptors * sizeof(union spdk_ioat_hw_desc), 64,
NULL);
if (!ioat->hw_ring) {
return -1;
}
for (i = 0; i < num_descriptors; i++) {
phys_addr = spdk_vtophys(&ioat->hw_ring[i]);
if (phys_addr == SPDK_VTOPHYS_ERROR) {
SPDK_ERRLOG("Failed to translate descriptor %u to physical address\n", i);
return -1;
}
ioat->ring[i].phys_addr = phys_addr;
ioat->hw_ring[ioat_get_ring_index(ioat, i - 1)].generic.next = phys_addr;
}
ioat->head = 0;
ioat->tail = 0;
ioat->last_seen = 0;
ioat_reset_hw(ioat);
ioat->regs->chanctrl = SPDK_IOAT_CHANCTRL_ANY_ERR_ABORT_EN;
ioat_write_chancmp(ioat, comp_update_bus_addr);
ioat_write_chainaddr(ioat, ioat->ring[0].phys_addr);
ioat_prep_null(ioat);
ioat_flush(ioat);
i = 100;
while (i-- > 0) {
spdk_delay_us(100);
status = ioat_get_chansts(ioat);
if (is_ioat_idle(status)) {
break;
}
}
if (is_ioat_idle(status)) {
ioat_process_channel_events(ioat);
} else {
SPDK_ERRLOG("could not start channel: status = %p\n error = %#x\n",
(void *)status, ioat->regs->chanerr);
return -1;
}
return 0;
}
/* Caller must hold g_ioat_driver.lock */
static struct spdk_ioat_chan *
ioat_attach(struct spdk_pci_device *device)
{
struct spdk_ioat_chan *ioat;
uint32_t cmd_reg;
ioat = calloc(1, sizeof(struct spdk_ioat_chan));
if (ioat == NULL) {
return NULL;
}
/* Enable PCI busmaster. */
spdk_pci_device_cfg_read32(device, &cmd_reg, 4);
cmd_reg |= 0x4;
spdk_pci_device_cfg_write32(device, cmd_reg, 4);
ioat->device = device;
if (ioat_channel_start(ioat) != 0) {
ioat_channel_destruct(ioat);
free(ioat);
return NULL;
}
return ioat;
}
struct ioat_enum_ctx {
spdk_ioat_probe_cb probe_cb;
spdk_ioat_attach_cb attach_cb;
void *cb_ctx;
};
/* This function must only be called while holding g_ioat_driver.lock */
static int
ioat_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
struct ioat_enum_ctx *enum_ctx = ctx;
struct spdk_ioat_chan *ioat;
/* Verify that this device is not already attached */
TAILQ_FOREACH(ioat, &g_ioat_driver.attached_chans, tailq) {
/*
* NOTE: This assumes that the PCI abstraction layer will use the same device handle
* across enumerations; we could compare by BDF instead if this is not true.
*/
if (pci_dev == ioat->device) {
return 0;
}
}
if (enum_ctx->probe_cb(enum_ctx->cb_ctx, pci_dev)) {
/*
* Since I/OAT init is relatively quick, just perform the full init during probing.
* If this turns out to be a bottleneck later, this can be changed to work like
* NVMe with a list of devices to initialize in parallel.
*/
ioat = ioat_attach(pci_dev);
if (ioat == NULL) {
SPDK_ERRLOG("ioat_attach() failed\n");
return -1;
}
TAILQ_INSERT_TAIL(&g_ioat_driver.attached_chans, ioat, tailq);
enum_ctx->attach_cb(enum_ctx->cb_ctx, pci_dev, ioat);
}
return 0;
}
int
spdk_ioat_probe(void *cb_ctx, spdk_ioat_probe_cb probe_cb, spdk_ioat_attach_cb attach_cb)
{
int rc;
struct ioat_enum_ctx enum_ctx;
pthread_mutex_lock(&g_ioat_driver.lock);
enum_ctx.probe_cb = probe_cb;
enum_ctx.attach_cb = attach_cb;
enum_ctx.cb_ctx = cb_ctx;
rc = spdk_pci_ioat_enumerate(ioat_enum_cb, &enum_ctx);
pthread_mutex_unlock(&g_ioat_driver.lock);
return rc;
}
int
spdk_ioat_detach(struct spdk_ioat_chan *ioat)
{
struct ioat_driver *driver = &g_ioat_driver;
/* ioat should be in the free list (not registered to a thread)
* when calling ioat_detach().
