Change-Id: Icfbf27c73e9deabbce76129dc9f28b7dfbcda2a9 Signed-off-by: GangCao <gang.cao@intel.com> Reviewed-on: https://review.gerrithub.io/364335 Tested-by: SPDK Automated Test System <sys_sgsw@intel.com> Reviewed-by: Ben Walker <benjamin.walker@intel.com> Reviewed-by: Daniel Verkamp <daniel.verkamp@intel.com>
3.6 KiB
Block Device Abstraction Layer
SPDK bdev Getting Started Guide
Block storage in SPDK applications is provided by the SPDK bdev layer. SPDK bdev consists of:
- a driver module API for implementing bdev drivers
- an application API for enumerating and claiming SPDK block devices and performance operations (read, write, unmap, etc.) on those devices
- bdev drivers for NVMe, malloc (ramdisk), Linux AIO and Ceph RBD
- configuration via SPDK configuration files or JSON RPC
Configuring block devices
SPDK block devices are typically configured via an SPDK configuration file. These block devices can then be associated with higher level abstractions such as iSCSI target nodes, NVMe-oF namespaces or vhost-scsi controllers. This section will describe how to configure block devices for the SPDK bdev drivers included with SPDK.
NVMe
The SPDK nvme bdev driver provides SPDK block layer access to NVMe SSDs via the SPDK userspace NVMe driver. The nvme bdev driver binds only to devices explicitly specified. These devices can be either locally attached SSDs or remote NVMe subsystems via NVMe-oF.
[Nvme]
# NVMe Device Whitelist
# Users may specify which NVMe devices to claim by their transport id.
# See spdk_nvme_transport_id_parse() in spdk/nvme.h for the correct format.
# The devices will be assigned names in the format <YourName>nY, where YourName is the
# name specified at the end of the TransportId line and Y is the namespace id, which starts at 1.
TransportID "trtype:PCIe traddr:0000:00:00.0" Nvme0
TransportID "trtype:RDMA subnqn:nqn.2016-06.io.spdk:cnode1 traddr:192.168.100.1 trsvcid:4420" Nvme1
This exports block devices for all namespaces attached to the two controllers. Block devices for namespaces attached to the first controller will be in the format Nvme0nY, where Y is the namespace ID. Most NVMe SSDs have a single namespace with ID=1. Block devices attached to the second controller will be in the format Nvme1nY.
Malloc
The SPDK malloc bdev driver allocates a buffer of memory in userspace as the target for block I/O operations. This effectively serves as a userspace ramdisk target.
Configuration file syntax:
[Malloc]
NumberOfLuns 4
LunSizeInMB 64
This exports 4 malloc block devices, named Malloc0 through Malloc3. Each malloc block device will be 64MB in size.
Linux AIO
The SPDK aio bdev driver provides SPDK block layer access to Linux kernel block devices via Linux AIO. Note that O_DIRECT is used and thus bypasses the Linux page cache. This mode is probably as close to a typical kernel based target as a user space target can get without using a user-space driver.
Configuration file syntax:
[AIO]
# AIO <file name> <bdev name>
# The file name is the backing device
# The bdev name can be referenced from elsewhere in the configuration file.
AIO /dev/sdb AIO0
AIO /dev/sdc AIO1
This exports 2 aio block devices, named AIO0 and AIO1.
Ceph RBD
The SPDK rbd bdev driver provides SPDK block layer access to Ceph RADOS block devices (RBD). Ceph RBD devices are accessed via librbd and librados libraries to access the RADOS block device exported by Ceph.
Configuration file syntax:
[Ceph]
# The format of provided rbd info should be: Ceph rbd_pool_name rbd_name size.
# In the following example, rbd is the name of rbd_pool; foo is the name of
# rbd device exported by Ceph; value 512 represents the configured block size
# for this rbd, the block size should be a multiple of 512.
Ceph rbd foo 512
This exports 1 rbd block device, named Ceph0.