Use the final official spec name rather than a non-standard abbreviation. Change-Id: I4d797294be35b2fbf7b39570ea3246eb71c8d8ce Signed-off-by: Daniel Verkamp <daniel.verkamp@intel.com>
6.1 KiB
Changelog
v16.08: iSCSI target, NVMe over Fabrics maturity
This release adds a userspace iSCSI target. The iSCSI target is capable of exporting NVMe devices over a network using the iSCSI protocol. The application is located in app/iscsi_tgt and a documented configuration file can be found at etc/spdk/spdk.conf.in.
This release also significantly improves the existing NVMe over Fabrics target.
- The configuration file format was changed, which will require updates to
any existing nvmf.conf files (see
etc/spdk/nvmf.conf.in
):SubsystemGroup
was renamed toSubsystem
.AuthFile
was removed (it was unimplemented).nvmf_tgt
was updated to correctly recognize NQN (NVMe Qualified Names) when naming subsystems. The default node name was changed to reflect this; it is now "nqn.2016-06.io.spdk".Port
andHost
sections were merged into theSubsystem
section- Global options to control max queue depth, number of queues, max I/O size, and max in-capsule data size were added.
- The Nvme section was removed. Now a list of devices is specified by bus/device/function directly in the Subsystem section.
- Subsystems now have a Mode, which can be Direct or Virtual. This is an attempt to future-proof the interface, so the only mode supported by this release is "Direct".
- Many bug fixes and cleanups were applied to the
nvmf_tgt
app and library. - The target now supports discovery.
This release also adds one new feature and provides some better examples and tools for the NVMe driver.
- The Weighted Round Robin arbitration method is now supported. This allows
the user to specify different priorities on a per-I/O-queue basis. To
enable WRR, set the
arb_mechanism
field duringspdk_nvme_probe()
. - A simplified "Hello World" example was added to show the proper way to use
the NVMe library API; see
examples/nvme/hello_world/hello_world.c
. - A test for measuring software overhead was added. See
test/lib/nvme/overhead
.
v16.06: NVMf userspace target
This release adds a userspace NVMf (NVMe over Fabrics) target, conforming to the newly-released NVMf 1.0/NVMe 1.2.1 specification. The NVMf target exports NVMe devices from a host machine over the network via RDMA. Currently, the target is limited to directly exporting physical NVMe devices, and the discovery subsystem is not supported.
This release includes a general API cleanup, including renaming all declarations
in public headers to include a spdk
prefix to prevent namespace clashes with
user code.
- NVMe
- The
nvme_attach()
API was reworked into a new probe/attach model, which moves device detection into the NVMe library. The new API also allows parallel initialization of NVMe controllers, providing a major reduction in startup time when using multiple controllers. - I/O queue allocation was changed to be explicit in the API. Each function
that generates I/O requests now takes a queue pair (
spdk_nvme_qpair *
) argument, and I/O queues may be allocated usingspdk_nvme_ctrlr_alloc_io_qpair()
. This allows more flexible assignment of queue pairs than the previous model, which only allowed a single queue per thread and limited the total number of I/O queues to the lowest number supported on any attached controller. - Added support for the Write Zeroes command.
examples/nvme/perf
can now report I/O command latency from the the controller's viewpoint using the Intel vendor-specific read/write latency log page.- Added namespace reservation command support, which can be used to coordinate sharing of a namespace between multiple hosts.
- Added hardware SGL support, which enables use of scattered buffers that don't conform to the PRP list alignment and length requirements on supported NVMe controllers.
- Added end-to-end data protection support, including the ability to write and
read metadata in extended LBA (metadata appended to each block of data in the
buffer) and separate metadata buffer modes.
See
spdk_nvme_ns_cmd_write_with_md()
andspdk_nvme_ns_cmd_read_with_md()
for details.
- The
- IOAT
- The DMA block fill feature is now exposed via the
ioat_submit_fill()
function. This is functionally similar tomemset()
, except the memory is filled with an 8-byte repeating pattern instead of a single byte like memset.
- The DMA block fill feature is now exposed via the
- PCI
- Added support for using DPDK for PCI device mapping in addition to the existing libpciaccess option. Using the DPDK PCI support also allows use of the Linux VFIO driver model, which means that SPDK userspace drivers will work with the IOMMU enabled. Additionally, SPDK applications may be run as an unprivileged user with access restricted to a specific set of PCIe devices.
- The PCI library API was made more generic to abstract away differences between the underlying PCI access implementations.
v1.2.0: IOAT user-space driver
This release adds a user-space driver with support for the Intel I/O Acceleration Technology (I/OAT, also known as "Crystal Beach") DMA offload engine.
- IOAT
- New user-space driver supporting DMA memory copy offload
- Example programs
ioat/perf
andioat/verify
- Kernel-mode DMA engine test driver
kperf
for performance comparison
- NVMe
- Per-I/O flags for Force Unit Access (FUA) and Limited Retry
- Public API for retrieving log pages
- Reservation register/acquire/release/report command support
- Scattered payload support - an alternate API to provide I/O buffers via a sequence of callbacks
- Declarations and
nvme/identify
support for Intel SSD DC P3700 series vendor-specific log pages and features
- Updated to support DPDK 2.2.0
v1.0.0: NVMe user-space driver
This is the initial open source release of the Storage Performance Development Kit (SPDK).
Features:
- NVMe user-space driver
- NVMe example programs
examples/nvme/perf
tests performance (IOPS) using the NVMe user-space driverexamples/nvme/identify
displays NVMe controller information in a human-readable format
- Linux and FreeBSD support