numam-spdk/doc/bdev.md
Jim Harris 6ee44c694e rpc: rename RPC get_rpc_methods to rpc_get_methods
Make the old name a deprecated alias.

Signed-off-by: Jim Harris <james.r.harris@intel.com>
Change-Id: Ibbf50676e0d989b67121e465fc140f94faec46ed

Reviewed-on: https://review.gerrithub.io/c/spdk/spdk/+/453033
Tested-by: SPDK CI Jenkins <sys_sgci@intel.com>
Reviewed-by: Darek Stojaczyk <dariusz.stojaczyk@intel.com>
Reviewed-by: Shuhei Matsumoto <shuhei.matsumoto.xt@hitachi.com>
Reviewed-by: Ben Walker <benjamin.walker@intel.com>
2019-05-27 12:52:53 +00:00

18 KiB

Block Device User Guide

Introduction

The SPDK block device layer, often simply called bdev, is a C library intended to be equivalent to the operating system block storage layer that often sits immediately above the device drivers in a traditional kernel storage stack. Specifically, this library provides the following functionality:

  • A pluggable module API for implementing block devices that interface with different types of block storage devices.
  • Driver modules for NVMe, malloc (ramdisk), Linux AIO, virtio-scsi, Ceph RBD, Pmem and Vhost-SCSI Initiator and more.
  • An application API for enumerating and claiming SPDK block devices and then performing operations (read, write, unmap, etc.) on those devices.
  • Facilities to stack block devices to create complex I/O pipelines, including logical volume management (lvol) and partition support (GPT).
  • Configuration of block devices via JSON-RPC.
  • Request queueing, timeout, and reset handling.
  • Multiple, lockless queues for sending I/O to block devices.

Bdev module creates abstraction layer that provides common API for all devices. User can use available bdev modules or create own module with any type of device underneath (please refer to @ref bdev_module for details). SPDK provides also vbdev modules which creates block devices on existing bdev. For example @ref bdev_ug_logical_volumes or @ref bdev_ug_gpt

Prerequisites

This guide assumes that you can already build the standard SPDK distribution on your platform. The block device layer is a C library with a single public header file named bdev.h. All SPDK configuration described in following chapters is done by using JSON-RPC commands. SPDK provides a python-based command line tool for sending RPC commands located at scripts/rpc.py. User can list available commands by running this script with -h or --help flag. Additionally user can retrieve currently supported set of RPC commands directly from SPDK application by running scripts/rpc.py rpc_get_methods. Detailed help for each command can be displayed by adding -h flag as a command parameter.

General Purpose RPCs

get_bdevs

List of currently available block devices including detailed information about them can be get by using get_bdevs RPC command. User can add optional parameter name to get details about specified by that name bdev.

Example response

{
  "num_blocks": 32768,
  "assigned_rate_limits": {
    "rw_ios_per_sec": 10000,
    "rw_mbytes_per_sec": 20
  },
  "supported_io_types": {
    "reset": true,
    "nvme_admin": false,
    "unmap": true,
    "read": true,
    "write_zeroes": true,
    "write": true,
    "flush": true,
    "nvme_io": false
  },
  "driver_specific": {},
  "claimed": false,
  "block_size": 4096,
  "product_name": "Malloc disk",
  "name": "Malloc0"
}

set_bdev_qos_limit

Users can use the set_bdev_qos_limit RPC command to enable, adjust, and disable rate limits on an existing bdev. Two types of rate limits are supported: IOPS and bandwidth. The rate limits can be enabled, adjusted, and disabled at any time for the specified bdev. The bdev name is a required parameter for this RPC command and at least one of rw_ios_per_sec and rw_mbytes_per_sec must be specified. When both rate limits are enabled, the first met limit will take effect. The value 0 may be specified to disable the corresponding rate limit. Users can run this command with -h or --help for more information.

Histograms

The enable_bdev_histogram RPC command allows to enable or disable gathering latency data for specified bdev. Histogram can be downloaded by the user by calling get_bdev_histogram and parsed using scripts/histogram.py script.

Example command

rpc.py enable_bdev_histogram Nvme0n1 --enable

The command will enable gathering data for histogram on Nvme0n1 device.

rpc.py get_bdev_histogram Nvme0n1 | histogram.py

The command will download gathered histogram data. The script will parse the data and show table containing IO count for latency ranges.

rpc.py enable_bdev_histogram Nvme0n1 --disable

The command will disable histogram on Nvme0n1 device.