*/
pthread_mutex_lock(&driver->lock);
TAILQ_REMOVE(&driver->attached_chans, ioat, tailq);
pthread_mutex_unlock(&driver->lock);
ioat_channel_destruct(ioat);
free(ioat);
return 0;
}
#define _2MB_PAGE(ptr) ((ptr) & ~(0x200000 - 1))
#define _2MB_OFFSET(ptr) ((ptr) & (0x200000 - 1))
int
spdk_ioat_submit_copy(struct spdk_ioat_chan *ioat, void *cb_arg, spdk_ioat_req_cb cb_fn,
void *dst, const void *src, uint64_t nbytes)
{
struct ioat_descriptor *last_desc;
uint64_t remaining, op_size;
uint64_t vdst, vsrc;
uint64_t vdst_page, vsrc_page;
uint64_t pdst_page, psrc_page;
uint32_t orig_head;
if (!ioat) {
return -EINVAL;
}
orig_head = ioat->head;
vdst = (uint64_t)dst;
vsrc = (uint64_t)src;
vdst_page = vsrc_page = 0;
pdst_page = psrc_page = SPDK_VTOPHYS_ERROR;
remaining = nbytes;
while (remaining) {
if (_2MB_PAGE(vsrc) != vsrc_page) {
vsrc_page = _2MB_PAGE(vsrc);
psrc_page = spdk_vtophys((void *)vsrc_page);
}
if (_2MB_PAGE(vdst) != vdst_page) {
vdst_page = _2MB_PAGE(vdst);
pdst_page = spdk_vtophys((void *)vdst_page);
}
op_size = remaining;
op_size = spdk_min(op_size, (0x200000 - _2MB_OFFSET(vsrc)));
op_size = spdk_min(op_size, (0x200000 - _2MB_OFFSET(vdst)));
op_size = spdk_min(op_size, ioat->max_xfer_size);
remaining -= op_size;
last_desc = ioat_prep_copy(ioat,
pdst_page + _2MB_OFFSET(vdst),
psrc_page + _2MB_OFFSET(vsrc),
op_size);
if (remaining == 0 || last_desc == NULL) {
break;
}
vsrc += op_size;
vdst += op_size;
}
/* Issue null descriptor for null transfer */
if (nbytes == 0) {
last_desc = ioat_prep_null(ioat);
}
if (last_desc) {
last_desc->callback_fn = cb_fn;
last_desc->callback_arg = cb_arg;
} else {
/*
* Ran out of descriptors in the ring - reset head to leave things as they were
* in case we managed to fill out any descriptors.
*/
ioat->head = orig_head;
return -ENOMEM;
}
ioat_flush(ioat);
return 0;
}
int
spdk_ioat_submit_fill(struct spdk_ioat_chan *ioat, void *cb_arg, spdk_ioat_req_cb cb_fn,
void *dst, uint64_t fill_pattern, uint64_t nbytes)
{
struct ioat_descriptor *last_desc = NULL;
uint64_t remaining, op_size;
uint64_t vdst;
uint32_t orig_head;
if (!ioat) {
return -EINVAL;
}
if (!(ioat->dma_capabilities & SPDK_IOAT_ENGINE_FILL_SUPPORTED)) {
SPDK_ERRLOG("Channel does not support memory fill\n");
return -1;
}
orig_head = ioat->head;
vdst = (uint64_t)dst;
remaining = nbytes;
while (remaining) {
op_size = remaining;
op_size = spdk_min(op_size, (0x200000 - _2MB_OFFSET(vdst)));
op_size = spdk_min(op_size, ioat->max_xfer_size);
remaining -= op_size;
last_desc = ioat_prep_fill(ioat,
spdk_vtophys((void *)vdst),
fill_pattern,
op_size);
if (remaining == 0 || last_desc == NULL) {
break;
}
vdst += op_size;
}
if (last_desc) {
last_desc->callback_fn = cb_fn;
last_desc->callback_arg = cb_arg;
} else {
/*
* Ran out of descriptors in the ring - reset head to leave things as they were
* in case we managed to fill out any descriptors.
*/
ioat->head = orig_head;
return -ENOMEM;
}
ioat_flush(ioat);
return 0;
}
uint32_t
spdk_ioat_get_dma_capabilities(struct spdk_ioat_chan *ioat)
{
if (!ioat) {
return 0;
}
return ioat->dma_capabilities;
}
int
spdk_ioat_process_events(struct spdk_ioat_chan *ioat)
{
return ioat_process_channel_events(ioat);
}
SPDK_LOG_REGISTER_COMPONENT("ioat", SPDK_LOG_IOAT)