numam-spdk/lib/env_dpdk/memory.c

714 lines
19 KiB
C
Raw Normal View History

/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "spdk/stdinc.h"
#include "env_internal.h"
#include <rte_config.h>
#include <rte_eal_memconfig.h>
#include "spdk_internal/assert.h"
#include "spdk/assert.h"
#include "spdk/likely.h"
#include "spdk/queue.h"
#include "spdk/util.h"
#if DEBUG
#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#else
#define DEBUG_PRINT(...)
#endif
#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB))
#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB))
#define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB))
#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1))
#define _2MB_OFFSET(ptr) (((uintptr_t)(ptr)) & (VALUE_2MB - 1))
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
/* Page is registered */
#define REG_MAP_REGISTERED (1ULL << 62)
/* A notification region barrier. The 2MB translation entry that's marked
* with this flag must be unregistered separately. This allows contiguous
* regions to be unregistered in the same chunks they were registered.
*/
#define REG_MAP_NOTIFY_START (1ULL << 63)
/* Translation of a single 2MB page. */
struct map_2mb {
uint64_t translation_2mb;
};
/* Second-level map table indexed by bits [21..29] of the virtual address.
* Each entry contains the address translation or error for entries that haven't
* been retrieved yet.
*/
struct map_1gb {
struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)];
};
/* Top-level map table indexed by bits [30..47] of the virtual address.
* Each entry points to a second-level map table or NULL.
*/
struct map_256tb {
struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)];
};
/* Page-granularity memory address translation */
struct spdk_mem_map {
struct map_256tb map_256tb;
pthread_mutex_t mutex;
uint64_t default_translation;
struct spdk_mem_map_ops ops;
void *cb_ctx;
TAILQ_ENTRY(spdk_mem_map) tailq;
};
/* Registrations map. The 64 bit translations are bit fields with the
* following layout (starting with the low bits):
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
* 0 - 61 : reserved
* 62 - 63 : flags
*/
static struct spdk_mem_map *g_mem_reg_map;
static TAILQ_HEAD(, spdk_mem_map) g_spdk_mem_maps = TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps);
static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER;
/*
* Walk the currently registered memory via the main memory registration map
* and call the new map's notify callback for each virtually contiguous region.
*/
static int
spdk_mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action)
{
size_t idx_256tb;
uint64_t idx_1gb;
uint64_t contig_start = UINT64_MAX;
uint64_t contig_end = UINT64_MAX;
struct map_1gb *map_1gb;
int rc;
if (!g_mem_reg_map) {
return -EINVAL;
}
/* Hold the memory registration map mutex so no new registrations can be added while we are looping. */
pthread_mutex_lock(&g_mem_reg_map->mutex);
for (idx_256tb = 0;
idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]);
idx_256tb++) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
}
contig_start = UINT64_MAX;
continue;
}
for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) {
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_start == UINT64_MAX ||
(map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_start == UINT64_MAX) {
contig_start = vaddr;
}
contig_end = vaddr;
} else {
if (contig_start != UINT64_MAX) {
/* End of of a virtually contiguous range */
rc = map->ops.notify_cb(map->cb_ctx, map, action,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
/* Don't bother handling unregister failures. It can't be any worse */
if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) {
goto err_unregister;
}
/* This page might be a part of a neighbour region, so process
* it again. The idx_1gb will be incremented immediately.
*/
idx_1gb--;
}
contig_start = UINT64_MAX;
}
}
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return 0;
err_unregister:
/* Unwind to the first empty translation so we don't unregister
* a region that just failed to register.