Ceph RBD

The SPDK RBD bdev driver provides SPDK block layer access to Ceph RADOS block devices (RBD). Ceph RBD devices are accessed via librbd and librados libraries to access the RADOS block device exported by Ceph. To create Ceph bdev RPC command construct_rbd_bdev should be used.

Example command

rpc.py construct_rbd_bdev rbd foo 512

This command will create a bdev that represents the 'foo' image from a pool called 'rbd'.

To remove a block device representation use the delete_rbd_bdev command.

rpc.py delete_rbd_bdev Rbd0

Crypto Virtual Bdev Module

The crypto virtual bdev module can be configured to provide at rest data encryption for any underlying bdev. The module relies on the DPDK CryptoDev Framework to provide all cryptographic functionality. The framework provides support for many different software only cryptographic modules as well hardware assisted support for the Intel QAT board. The framework also provides support for cipher, hash, authentication and AEAD functions. At this time the SPDK virtual bdev module supports cipher only as follows:

  • AESN-NI Multi Buffer Crypto Poll Mode Driver: RTE_CRYPTO_CIPHER_AES128_CBC
  • Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver: RTE_CRYPTO_CIPHER_AES128_CBC (Note: QAT is functional however is marked as experimental until the hardware has been fully integrated with the SPDK CI system.)

In order to support using the bdev block offset (LBA) as the initialization vector (IV), the crypto module break up all I/O into crypto operations of a size equal to the block size of the underlying bdev. For example, a 4K I/O to a bdev with a 512B block size, would result in 8 cryptographic operations.

For reads, the buffer provided to the crypto module will be used as the destination buffer for unencrypted data. For writes, however, a temporary scratch buffer is used as the destination buffer for encryption which is then passed on to the underlying bdev as the write buffer. This is done to avoid encrypting the data in the original source buffer which may cause problems in some use cases.

Example command

rpc.py construct_crypto_bdev -b NVMe1n1 -c CryNvmeA -d crypto_aesni_mb -k 0123456789123456

This command will create a crypto vbdev called 'CryNvmeA' on top of the NVMe bdev 'NVMe1n1' and will use the DPDK software driver 'crypto_aesni_mb' and the key '0123456789123456'.

To remove the vbdev use the delete_crypto_bdev command.

rpc.py delete_crypto_bdev CryNvmeA

GPT (GUID Partition Table)

The GPT virtual bdev driver is enabled by default and does not require any configuration. It will automatically detect @ref bdev_ug_gpt on any attached bdev and will create possibly multiple virtual bdevs.

SPDK GPT partition table

The SPDK partition type GUID is 7c5222bd-8f5d-4087-9c00-bf9843c7b58c. Existing SPDK bdevs can be exposed as Linux block devices via NBD and then ca be partitioned with standard partitioning tools. After partitioning, the bdevs will need to be deleted and attached again for the GPT bdev module to see any changes. NBD kernel module must be loaded first. To create NBD bdev user should use start_nbd_disk RPC command.

Example command

rpc.py start_nbd_disk Malloc0 /dev/nbd0

This will expose an SPDK bdev Malloc0 under the /dev/nbd0 block device.

To remove NBD device user should use stop_nbd_disk RPC command.

Example command

rpc.py stop_nbd_disk /dev/nbd0

To display full or specified nbd device list user should use get_nbd_disks RPC command.

Example command

rpc.py stop_nbd_disk -n /dev/nbd0

Creating a GPT partition table using NBD

# Expose bdev Nvme0n1 as kernel block device /dev/nbd0 by JSON-RPC
rpc.py start_nbd_disk Nvme0n1 /dev/nbd0

# Create GPT partition table.
parted -s /dev/nbd0 mklabel gpt

# Add a partition consuming 50% of the available space.
parted -s /dev/nbd0 mkpart MyPartition '0%' '50%'

# Change the partition type to the SPDK GUID.
# sgdisk is part of the gdisk package.
sgdisk -t 1:7c5222bd-8f5d-4087-9c00-bf9843c7b58c /dev/nbd0

# Stop the NBD device (stop exporting /dev/nbd0).
rpc.py stop_nbd_disk /dev/nbd0

# Now Nvme0n1 is configured with a GPT partition table, and
# the first partition will be automatically exposed as
# Nvme0n1p1 in SPDK applications.

iSCSI bdev

The SPDK iSCSI bdev driver depends on libiscsi and hence is not enabled by default. In order to use it, build SPDK with an extra --with-iscsi-initiator configure option.

The following command creates an iSCSI0 bdev from a single LUN exposed at given iSCSI URL with iqn.2016-06.io.spdk:init as the reported initiator IQN.

rpc.py construct_iscsi_bdev -b iSCSI0 -i iqn.2016-06.io.spdk:init --url iscsi://127.0.0.1/iqn.2016-06.io.spdk:disk1/0

The URL is in the following format: iscsi://[<username>[%<password>]@]<host>[:<port>]/<target-iqn>/<lun>

Linux AIO bdev

The SPDK AIO bdev driver provides SPDK block layer access to Linux kernel block devices or a file on a Linux filesystem via Linux AIO. Note that O_DIRECT is used and thus bypasses the Linux page cache. This mode is probably as close to a typical kernel based target as a user space target can get without using a user-space driver. To create AIO bdev RPC command construct_aio_bdev should be used.

Example commands

rpc.py construct_aio_bdev /dev/sda aio0

This command will create aio0 device from /dev/sda.

rpc.py construct_aio_bdev /tmp/file file 8192

This command will create file device with block size 8192 from /tmp/file.

To delete an aio bdev use the delete_aio_bdev command.

rpc.py delete_aio_bdev aio0

OCF Virtual bdev

OCF virtual bdev module is based on Open CAS Framework - a high performance block storage caching meta-library. To enable the module, configure SPDK using --with-ocf flag. OCF bdev can be used to enable caching for any underlying bdev.

Below is an example command for creating OCF bdev:

rpc.py construct_ocf_bdev Cache1 wt Malloc0 Nvme0n1

This command will create new OCF bdev Cache1 having bdev Malloc0 as caching-device and Nvme0n1 as core-device and initial cache mode Write-Through. Malloc0 will be used as cache for Nvme0n1, so data written to Cache1 will be present on Nvme0n1 eventually. By default, OCF will be configured with cache line size equal 4KiB and non-volatile metadata will be disabled.

To remove Cache1:

rpc.py delete_ocf_bdev Cache1

During removal OCF-cache will be stopped and all cached data will be written to the core device.

Note that OCF has a per-device RAM requirement of about 56000 + cache device size * 58 / cache line size (in bytes). To get more information on OCF please visit OCF documentation.

Malloc bdev

Malloc bdevs are ramdisks. Because of its nature they are volatile. They are created from hugepage memory given to SPDK application.

Null

The SPDK null bdev driver is a dummy block I/O target that discards all writes and returns undefined data for reads. It is useful for benchmarking the rest of the bdev I/O stack with minimal block device overhead and for testing configurations that can't easily be created with the Malloc bdev. To create Null bdev RPC command construct_null_bdev should be used.

Example command

rpc.py construct_null_bdev Null0 8589934592 4096

This command will create an 8 petabyte Null0 device with block size 4096.

To delete a null bdev use the delete_null_bdev command.

rpc.py delete_null_bdev Null0

NVMe bdev

There are two ways to create block device based on NVMe device in SPDK. First way is to connect local PCIe drive and second one is to connect NVMe-oF device. In both cases user should use construct_nvme_bdev RPC command to achieve that.

Example commands

rpc.py construct_nvme_bdev -b NVMe1 -t PCIe -a 0000:01:00.0

This command will create NVMe bdev of physical device in the system.

rpc.py construct_nvme_bdev -b Nvme0 -t RDMA -a 192.168.100.1 -f IPv4 -s 4420 -n nqn.2016-06.io.spdk:cnode1

This command will create NVMe bdev of NVMe-oF resource.

To remove a NVMe controller use the delete_nvme_controller command.

rpc.py delete_nvme_controller Nvme0

This command will remove NVMe controller named Nvme0.

Logical volumes

The Logical Volumes library is a flexible storage space management system. It allows creating and managing virtual block devices with variable size on top of other bdevs. The SPDK Logical Volume library is built on top of @ref blob. For detailed description please refer to @ref lvol.

Logical volume store

Before creating any logical volumes (lvols), an lvol store has to be created first on selected block device. Lvol store is lvols vessel responsible for managing underlying bdev space assignment to lvol bdevs and storing metadata. To create lvol store user should use using construct_lvol_store RPC command.

Example command

rpc.py construct_lvol_store Malloc2 lvs -c 4096

This will create lvol store named lvs with cluster size 4096, build on top of Malloc2 bdev. In response user will be provided with uuid which is unique lvol store identifier.

User can get list of available lvol stores using get_lvol_stores RPC command (no parameters available).

Example response

{
  "uuid": "330a6ab2-f468-11e7-983e-001e67edf35d",
  "base_bdev": "Malloc2",
  "free_clusters": 8190,
  "cluster_size": 8192,
  "total_data_clusters": 8190,
  "block_size": 4096,
  "name": "lvs"
}

To delete lvol store user should use destroy_lvol_store RPC command.