*/
idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1);
idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1);
contig_start = UINT64_MAX;
contig_end = UINT64_MAX;
/* Unregister any memory we managed to register before the failure */
for (; idx_256tb < SIZE_MAX; idx_256tb--) {
map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb];
if (!map_1gb) {
if (contig_end != UINT64_MAX) {
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
}
contig_end = UINT64_MAX;
continue;
}
for (; idx_1gb < UINT64_MAX; idx_1gb--) {
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) &&
(contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) {
/* Rebuild the virtual address from the indexes */
uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB);
if (contig_end == UINT64_MAX) {
contig_end = vaddr;
}
contig_start = vaddr;
} else {
if (contig_end != UINT64_MAX) {
/* End of of a virtually contiguous range */
map->ops.notify_cb(map->cb_ctx, map,
SPDK_MEM_MAP_NOTIFY_UNREGISTER,
(void *)contig_start,
contig_end - contig_start + VALUE_2MB);
idx_1gb++;
}
contig_end = UINT64_MAX;
}
}
idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1;
}
pthread_mutex_unlock(&g_mem_reg_map->mutex);
return rc;
}
struct spdk_mem_map *
spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx)
{
struct spdk_mem_map *map;
int rc;
map = calloc(1, sizeof(*map));
if (map == NULL) {
return NULL;
}
if (pthread_mutex_init(&map->mutex, NULL)) {
free(map);
return NULL;
}
map->default_translation = default_translation;
map->cb_ctx = cb_ctx;
if (ops) {
map->ops = *ops;
}
if (ops && ops->notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
rc = spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
DEBUG_PRINT("Initial mem_map notify failed\n");
pthread_mutex_destroy(&map->mutex);
free(map);
return NULL;
}
TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
return map;
}
void
spdk_mem_map_free(struct spdk_mem_map **pmap)
{
struct spdk_mem_map *map;
size_t i;
if (!pmap) {
return;
}
map = *pmap;
if (!map) {
return;
}
if (map->ops.notify_cb) {
pthread_mutex_lock(&g_spdk_mem_map_mutex);
spdk_mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER);
TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq);
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
}
for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) {
free(map->map_256tb.map[i]);
}
pthread_mutex_destroy(&map->mutex);
free(map);
*pmap = NULL;
}
int
spdk_mem_register(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
uint64_t reg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
if (len == 0) {
return 0;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
if (reg & REG_MAP_REGISTERED) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EBUSY;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB,
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED);
seg_len += VALUE_2MB;
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
int
spdk_mem_unregister(void *vaddr, size_t len)
{
struct spdk_mem_map *map;
int rc;
void *seg_vaddr;
size_t seg_len;
uint64_t reg, newreg;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr);
return -EINVAL;
}
if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n",
__func__, vaddr, len);
return -EINVAL;
}
pthread_mutex_lock(&g_spdk_mem_map_mutex);
/* The first page must be a start of a region. Also check if it's
* registered to make sure we don't return -ERANGE for non-registered
* regions.
*/
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = len;
while (seg_len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
if ((reg & REG_MAP_REGISTERED) == 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -EINVAL;
}
seg_vaddr += VALUE_2MB;
seg_len -= VALUE_2MB;
}
newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL);
/* If the next page is registered, it must be a start of a region as well,
* otherwise we'd be unregistering only a part of a region.
*/
if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return -ERANGE;
}
seg_vaddr = vaddr;
seg_len = 0;
while (len > 0) {
reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL);
memory: forbid registering a memory region more than once Removed the reference count from the registrations map. Although technically supported, registering a single memory region more than once had a lot of unhandled cases and could easily lead to a segfault. RDMA maps require all memory to be unregistered in the same chunks the memory was registered, which is often impossible to achieve if a region was registered more than once: 1. register region 0x0 - 0x3 -> it gets mapped to a single ibv_mr 2. register region 0x1 - 0x2 -> nothing happens, this region is already registered 3. unregister region 0x0 - 0x3 -> 0x0-0x1 gets unregistered as one region. 0x2-0x3 gets unregistered as another (leading to segfault in the the current RDMA implementation) The problem is that the last two regions share the same ibv_mr, which SPDK tries to free twice. The second free causes a segfault. vtophys map handles this case by registering each 2MB chunk separately, but this solution cannot be applied for RDMA, as NICs put a limitation (~2048) on the number of regions registered. Another option is to keep a refcount of each ibv_mr allocated, and free it only when the entire region was unregistered from the SPDK mem map. This is however very tricky and RDMAmojo mentions that freeing a memory buffer before unregistering its ibv_mr may lead to a segfault. Change-Id: I545c56e24ffa55bda211dea22aeb8a55d9631fe5 Signed-off-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com> Reviewed-on: https://review.gerrithub.io/426085 Tested-by: SPDK CI Jenkins <sys_sgci@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Jim Harris <james.r.harris@intel.com> Chandler-Test-Pool: SPDK Automated Test System <sys_sgsw@intel.com>