Example commands

rpc.py destroy_lvol_store -u 330a6ab2-f468-11e7-983e-001e67edf35d

rpc.py destroy_lvol_store -l lvs

Lvols

To create lvols on existing lvol store user should use construct_lvol_bdev RPC command. Each created lvol will be represented by new bdev.

Example commands

rpc.py construct_lvol_bdev lvol1 25 -l lvs

rpc.py construct_lvol_bdev lvol2 25 -u 330a6ab2-f468-11e7-983e-001e67edf35d

RAID

RAID virtual bdev module provides functionality to combine any SPDK bdevs into one RAID bdev. Currently SPDK supports only RAID 0. RAID functionality does not store on-disk metadata on the member disks, so user must reconstruct the RAID volume when restarting application. User may specify member disks to create RAID volume event if they do not exists yet - as the member disks are registered at a later time, the RAID module will claim them and will surface the RAID volume after all of the member disks are available. It is allowed to use disks of different sizes - the smallest disk size will be the amount of space used on each member disk.

Example commands

rpc.py construct_raid_bdev -n Raid0 -z 64 -r 0 -b "lvol0 lvol1 lvol2 lvol3"

rpc.py get_raid_bdevs

rpc.py destroy_raid_bdev Raid0

Passthru

The SPDK Passthru virtual block device module serves as an example of how to write a virtual block device module. It implements the required functionality of a vbdev module and demonstrates some other basic features such as the use of per I/O context.

Example commands

rpc.py construct_passthru_bdev -b aio -p pt

rpc.py delete_passthru_bdev pt

Pmem

The SPDK pmem bdev driver uses pmemblk pool as the target for block I/O operations. For details on Pmem memory please refer to PMDK documentation on http://pmem.io website. First, user needs to configure SPDK to include PMDK support:

configure --with-pmdk

To create pmemblk pool for use with SPDK user should use create_pmem_pool RPC command.

Example command

rpc.py create_pmem_pool /path/to/pmem_pool 25 4096

To get information on created pmem pool file user can use pmem_pool_info RPC command.

Example command

rpc.py pmem_pool_info /path/to/pmem_pool

To remove pmem pool file user can use delete_pmem_pool RPC command.

Example command

rpc.py delete_pmem_pool /path/to/pmem_pool

To create bdev based on pmemblk pool file user should use construct_pmem_bdev RPC command.

Example command

rpc.py construct_pmem_bdev /path/to/pmem_pool -n pmem

To remove a block device representation use the delete_pmem_bdev command.

rpc.py delete_pmem_bdev pmem

Virtio Block

The Virtio-Block driver allows creating SPDK bdevs from Virtio-Block devices.

The following command creates a Virtio-Block device named VirtioBlk0 from a vhost-user socket /tmp/vhost.0 exposed directly by SPDK @ref vhost. Optional vq-count and vq-size params specify number of request queues and queue depth to be used.

rpc.py construct_virtio_dev --dev-type blk --trtype user --traddr /tmp/vhost.0 --vq-count 2 --vq-size 512 VirtioBlk0

The driver can be also used inside QEMU-based VMs. The following command creates a Virtio Block device named VirtioBlk0 from a Virtio PCI device at address 0000:00:01.0. The entire configuration will be read automatically from PCI Configuration Space. It will reflect all parameters passed to QEMU's vhost-user-scsi-pci device.

rpc.py construct_virtio_dev --dev-type blk --trtype pci --traddr 0000:01:00.0 VirtioBlk1

Virtio-Block devices can be removed with the following command

rpc.py remove_virtio_bdev VirtioBlk0

Virtio SCSI

The Virtio-SCSI driver allows creating SPDK block devices from Virtio-SCSI LUNs.

Virtio-SCSI bdevs are constructed the same way as Virtio-Block ones.

rpc.py construct_virtio_dev --dev-type scsi --trtype user --traddr /tmp/vhost.0 --vq-count 2 --vq-size 512 VirtioScsi0

rpc.py construct_virtio_dev --dev-type scsi --trtype pci --traddr 0000:01:00.0 VirtioScsi0

Each Virtio-SCSI device may export up to 64 block devices named VirtioScsi0t0 ~ VirtioScsi0t63, one LUN (LUN0) per SCSI device. The above 2 commands will output names of all exposed bdevs.

Virtio-SCSI devices can be removed with the following command

rpc.py remove_virtio_bdev VirtioScsi0

Removing a Virtio-SCSI device will destroy all its bdevs.