2018-09-19 11:36:22 +00:00
spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0);
if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
seg_vaddr = vaddr;
seg_len = VALUE_2MB;
} else {
seg_len += VALUE_2MB;
}
vaddr += VALUE_2MB;
len -= VALUE_2MB;
}
if (seg_len > 0) {
TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) {
rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len);
if (rc != 0) {
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return rc;
}
}
}
pthread_mutex_unlock(&g_spdk_mem_map_mutex);
return 0;
}
static struct map_1gb *
spdk_mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb)
{
struct map_1gb *map_1gb;
uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb);
size_t i;
if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) {
return NULL;
}
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
pthread_mutex_lock(&map->mutex);
/* Recheck to make sure nobody else got the mutex first. */
map_1gb = map->map_256tb.map[idx_256tb];
if (!map_1gb) {
map_1gb = malloc(sizeof(struct map_1gb));
if (map_1gb) {
/* initialize all entries to default translation */
for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) {
map_1gb->map[i].translation_2mb = map->default_translation;
}
map->map_256tb.map[idx_256tb] = map_1gb;
}
}
pthread_mutex_unlock(&map->mutex);
if (!map_1gb) {
DEBUG_PRINT("allocation failed\n");
return NULL;
}
}
return map_1gb;
}
int
spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size,
uint64_t translation)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
/* For now, only 2 MB-aligned registrations are supported */
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
map_2mb->translation_2mb = translation;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
int
spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size)
{
uint64_t vfn_2mb;
struct map_1gb *map_1gb;
uint64_t idx_1gb;
struct map_2mb *map_2mb;
if ((uintptr_t)vaddr & ~MASK_256TB) {
DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr);
return -EINVAL;
}
/* For now, only 2 MB-aligned registrations are supported */
if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) {
DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n",
__func__, vaddr, size);
return -EINVAL;
}
vfn_2mb = vaddr >> SHIFT_2MB;
while (size) {
map_1gb = spdk_mem_map_get_map_1gb(map, vfn_2mb);
if (!map_1gb) {
DEBUG_PRINT("could not get %p map\n", (void *)vaddr);
return -ENOMEM;
}
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_2mb = &map_1gb->map[idx_1gb];
map_2mb->translation_2mb = map->default_translation;
size -= VALUE_2MB;
vfn_2mb++;
}
return 0;
}
uint64_t
spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size)
{
const struct map_1gb *map_1gb;
const struct map_2mb *map_2mb;
uint64_t idx_256tb;
uint64_t idx_1gb;
uint64_t vfn_2mb;
uint64_t cur_size;
uint64_t prev_translation;
uint64_t orig_translation;
if (spdk_unlikely(vaddr & ~MASK_256TB)) {
DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr);
return map->default_translation;
}
vfn_2mb = vaddr >> SHIFT_2MB;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
return map->default_translation;
}
cur_size = VALUE_2MB - _2MB_OFFSET(vaddr);
map_2mb = &map_1gb->map[idx_1gb];
if (size == NULL || map->ops.are_contiguous == NULL ||
map_2mb->translation_2mb == map->default_translation) {
if (size != NULL) {
*size = spdk_min(*size, cur_size);
}
return map_2mb->translation_2mb;
}
orig_translation = map_2mb->translation_2mb;
prev_translation = orig_translation;
while (cur_size < *size) {
vfn_2mb++;
idx_256tb = MAP_256TB_IDX(vfn_2mb);
idx_1gb = MAP_1GB_IDX(vfn_2mb);
map_1gb = map->map_256tb.map[idx_256tb];
if (spdk_unlikely(!map_1gb)) {
break;
}
map_2mb = &map_1gb->map[idx_1gb];
if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) {
break;
}
cur_size += VALUE_2MB;
prev_translation = map_2mb->translation_2mb;
}
*size = spdk_min(*size, cur_size);
return orig_translation;
}
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
static void
memory_hotplug_cb(enum rte_mem_event event_type,
const void *addr, size_t len, void *arg)
{
if (event_type == RTE_MEM_EVENT_ALLOC) {
spdk_mem_register((void *)addr, len);
/* Now mark each segment so that DPDK won't later free it.
* This ensures we don't have to deal with the memory
* getting freed in different units than it was allocated.
*/
while (len > 0) {
struct rte_memseg *seg;
seg = rte_mem_virt2memseg(addr, NULL);
assert(seg != NULL);
seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
addr = (void *)((uintptr_t)addr + seg->hugepage_sz);
len -= seg->hugepage_sz;
}
} else if (event_type == RTE_MEM_EVENT_FREE) {
spdk_mem_unregister((void *)addr, len);
}
}
static int
memory_iter_cb(const struct rte_memseg_list *msl,
const struct rte_memseg *ms, size_t len, void *arg)
{
return spdk_mem_register(ms->addr, len);
}
#endif
int
spdk_mem_map_init(void)
{
g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL);
if (g_mem_reg_map == NULL) {
DEBUG_PRINT("memory registration map allocation failed\n");
return -1;
}
/*
* Walk all DPDK memory segments and register them
* with the master memory map
*/
#if RTE_VERSION >= RTE_VERSION_NUM(18, 05, 0, 0)
rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL);
rte_memseg_contig_walk(memory_iter_cb, NULL);
#else
struct rte_mem_config *mcfg;
size_t seg_idx;
mcfg = rte_eal_get_configuration()->mem_config;
for (seg_idx = 0; seg_idx < RTE_MAX_MEMSEG; seg_idx++) {
struct rte_memseg *seg = &mcfg->memseg[seg_idx];
if (seg->addr == NULL) {
break;
}
spdk_mem_register(seg->addr, seg->len);
}
#endif
return 0;
}